Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.858
Filter
1.
J Chem Inf Model ; 64(12): 4630-4639, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38829021

ABSTRACT

Microbial rhodopsins (MRs) are a diverse and abundant family of photoactive membrane proteins that serve as model systems for biophysical techniques. Optogenetics utilizes genetic engineering to insert specialized proteins into specific neurons or brain regions, allowing for manipulation of their activity through light and enabling the mapping and control of specific brain areas in living organisms. The obstacle of optogenetics lies in the fact that light has a limited ability to penetrate biological tissues, particularly blue light in the visible spectrum. Despite this challenge, most optogenetic systems rely on blue light due to the scarcity of red-shifted opsins. Finding additional red-shifted rhodopsins would represent a major breakthrough in overcoming the challenge of limited light penetration in optogenetics. However, determining the wavelength absorption maxima for rhodopsins based on their protein sequence is a significant hurdle. Current experimental methods are time-consuming, while computational methods lack accuracy. The paper introduces a new computational approach called RhoMax that utilizes structure-based geometric deep learning to predict the absorption wavelength of rhodopsins solely based on their sequences. The method takes advantage of AlphaFold2 for accurate modeling of rhodopsin structures. Once trained on a balanced train set, RhoMax rapidly and precisely predicted the maximum absorption wavelength of more than half of the sequences in our test set with an accuracy of 0.03 eV. By leveraging computational methods for absorption maxima determination, we can drastically reduce the time needed for designing new red-shifted microbial rhodopsins, thereby facilitating advances in the field of optogenetics.


Subject(s)
Deep Learning , Rhodopsin , Rhodopsin/chemistry , Rhodopsin/metabolism , Models, Molecular , Amino Acid Sequence , Protein Conformation , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Optogenetics/methods
2.
PLoS Biol ; 22(6): e3002664, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829885

ABSTRACT

Neuroscientists studying the neural correlates of mouse behavior often lack access to the brain-wide activity patterns elicited during a specific task of interest. Fortunately, large-scale imaging is becoming increasingly accessible thanks to modalities such as Ca2+ imaging and functional ultrasound (fUS). However, these and other techniques often involve challenging cranial window procedures and are difficult to combine with other neuroscience tools. We address this need with an open-source 3D-printable cranial implant-the COMBO (ChrOnic Multimodal imaging and Behavioral Observation) window. The COMBO window enables chronic imaging of large portions of the brain in head-fixed mice while preserving orofacial movements. We validate the COMBO window stability using both brain-wide fUS and multisite two-photon imaging. Moreover, we demonstrate how the COMBO window facilitates the combination of optogenetics, fUS, and electrophysiology in the same animals to study the effects of circuit perturbations at both the brain-wide and single-neuron level. Overall, the COMBO window provides a versatile solution for performing multimodal brain recordings in head-fixed mice.


Subject(s)
Brain , Optogenetics , Animals , Mice , Brain/physiology , Brain/diagnostic imaging , Optogenetics/methods , Neurons/physiology , Mice, Inbred C57BL , Skull/physiology , Male , Behavior, Animal/physiology , Multimodal Imaging/methods , Ultrasonography/methods , Printing, Three-Dimensional
3.
J Neural Eng ; 21(3)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38834054

ABSTRACT

Objective. Therapeutic brain stimulation is conventionally delivered using constant-frequency stimulation pulses. Several recent clinical studies have explored how unconventional and irregular temporal stimulation patterns could enable better therapy. However, it is challenging to understand which irregular patterns are most effective for different therapeutic applications given the massively high-dimensional parameter space.Approach. Here we applied many irregular stimulation patterns in a single neural circuit to demonstrate how they can enable new dimensions of neural control compared to conventional stimulation, to guide future exploration of novel stimulation patterns in translational settings. We optogenetically excited the septohippocampal circuit with constant-frequency, nested pulse, sinusoidal, and randomized stimulation waveforms, systematically varying their amplitude and frequency parameters.Main results.We first found equal entrainment of hippocampal oscillations: all waveforms provided similar gamma-power increase, whereas no parameters increased theta-band power above baseline (despite the mechanistic role of the medial septum in driving hippocampal theta oscillations). We then compared each of the effects of each waveform on high-dimensional multi-band activity states using dimensionality reduction methods. Strikingly, we found that conventional stimulation drove predominantly 'artificial' (different from behavioral activity) effects, whereas all irregular waveforms induced activity patterns that more closely resembled behavioral activity.Significance. Our findings suggest that irregular stimulation patterns are not useful when the desired mechanism is to suppress or enhance a single frequency band. However, novel stimulation patterns may provide the greatest benefit for neural control applications where entraining a particular mixture of bands (e.g. if they are associated with different symptoms) or behaviorally-relevant activity is desired.


Subject(s)
Hippocampus , Optogenetics , Optogenetics/methods , Hippocampus/physiology , Animals , Theta Rhythm/physiology , Male
4.
Sci Rep ; 14(1): 13114, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849374

ABSTRACT

Aberrant neuronal circuit dynamics are at the core of complex neuropsychiatric disorders, such as schizophrenia (SZ). Clinical assessment of the integrity of neuronal circuits in SZ has consistently described aberrant resting-state gamma oscillatory activity, decreased auditory-evoked gamma responses, and abnormal mismatch responses. We hypothesized that corticothalamic circuit manipulation could recapitulate SZ circuit phenotypes in rodent models. In this study, we optogenetically inhibited the mediodorsal thalamus-to-prefrontal cortex (MDT-to-PFC) or the PFC-to-MDT projection in rats and assessed circuit function through electrophysiological readouts. We found that MDT-PFC perturbation could not recapitulate SZ-linked phenotypes such as broadband gamma disruption, altered evoked oscillatory activity, and diminished mismatch negativity responses. Therefore, the induced functional impairment of the MDT-PFC pathways cannot account for the oscillatory abnormalities described in SZ.


Subject(s)
Evoked Potentials, Auditory , Optogenetics , Prefrontal Cortex , Thalamus , Animals , Optogenetics/methods , Rats , Prefrontal Cortex/physiology , Male , Thalamus/physiology , Schizophrenia/physiopathology , Neural Pathways , Rats, Sprague-Dawley , Gamma Rhythm/physiology , Limbic System/physiology
5.
Opt Express ; 32(11): 19480-19494, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859082

ABSTRACT

Confining light illumination in the three dimensions of space is a challenge for various applications. Among these, optogenetic methods developed for live experiments in cell biology would benefit from such a localized illumination as it would improve the spatial resolution of diffusive photosensitive proteins leading to spatially constrained biological responses in specific subcellular organelles. Here, we describe a method to create and move a focused evanescent spot, at the interface between a glass substrate and an aqueous sample, across the field of view of a high numerical aperture microscope objective, using a digital micro-mirror device (DMD). We show that, after correcting the optical aberrations, light is confined within a spot of sub-micron lateral size and ∼100 nm axial depth above the coverslip, resulting in a volume of illumination drastically smaller than the one generated by a standard propagative focus. This evanescent focus is sufficient to induce a more intense and localized recruitment compared to a propagative focus on the optogenetic system CRY2-CIBN, improving the resolution of its pattern of activation.


Subject(s)
Light , Optogenetics , Optogenetics/methods , Humans , Cryptochromes/metabolism
6.
Sci Rep ; 14(1): 13812, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877050

ABSTRACT

We have designed, fabricated, and characterized implantable silicon neural probes with nanophotonic grating emitters that focus the emitted light at a specified distance above the surface of the probe for spatially precise optogenetic targeting of neurons. Using the holographic principle, we designed gratings for wavelengths of 488 and 594 nm, targeting the excitation spectra of the optogenetic actuators Channelrhodopsin-2 and Chrimson, respectively. The measured optical emission pattern of these emitters in non-scattering medium and tissue matched well with simulations. To our knowledge, this is the first report of focused spots with the size scale of a neuron soma in brain tissue formed from implantable neural probes.


Subject(s)
Neurons , Optogenetics , Photons , Optogenetics/methods , Optogenetics/instrumentation , Neurons/physiology , Animals , Prostheses and Implants , Silicon/chemistry
7.
Sci Rep ; 14(1): 13753, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877089

ABSTRACT

Neuronal activity is accompanied by a net outflow of potassium ions (K+) from the intra- to the extracellular space. While extracellular [K+] changes during neuronal activity are well characterized, intracellular dynamics have been less well investigated due to lack of respective probes. In the current study we characterized the FRET-based K+ biosensor lc-LysM GEPII 1.0 for its capacity to measure intracellular [K+] changes in primary cultured neurons and in mouse cortical neurons in vivo. We found that lc-LysM GEPII 1.0 can resolve neuronal [K+] decreases in vitro during seizure-like and intense optogenetically evoked activity. [K+] changes during single action potentials could not be recorded. We confirmed these findings in vivo by expressing lc-LysM GEPII 1.0 in mouse cortical neurons and performing 2-photon fluorescence lifetime imaging. We observed an increase in the fluorescence lifetime of lc-LysM GEPII 1.0 during periinfarct depolarizations, which indicates a decrease in intracellular neuronal [K+]. Our findings suggest that lc-LysM GEPII 1.0 can be used to measure large changes in [K+] in neurons in vitro and in vivo but requires optimization to resolve smaller changes as observed during single action potentials.


Subject(s)
Biosensing Techniques , Neurons , Potassium , Animals , Potassium/metabolism , Neurons/metabolism , Mice , Biosensing Techniques/methods , Action Potentials , Cells, Cultured , Fluorescence Resonance Energy Transfer/methods , Optogenetics/methods
8.
ACS Nano ; 18(22): 14123-14144, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768091

ABSTRACT

Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.


Subject(s)
Optogenetics , Optogenetics/methods , Humans , Nanostructures/chemistry , Animals , Nanotechnology , Nanomedicine
9.
ACS Synth Biol ; 13(5): 1467-1476, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38696739

ABSTRACT

Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.


Subject(s)
Light , Optogenetics , Promoter Regions, Genetic , Shewanella , Shewanella/genetics , Shewanella/metabolism , Optogenetics/methods , Electron Transport , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Bacterial , Transcription Factors/metabolism , Transcription Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Regulatory Networks/genetics , Synthetic Biology/methods
10.
J Mol Biol ; 436(13): 168628, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38797430

ABSTRACT

Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.


Subject(s)
Necroptosis , Optogenetics , Receptor-Interacting Protein Serine-Threonine Kinases , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Humans , Optogenetics/methods , Necroptosis/genetics , HT29 Cells , Cell Death , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Signal Transduction , Protein Multimerization
11.
Acc Chem Res ; 57(11): 1595-1607, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38759211

ABSTRACT

High-precision neuromodulation plays a pivotal role in elucidating fundamental principles of neuroscience and treating specific neurological disorders. Optical neuromodulation, enabled by spatial resolution defined by the diffraction limit at the submicrometer scale, is a general strategy to achieve such precision. Optogenetics offers single-neuron spatial resolution with cellular specificity, whereas the requirement of genetic transfection hinders its clinical application. Direct photothermal modulation, an alternative nongenetic optical approach, often associates a large temperature increase with the risk of thermal damage to surrounding tissues.Photoacoustic (also called optoacoustic) neural stimulation is an emerging technology for neural stimulation with the following key features demonstrated. First, the photoacoustic approach demonstrated high efficacy without the need for genetic modification. The generated pulsed ultrasound upon ns laser pulses with energy ranging from a few µJ to tens of µJ is sufficient to activate wild-type neurons. Second, the photoacoustic approach provides sub-100-µm spatial precision. It overcomes the fundamental wave diffraction limit of ultrasound by harnessing the localized ultrasound field generated through light absorption. A spatial precision of 400 µm has been achieved in rodent brains using a fiber-based photoacoustic emitter. Single-cell stimulation in neuronal cultures in vitro and in brain slices ex vivo is achieved using tapered fiber-based photoacoustic emitters. This precision is 10 to 100 times better than that for piezo-based low-frequency ultrasound and is essential to pinpoint a specific region or cell population in a living brain. Third, compared to direct photothermal stimulation via temperature increase, photoacoustic stimulation requires 40 times less laser energy dose to evoke neuron activities and is associated with a minimal temperature increase of less than 1 °C, preventing potential thermal damage to neurons. Fourth, photoacoustics is a versatile approach and can be designed in various platforms aiming at specific applications. Our team has shown the design of fiber-based photoacoustic emitters, photoacoustic nanotransducers, soft biocompatible photoacoustic films, and soft photoacoustic lenses. Since they interact with neurons through ultrasound without the need for direct contact, photoacoustic enables noninvasive transcranial and dura-penetrating brain stimulation without compromising high precision.In this Account, we will first review the basic principles of photoacoustic and discuss the key design elements of PA transducers for neural modulation guided by the principle. We will also highlight how these design goals were achieved from a materials chemistry perspective. The design of different PA interfaces, their unique capability, and their applications in neural systems will be reviewed. In the end, we will discuss the remaining challenges and future perspectives for this technology.


Subject(s)
Neurons , Photoacoustic Techniques , Photoacoustic Techniques/methods , Animals , Humans , Optogenetics/methods , Brain/diagnostic imaging
12.
J Diabetes ; 16(6): e13557, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751366

ABSTRACT

Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.


Subject(s)
Diabetes Mellitus , Optogenetics , Humans , Optogenetics/methods , Diabetes Mellitus/therapy , Animals , Insulin/metabolism , Insulin Resistance , Glucagon-Like Peptide 1 , Cell- and Tissue-Based Therapy/methods , Insulin-Secreting Cells/metabolism
13.
Biotechnol J ; 19(5): e2400023, 2024 May.
Article in English | MEDLINE | ID: mdl-38719589

ABSTRACT

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Optogenetics/methods , Gene Expression Regulation, Bacterial/drug effects , Ampicillin/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Drug Resistance, Bacterial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Streptomycin/pharmacology , Blue Light
14.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38748470

ABSTRACT

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Subject(s)
Cholinergic Neurons , Dopamine , Interneurons , Optogenetics , Dopamine/metabolism , Animals , Interneurons/metabolism , Interneurons/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Rats , Optogenetics/methods , Motivation , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Acetylcholine/metabolism
15.
Sci Robot ; 9(90): eadi8995, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776378

ABSTRACT

Closed-loop neuroprostheses show promise in restoring motion in individuals with neurological conditions. However, conventional activation strategies based on functional electrical stimulation (FES) fail to accurately modulate muscle force and exhibit rapid fatigue because of their unphysiological recruitment mechanism. Here, we present a closed-loop control framework that leverages physiological force modulation under functional optogenetic stimulation (FOS) to enable high-fidelity muscle control for extended periods of time (>60 minutes) in vivo. We first uncovered the force modulation characteristic of FOS, showing more physiological recruitment and significantly higher modulation ranges (>320%) compared with FES. Second, we developed a neuromuscular model that accurately describes the highly nonlinear dynamics of optogenetically stimulated muscle. Third, on the basis of the optogenetic model, we demonstrated real-time control of muscle force with improved performance and fatigue resistance compared with FES. This work lays the foundation for fatigue-resistant neuroprostheses and optogenetically controlled biohybrid robots with high-fidelity force modulation.


Subject(s)
Muscle Fatigue , Muscle, Skeletal , Optogenetics , Optogenetics/methods , Optogenetics/instrumentation , Animals , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Humans , Electric Stimulation/instrumentation , Muscle Contraction/physiology , Robotics/instrumentation , Male , Equipment Design , Neural Prostheses , Nonlinear Dynamics
16.
Nat Commun ; 15(1): 4306, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773114

ABSTRACT

Heliorhodopsins (HeRs) have been hypothesized to have widespread functions. Recently, the functions for few HeRs have been revealed; however, the hypothetical functions remain largely unknown. Herein, we investigate light-modulation of heterodimeric multidrug resistance ATP-binding cassette transporters (OmrDE) mediated by Omithinimicrobium cerasi HeR. In this study, we classifiy genes flanking the HeR-encoding genes and identify highly conservative residues for protein-protein interactions. Our results reveal that the interaction between OcHeR and OmrDE shows positive cooperatively sequential binding through thermodynamic parameters. Moreover, light-induced OcHeR upregulates OmrDE drug transportation. Hence, the binding may be crucial to drug resistance in O. cerasi as it survives in a drug-containing habitat. Overall, we unveil a function of HeR as regulatory rhodopsin for multidrug resistance. Our findings suggest potential applications in optogenetic technology.


Subject(s)
ATP-Binding Cassette Transporters , Light , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Protein Binding , Rhodopsins, Microbial/metabolism , Rhodopsins, Microbial/genetics , Rhodopsins, Microbial/chemistry , Optogenetics/methods
17.
Sci Rep ; 14(1): 11642, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773346

ABSTRACT

Vision restoration is one of the most promising applications of optogenetics. However, it is limited due to the poor-sensitivity, slow-kinetics and narrow band absorption spectra of opsins. Here, a detailed theoretical study of retinal ganglion neurons (RGNs) expressed with ChRmine, ReaChR, CoChR, CatCh and their mutants, with near monochromatic LEDs, and broadband sunlight, halogen lamp, RGB LED light, and pure white light sources has been presented. All the opsins exhibit improved light sensitivity and larger photocurrent on illuminating with broadband light sources compared to narrow band LEDs. ChRmine allows firing at ambient sunlight (1.5 nW/mm2) and pure white light (1.2 nW/mm2), which is lowest among the opsins considered. The broadband activation spectrum of ChRmine and its mutants is also useful to restore color sensitivity. Although ChRmine exhibits slower turn-off kinetics with broadband light, high-fidelity spikes can be evoked upto 50 Hz. This limit extends upto 80 Hz with the improved hsChRmine mutant although it requires double the irradiance compared to ChRmine. The present study shows that ChRmine and its mutants allow activation of RGNs with ambient light which is useful for goggle-free white light optogenetic retinal prostheses with improved quality of restored vision.


Subject(s)
Light , Optogenetics , Retinal Ganglion Cells , Optogenetics/methods , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Humans , Mutation , Animals , Opsins/genetics , Opsins/metabolism , Vision, Ocular/physiology
18.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791270

ABSTRACT

At present, there are a variety of different approaches to the targeted regulation of gene expression. However, most approaches are devoted to the activation of gene transcription, and the methods for gene silencing are much fewer in number. In this review, we describe the main systems used for the targeted suppression of gene expression (including RNA interference (RNAi), chimeric transcription factors, chimeric zinc finger proteins, transcription activator-like effectors (TALEs)-based repressors, optogenetic tools, and CRISPR/Cas-based repressors) and their application in eukaryotes-plants and animals. We consider the advantages and disadvantages of each approach, compare their effectiveness, and discuss the peculiarities of their usage in plant and animal organisms. This review will be useful for researchers in the field of gene transcription suppression and will allow them to choose the optimal method for suppressing the expression of the gene of interest depending on the research object.


Subject(s)
CRISPR-Cas Systems , Gene Silencing , Plants , Animals , Plants/genetics , Plants/metabolism , RNA Interference , Transcription Factors/genetics , Transcription Factors/metabolism , Optogenetics/methods , Gene Expression Regulation , Zinc Fingers/genetics
19.
PLoS Comput Biol ; 20(5): e1012053, 2024 May.
Article in English | MEDLINE | ID: mdl-38709828

ABSTRACT

Monosynaptic connectivity mapping is crucial for building circuit-level models of neural computation. Two-photon optogenetic stimulation, when combined with whole-cell recording, enables large-scale mapping of physiological circuit parameters. In this experimental setup, recorded postsynaptic currents are used to infer the presence and strength of connections. For many cell types, nearby connections are those we expect to be strongest. However, when the postsynaptic cell expresses opsin, optical excitation of nearby cells can induce direct photocurrents in the postsynaptic cell. These photocurrent artifacts contaminate synaptic currents, making it difficult or impossible to probe connectivity for nearby cells. To overcome this problem, we developed a computational tool, Photocurrent Removal with Constraints (PhoRC). Our method is based on a constrained matrix factorization model which leverages the fact that photocurrent kinetics are less variable than those of synaptic currents. We demonstrate on real and simulated data that PhoRC consistently removes photocurrents while preserving synaptic currents, despite variations in photocurrent kinetics across datasets. Our method allows the discovery of synaptic connections which would have been otherwise obscured by photocurrent artifacts, and may thus reveal a more complete picture of synaptic connectivity. PhoRC runs faster than real time and is available as open source software.


Subject(s)
Artifacts , Computational Biology , Models, Neurological , Optogenetics , Optogenetics/methods , Animals , Computational Biology/methods , Synapses/physiology , Mice , Neurons/physiology , Software , Computer Simulation , Algorithms , Patch-Clamp Techniques/methods , Humans
20.
Adv Healthc Mater ; 13(16): e2304513, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608269

ABSTRACT

With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff glass fibers to flexible probes is required, especially for long-term use. Following this demand, polydimethylsiloxane (PDMS) with its lower Young's modulus compared to glass fibers can serve as material of choice. Hence, the long-term usability of PDMS as a waveguide material with respect to variations in transmission and refractive index over time is investigated. Different manufacturing methods for PDMS-based flexible waveguides are established and compared with the aim to minimize optical losses and thus maximize optical output power. Finally, the waveguides with lowest optical losses (-4.8 dB cm-1 ± 1.3 dB cm-1 at 472 nm) are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus), where optical stimuli delivered by the waveguides evoked robust neuronal responses in the auditory pathway.


Subject(s)
Dimethylpolysiloxanes , Gerbillinae , Optogenetics , Dimethylpolysiloxanes/chemistry , Animals , Optogenetics/methods , Cochlea/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...