Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38789262

ABSTRACT

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Subject(s)
Corticotropin-Releasing Hormone , Neurons , Orexin Receptor Antagonists , Orexin Receptors , Orexins , Rats, Sprague-Dawley , Solitary Nucleus , Animals , Male , Corticotropin-Releasing Hormone/metabolism , Orexins/metabolism , Rats , Neurons/metabolism , Neurons/physiology , Neurons/drug effects , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Solitary Nucleus/drug effects , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/metabolism , Hypoxia/metabolism , Triazoles/pharmacology , Azepines/pharmacology , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/physiology
2.
Exp Eye Res ; 244: 109943, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797259

ABSTRACT

Orexin A and B (OXA and OXB) and their receptors are expressed in the majority of retinal neurons in humans, rats, and mice. Orexins modulate signal transmission between the different layers of the retina. The suprachiasmatic nucleus (SCN) and the retina are central and peripheral components of the body's biological clocks; respectively. The SCN receives photic information from the retina through the retinohypothalamic tract (RHT) to synchronize bodily functions with environmental changes. In present study, we aimed to investigate the impact of inhibiting retinal orexin receptors on the expression of retinal Bmal1 and c-fos, as well as hypothalamic c-fos, Bmal1, Vip, and PACAP at four different time-points (Zeitgeber time; ZT 3, 6, 11, and ZT-0). The intravitreal injection (IVI) of OX1R antagonist (SB-334867) and OX2R antagonist (JNJ-10397049) significantly up-regulated c-fos expression in the retina. Additionally, compared to the control group, the combined injection of SB-334867 and JNJ-10397049 showed a greater increase in retinal expression of this gene. Moreover, the expression of hypothalamic Vip and PACAP was significantly up-regulated in both the SB-334867 and JNJ-10397049 groups. In contrast, the expression of Bmal1 was down-regulated. Furthermore, the expression of hypothalamic c-fos was down-regulated in all groups treated with SB-334867 and JNJ-10397049. Additionally, the study demonstrated that blocking these receptors in the retina resulted in alterations in circadian rhythm parameters such as mesor, amplitude, and acrophase. Finally, it affected the phase of gene expression rhythms in both the retina and hypothalamus, as identified through cosinor analysis and the zero-amplitude test. This study represents the initial exploration of how retinal orexin receptors influence expression of rhythmic genes in the retina and hypothalamus. These findings could provide new insights into how the retina regulates the circadian rhythm in both regions and illuminate the role of the orexinergic system expression within the retina.


Subject(s)
Hypothalamus , Orexin Receptors , Pituitary Adenylate Cyclase-Activating Polypeptide , Proto-Oncogene Proteins c-fos , Rats, Wistar , Retina , Vasoactive Intestinal Peptide , Animals , Male , Rats , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Orexin Receptors/metabolism , Orexin Receptors/genetics , Retina/metabolism , Vasoactive Intestinal Peptide/metabolism , Naphthyridines , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Gene Expression Regulation , Orexin Receptor Antagonists/pharmacology , Benzoxazoles/pharmacology , Urea/analogs & derivatives , Urea/pharmacology , Circadian Rhythm/physiology , Suprachiasmatic Nucleus/metabolism , Dioxanes , Isoquinolines , Phenylurea Compounds , Pyridines
3.
Article in English | MEDLINE | ID: mdl-38682858

ABSTRACT

The orexin system is closely related to the pathogenesis of Alzheimer's disease (AD). Orexin-A aggravates cognitive dysfunction and increases amyloid ß (Aß) deposition in AD model mice, but studies of different dual orexin receptor (OXR) antagonists in AD have shown inconsistent results. Our previous study revealed that OX1R blockade aggravates cognitive deficits and pathological progression in 3xTg-AD mice, but the effects of OX2R and its potential mechanism in AD have not been reported. In the present study, OX2R was blocked by oral administration of the selective OX2R antagonist MK-1064, and the effects of OX2R blockade on cognitive dysfunction and neuropsychiatric symptoms in 3xTg-AD mice were evaluated via behavioral tests. Then, immunohistochemistry, western blotting, and ELISA were used to detect Aß deposition, tau phosphorylation, and neuroinflammation, and electrophysiological and wheel-running activity recording were recorded to observe hippocampal synaptic plasticity and circadian rhythm. The results showed that OX2R blockade ameliorated cognitive dysfunction, improved LTP depression, increased the expression of PSD-95, alleviated anxiety- and depression-like behaviors and circadian rhythm disturbances in 3xTg-AD mice, and reduced Aß pathology, tau phosphorylation, and neuroinflammation in the brains of 3xTg-AD mice. These results indicated that chronic OX2R blockade exerts neuroprotective effects in 3xTg-AD mice by reducing AD pathology at least partly through improving circadian rhythm disturbance and the sleep-wake cycle and that OX2R might be a potential target for the prevention and treatment of AD; however, the potential mechanism by which OX2R exerts neuroprotective effects on AD needs to be further investigated.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Models, Animal , Disease Progression , Mice, Transgenic , Orexin Receptor Antagonists , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Mice , Orexin Receptor Antagonists/pharmacology , Cognitive Dysfunction/drug therapy , Orexin Receptors/metabolism , Amyloid beta-Peptides/metabolism , Male , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism
4.
Drug Alcohol Depend ; 259: 111285, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636173

ABSTRACT

BACKGROUND: The orexin system has been implicated as a mechanism underlying insomnia and methamphetamine-induced sleep disruptions, with a potential role for OX2 receptors in the sleep-modulating effects of orexin. The aim of the present study was to investigate the extent to which orexin receptors mediate the effects of acute methamphetamine administration on actigraphy-based sleep in female rhesus monkeys. METHODS: Actigraphy-based sleep measures were obtained in female rhesus monkeys (n=5) under baseline and acute test conditions. First, morning (10h) i.m. injections of methamphetamine (0.03 - 0.56mg/kg) were administered to determine the effects of methamphetamine alone. Then, saline or methamphetamine (0.3mg/kg) were administered at 10h, and evening (17h30) oral treatments with vehicle, the non-selective orexin receptor antagonist suvorexant (1 - 10mg/kg, p.o.), or the OX2-selective orexin receptor antagonist MK-1064 (1 - 10mg/kg, p.o.) were given. The ability of suvorexant and MK-1064 (10mg/kg, p.o.) to improve actigraphy-based sleep was also assessed in a group of female monkeys quantitatively identified with "short-duration sleep" (n=4). RESULTS: Methamphetamine dose-dependently disrupted actigraphy-based sleep parameters. Treatment with either suvorexant or MK-1064 dose-dependently improved actigraphy-based sleep in monkeys treated with methamphetamine. Additionally, both suvorexant and MK-1064 promoted actigraphy-based sleep in a group of monkeys with baseline short actigraphy-based sleep. CONCLUSIONS: These findings suggest that orexin-mediated mechanisms play a role in the effects of methamphetamine on actigraphy-based sleep in female monkeys. Targeting the orexin system, in particular OX2 receptors, could be an effective option for treating sleep disruptions observed in individuals with methamphetamine use disorder.


Subject(s)
Actigraphy , Macaca mulatta , Methamphetamine , Orexin Receptor Antagonists , Orexin Receptors , Sleep , Animals , Female , Methamphetamine/pharmacology , Orexin Receptors/metabolism , Orexin Receptors/drug effects , Sleep/drug effects , Sleep/physiology , Orexin Receptor Antagonists/pharmacology , Triazoles/pharmacology , Azepines/pharmacology , Central Nervous System Stimulants/pharmacology , Dose-Response Relationship, Drug
5.
Drugs R D ; 24(1): 97-108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472696

ABSTRACT

BACKGROUND AND OBJECTIVES: Daridorexant, a dual orexin receptor antagonist was recently approved for the treatment of insomnia at doses up to 50 mg once per night. This study investigated the effect of single-dose and multiple-dose daridorexant 50 mg at steady state on the pharmacokinetics (PK) of the cytochrome P450 (CYP) 3A4-sensitive substrate midazolam, and the effect of single-dose daridorexant 50 mg on the PK and pharmacodynamics (PD) of the CYP2C9-sensitive substrate warfarin. METHODS: In this prospective, single-center, open-label, fixed-sequence, phase I, drug-drug interaction study, 18 healthy male subjects sequentially received Treatment A, B, and C in three periods. Treatment A consisted of a single oral concomitant administration of midazolam 2 mg and warfarin 25 mg on day 1 of the first period. Treatment B consisted of one oral administration of daridorexant 50 mg followed 1 h later by a single oral dose of midazolam 2 mg concomitantly with a single oral dose of warfarin 25 mg on day 1 and a once-daily oral administration of daridorexant 50 mg for 6 days of the second period. Treatment C consisted of a single oral administration of daridorexant 50 mg at steady state followed 1 h later by a single oral administration of midazolam 2 mg on day 1 of the third period. Blood samples were assessed for midazolam and S-warfarin PK, and PD (international normalized ratio and factor VII). Noncompartmental  PK parameters and PD variables were evaluated with geometric mean ratios and 90% confidence intervals of Treatment B/A versus C/A for midazolam, and treatment B/A for warfarin. Safety and tolerability of each treatment were also assessed. RESULTS: Midazolam maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) were 1.13- and 1.42-fold higher, respectively, after single-dose administration of daridorexant 50 mg compared to administration of midazolam alone, while Cmax and AUC0-24 were 1.12- and 1.35-fold higher, respectively, after administration of daridorexant 50 mg once daily at steady state. Terminal half-life and time to maximum plasma concentration were comparable between treatments. Daridorexant had no influence on the PK and PD of warfarin. All treatments were safe and well tolerated. CONCLUSIONS: Daridorexant at 50 mg is classified as a weak CYP3A4 inhibitor after single- and multiple-dose administration once daily at steady state. Daridorexant 50 mg did not induce CYP3A4 activity or inhibit CYP2C9 activity. CLINICAL TRIAL REGISTRATION: This trial (NCT05480488) was registered on 29 July, 2022.


Subject(s)
Drug Interactions , Imidazoles , Midazolam , Pyrrolidines , Warfarin , Humans , Male , Midazolam/pharmacokinetics , Midazolam/administration & dosage , Adult , Warfarin/pharmacokinetics , Warfarin/administration & dosage , Warfarin/pharmacology , Young Adult , Healthy Volunteers , Triazoles/pharmacokinetics , Triazoles/administration & dosage , Triazoles/pharmacology , Prospective Studies , Orexin Receptor Antagonists/pharmacokinetics , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/administration & dosage , Area Under Curve
7.
J Med Chem ; 67(4): 2337-2348, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38331429

ABSTRACT

The orexin system consists of two neuropeptides (orexins A and B) and two receptors (OX1 and OX2). Selective OX1 receptor antagonists (SO1RA) are gaining interest for their potential use in the treatment of CNS disorders, including substance abuse, eating, obsessive compulsive, or anxiety disorders. While blocking OX2 reduces wakefulness, the expected advantage of selectively antagonizing OX1 is the ability to achieve clinical efficacy without the promotion of sleep. Herein we report our discovery efforts starting from a dual orexin receptor antagonist and describe a serendipitous finding that triggered a medicinal chemistry program that culminated in the identification of the potent SO1RA ACT-539313. Efficacy in a rat model of schedule-induced polydipsia supported the decision to select the compound as a preclinical candidate. Nivasorexant (20) represents the first SO1RA to enter clinical development and completed a first proof of concept phase II clinical trial in binge eating disorder in 2022.


Subject(s)
Neuropeptides , Rats , Animals , Orexins , Neuropeptides/pharmacology , Orexin Receptors , Morpholines , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use
8.
Bioorg Med Chem Lett ; 100: 129629, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38295907

ABSTRACT

Modulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy. This drug candidate is currently being investigated in clinical trials for schizophrenia and related psychiatric conditions.


Subject(s)
Disclosure , Mental Disorders , Humans , Orexins , Orexin Receptor Antagonists/pharmacology , Orexin Receptors
9.
Regul Toxicol Pharmacol ; 148: 105570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286304

ABSTRACT

The abuse potential of novel CNS-active drug candidates with low specificity for known receptors involved in abuse might be complex to test preclinically relative to an appropriate reference drug of abuse. Suvorexant, a Schedule IV dual orexin receptor antagonist was investigated for its potential use as a reference drug in Drug Discrimination Learning (DDL) studies. Firstly, toxicokinetic properties of suvorexant were determined in male and female rats after single oral doses of 160 and 325 mg/kg in MC and PEG400. Thereafter the subjective effects of suvorexant at 325 mg/kg versus vehicle were evaluated in a DDL paradigm and plasma exposures were measured. Mean maximum plasma exposures in male rats after a single dose of 325 mg/kg suvorexant were 2.5- (MC) to 10.5-fold (PEG400) the human exposure at supratherapeutic doses of 40 mg q.d. (Cmax:1.1 µM), and 4.9- (MC) to 20.8-fold (PEG400) the approved maximum human efficacious dose (20 mg q.d.; 0.557 µM). Training male rats at 325 mg/kg in the DDL study however did not result in discriminative stimulus generalisation versus respective vehicles. Suvorexant, a Schedule IV dual orexin receptor antagonist failed to serve as a robust reference drug of abuse in the DDL paradigm in rats despite appropriate exposures.


Subject(s)
Azepines , Orexin Receptor Antagonists , Humans , Rats , Male , Female , Animals , Orexin Receptor Antagonists/pharmacology , Azepines/toxicity , Triazoles
11.
Annu Rev Pharmacol Toxicol ; 64: 359-386, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37708433

ABSTRACT

Sleep is essential for human well-being, yet the quality and quantity of sleep reduce as age advances. Older persons (>65 years old) are more at risk of disorders accompanied and/or exacerbated by poor sleep. Furthermore, evidence supports a bidirectional relationship between disrupted sleep and Alzheimer's disease (AD) or related dementias. Orexin/hypocretin neuropeptides stabilize wakefulness, and several orexin receptor antagonists (ORAs) are approved for the treatment of insomnia in adults. Dysregulation of the orexin system occurs in aging and AD, positioning ORAs as advantageous for these populations. Indeed, several clinical studies indicate that ORAs are efficacious hypnotics in older persons and dementia patients and, as in adults, are generally well tolerated. ORAs are likely to be more effective when administered early in sleep/wake dysregulation to reestablish good sleep/wake-related behaviors and reduce the accumulation of dementia-associated proteinopathic substrates. Improving sleep in aging and dementia represents a tremendous opportunity to benefit patients, caregivers, and health systems.


Subject(s)
Alzheimer Disease , Orexin Receptor Antagonists , Humans , Aged , Aged, 80 and over , Orexins/pharmacology , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use , Orexin Receptors , Sleep/physiology , Alzheimer Disease/drug therapy
12.
Behav Brain Res ; 459: 114772, 2024 02 29.
Article in English | MEDLINE | ID: mdl-37995966

ABSTRACT

Previous studies have shown that stressful stimuli induced an adaptive response of reduced nociception, known as stress-induced analgesia (SIA). Since orexin neuropeptides are involved in pain modulation, and orexin neurons, primarily located in the lateral hypothalamus (LH), project to various hippocampal regions, such as the dentate gyrus (DG), the current study aimed to examine the role of orexin receptors within the DG region in the restraint SIA in the animal model of chronic pain. One hundred-thirty adult male Wistar rats (230-250 g) were unilaterally implanted with a cannula above the DG region. Animals were given SB334867 or TCS OX2 29 (1, 3, 10, and 30 nmol, 0.5 µl/rat) into the DG region as orexin-1 receptor (OX1r) and orexin-2 receptor (OX2r) antagonists, respectively, five min before exposure to a 3-hour restraint stress (RS) period. Animals were then undergone the formalin test to assess pain-related behaviors as the animal model of chronic pain. The results showed that RS produces an analgesic response during the early and late phases of the formalin test. However, intra-DG microinjection of OX1r and OX2r antagonists attenuated the restraint SIA. OX2r antagonist was more potent than OX1r antagonist in the early phase of the formalin test, while OX1r antagonist was little more effective in the late phase. Predominantly, it could be concluded that the orexinergic system in the DG region might act as a potential endogenous pain control system and a novel target for treating stress-related disorders.


Subject(s)
Analgesia , Chronic Pain , Rats , Male , Animals , Orexin Receptors/metabolism , Orexins/pharmacology , Rats, Wistar , Carbachol/pharmacology , Hippocampus/metabolism , Dentate Gyrus/metabolism , Models, Animal , Orexin Receptor Antagonists/pharmacology , Urea/pharmacology , Benzoxazoles/pharmacology , Naphthyridines/pharmacology
13.
Behav Pharmacol ; 35(2-3): 92-102, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38055726

ABSTRACT

Stress and pain are interleaved at numerous levels - influencing each other. Stress can increase the nociception threshold in animals, long-known as stress-induced analgesia (SIA). Orexin is known as a neuropeptide that modulates pain. The effect of stress on the mesolimbic system in the modulation of pain is known. The role of the intra-accumbal orexin receptors in the modulation of acute pain by forced swim stress (FSS) is unclear. In this study, 117 adult male albino Wistar rats (270-300 g) were used. The animals were unilaterally implanted with cannulae above the NAc. The antagonist of the orexin-1 receptor (OX1r), SB334867, and antagonist of the orexin-2 receptor (OX2r), TCS OX2 29, were microinjected into the NAc in different doses (1, 3, 10, and 30 nmol/0.5 µl DMSO) before exposure to FSS for a 6-min period. The tail-flick test was carried out as an assay nociception of acute pain, and the nociceptive threshold [tail-flick latency (TFL)] was measured for 60-minute. The findings demonstrated that exposure to acute stress could remarkably increase the TFLs and antinociceptive responses. Moreover, intra-accumbal microinjection of SB334867 or TCS OX2 29 blocked the antinociceptive effect of stress in the tail-flick test. The contribution of orexin receptors was almost equally modulating SIA. The present study's findings suggest that OX1r and OX2r within the NAc modulate stress-induced antinociceptive responses. The intra-accumbal microinjection of orexin receptors antagonists declares inducing antinociceptive responses by FSS in acute pain. Proposedly, intra-accumbla orexinergic receptors have a role in the development of SIA.


Subject(s)
Acute Pain , Rats , Male , Animals , Acute Pain/drug therapy , Orexins/pharmacology , Orexins/metabolism , Orexin Receptors/metabolism , Nucleus Accumbens/metabolism , Rats, Wistar , Models, Animal , Analgesics/pharmacology , Orexin Receptor Antagonists/pharmacology
14.
J Clin Sleep Med ; 20(4): 603-613, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38063235

ABSTRACT

STUDY OBJECTIVES: Although novel hypnotics have recently emerged, there are currently no data comparing the clinical potency of benzodiazepine receptor agonists (BZRAs) and novel hypnotics, or the effectiveness of different methods of switching between them. This study examined how novel hypnotics might help reduce BZRA use in real-world practice. METHODS: 289 patients with psychiatric disorders who took BZRAs for over 1 year before switching to either of 2 dual-orexin receptor antagonists (DORAs; suvorexant [SUV] or lemborexant [LEM]) or a melatonin receptor agonist (ramelteon [RMT]) were enrolled. We collected data on BZRAs at baseline and 3 months after commencement of SUV/LEM/RMT. RESULTS: Significant reductions in BZRAs were observed for all 3 agents: -4.10, -2.80, and -1.65 mg in diazepam-equivalent doses in the SUV, LEM, and RMT groups, respectively. Dose reduction was significantly greater in the DORA than the RMT group (F = 15.053, P < .001). Within the DORA group, dose reduction was significantly greater in patients taking SUV than those taking LEM (F = 4.337, P = .043). The switching success rate did not differ among the switching methods for any of the hypnotics. CONCLUSIONS: The reduction rate of BZRAs achieved by the switch fell into their equivalent-potency range estimated from clinical trials. The results suggest that DORAs can replace approximately 1 tablet of a BZRA. The difference in dose reduction between DORAs and RMT reflected the greater sleeping potency of the DORAs, whereas that between SUV and LEM might have reflected patient backgrounds: patients taking LEM may have been more strongly dependent on BZRAs. CITATION: Tachibana M, Kanahara N, Oda Y, Hasegawa T, Kimura A, Iyo M. A retrospective clinical practice study comparing the usefulness of dual-orexin receptor antagonists and a melatonin receptor agonist in patients switching from long-term benzodiazepine receptor agonists. J Clin Sleep Med. 2024;20(4):603-613.


Subject(s)
Indenes , Orexin Receptor Antagonists , Sleep Initiation and Maintenance Disorders , Humans , Orexin Receptor Antagonists/pharmacology , Retrospective Studies , Receptors, GABA-A , Receptors, Melatonin , Sleep , Sleep Initiation and Maintenance Disorders/drug therapy , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use
15.
Behav Pharmacol ; 35(2-3): 103-113, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37934654

ABSTRACT

Stress-induced antinociception (SIA) is due to the activation of several neural pathways and neurotransmitters that often suppress pain perception. Studies have shown that the orexin neuropeptide system is essential in pain modulation. Therefore, this study aimed to investigate the role of orexinergic receptors in the hippocampal CA1 region in modulating SIA response during the formalin test as an animal model of inflammatory pain. The orexin-1 receptor (OX1r) antagonist, SB334867, at 1, 3, 10, and 30 nmol or TCS OX2 29 as an orexin-2 receptor (OX2r) antagonist at the same doses were microinjected into the CA1 region in rats. Five minutes later, rats were exposed to restraint stress (RS) for 3 h, and pain-related behaviors were monitored in 5-min blocks for the 60-min test period in the formalin test. Results showed that applying RS for 3 h reduced pain responses in the early and late phases of the formalin test. The main findings showed that intra-CA1 injection of orexin receptor antagonists reduced the antinociception caused by stress in both phases of the formalin test. In addition, the contribution of OX2r in mediating the antinociceptive effect of stress was more prominent than that of OX1r in the early phase of the formalin test. However, in the late phase, both receptors worked similarly. Accordingly, the orexin system and its two receptors in the CA1 region of the hippocampus regulate SIA response to this animal model of pain in formalin test.


Subject(s)
CA1 Region, Hippocampal , Pain , Rats , Animals , Orexins/metabolism , Orexin Receptors/metabolism , Rats, Wistar , Pain Measurement , Carbachol/pharmacology , Pain/drug therapy , Pain/metabolism , CA1 Region, Hippocampal/metabolism , Orexin Receptor Antagonists/pharmacology
16.
Behav Pharmacol ; 35(1): 14-25, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37578388

ABSTRACT

The stressful experiences, by triggering a cascade of hormonal and neural changes, can produce antinociception commonly referred to as stress-induced antinociception (SIA). Orexin neuropeptides have an essential role in stress responses and pain modulation. The dentate gyrus receives orexinergic projections and has been shown to be involved in pain processing. The current study investigated the possible role of orexin-1 and orexin-2 receptors (OX1r and OX2r, respectively) within the dentate gyrus in SIA in a rat model of formalin-induced pain behavior in one hind paw. Male Wistar rats weighing 230-250 g underwent stereotaxic surgery and a cannula was implanted in their brains, above the dentate gyrus region. Either SB334867 or TCS OX2 29 (OX1r and OX2r antagonists, respectively) was microinjected into the dentate gyrus region at a range of doses at 1, 3, 10, and 30 nmol (control group received DMSO 12% as vehicle), 5 min before the forced swim stress (FSS) exposure. The formalin test was performed to assess pain-related behaviors. The results indicated that FSS exposure relieves pain-related behavior in the early and late phases of the formalin test. Blockade of intra-dentate gyrus OX1 or OX2 receptors reduced the antinociceptive responses induced by FSS in the formalin test, with more impact during the late phase. Our findings support the potential role of intra-dentate gyrus orexin receptors as target sites of orexin neurons in painful and stressful situations. Therefore, understanding the exact mechanisms of SIA and the role of the orexinergic system in this phenomenon can lead to identifying the strategies to guide future research and offer a new approach to discovering new pain therapeutic agents.


Subject(s)
Hippocampus , Pain , Rats , Male , Animals , Orexins , Rats, Wistar , Pain Measurement , Pain/drug therapy , Orexin Receptors/metabolism , Hippocampus/metabolism , Dentate Gyrus/metabolism , Formaldehyde , Orexin Receptor Antagonists/pharmacology
17.
Behav Brain Res ; 458: 114741, 2024 02 26.
Article in English | MEDLINE | ID: mdl-37931704

ABSTRACT

Extinction of conditioned fear is considered a fundamental process in the recovery from posttraumatic stress disorder and anxiety disorders. Sleep, especially rapid-eye-movement (REM) sleep, has been implicated in promoting extinction memory. The orexin system contributes to the regulation of sleep and wakefulness and emotional behaviors. In rodents, administrations of an orexin receptor antagonist following fear extinction training enhanced consolidation of extinction memory. Although orexin antagonists increase sleep, including REM sleep, the possible contribution of sleep to the effects of orexin antagonists on extinction memory has not been examined. Therefore, this study examined the effects of suvorexant, a dual orexin receptor antagonist, on extinction memory and sleep and their associations in mice. C57BL/6 mice underwent sleep recording for 24 h before and after contextual fear conditioning with footshocks and extinction learning during the early light phase or early dark phase. Mice were systemically injected with either 25 mg/kg of suvorexant or vehicle immediately after the extinction session. We found that suvorexant neither altered sleep nor improved extinction memory recall compared with vehicle. The higher percentages of REM sleep during the post-extinction dark phase were associated with lower extinction memory recall and greater freezing responses to the fear context. Results also indicate that animals did not reach complete extinction of fear with the fear extinction training protocol used in this study. These findings suggest that promoting REM sleep may not enhance fear extinction memory when extinction of fear is incomplete.


Subject(s)
Implosive Therapy , Orexin Receptor Antagonists , Mice , Animals , Orexin Receptor Antagonists/pharmacology , Orexins , Extinction, Psychological/physiology , Fear/physiology , Mice, Inbred C57BL , Sleep/physiology
18.
Neuropharmacology ; 245: 109815, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38114045

ABSTRACT

Orexin is a neurotransmitter produced by a small group of hypothalamic neurons. Besides its well-known role in the regulation of the sleep-wake cycle, the orexin system was shown to be relevant in several physiological functions including cognition, mood and emotion modulation, and energy homeostasis. Indeed, the implication of orexin neurotransmission in neurological and psychiatric diseases has been hypothesized via a direct effect exerted by the projections of orexin neurons to several brain areas, and via an indirect effect through orexin-mediated modulation of sleep and wake. Along with the growing evidence concerning the use of dual orexin receptor antagonists (DORAs) in the treatment of insomnia, studies assessing their efficacy in insomnia comorbid with psychiatric and neurological diseases have been set in order to investigate the potential impact of DORAs on both sleep-related symptoms and disease-specific manifestations. This narrative review aimed at summarizing the current evidence on the use of DORAs in neurological and psychiatric conditions comorbid with insomnia, also discussing the possible implication of modulating the orexin system for improving the burden of symptoms and the pathological mechanisms of these disorders. Target searches were performed on PubMed/MEDLINE and Scopus databases and ongoing studies registered on Clinicaltrials.gov were reviewed. Despite some contradictory findings, preclinical studies seemingly support the possible beneficial role of orexin antagonism in the management of the most common neurological and psychiatric diseases with sleep-related comorbidities. However, clinical research is still limited and further studies are needed for corroborating these promising preliminary results.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/drug therapy , Orexins/pharmacology , Orexin Receptor Antagonists/therapeutic use , Orexin Receptor Antagonists/pharmacology , Orexin Receptors/physiology , Sleep
19.
Br J Pharmacol ; 181(9): 1474-1493, 2024 May.
Article in English | MEDLINE | ID: mdl-38129941

ABSTRACT

BACKGROUND AND PURPOSE: We evaluated the hypothesis that central orexin application could counteract motion sickness responses through regulating neural activity in target brain areas. EXPERIMENTAL APPROACH: Thec effects of intracerebroventricular (i.c.v.) injection of orexin-A and SB-334867 (OX1 antagonist) on motion sickness-induced anorexia, nausea-like behaviour (conditioned gaping), hypoactivity and hypothermia were investigated in rats subjected to Ferris wheel-like rotation. Orexin-A responsive brain areas were identified using Fos immunolabelling and were verified via motion sickness responses after intranucleus injection of orexin-A, SB-334867 and TCS-OX2-29 (OX2 antagonist). The efficacy of intranasal application of orexin-A versus scopolamine on motion sickness symptoms in cats was also investigated. KEY RESULTS: Orexin-A (i.c.v.) dose-dependently attenuated motion sickness-related behavioural responses and hypothermia. Fos expression was inhibited in the ventral part of the dorsomedial hypothalamus (DMV) and the paraventricular nucleus (PVN), but was enhanced in the ventral part of the premammillary nucleus ventral part (PMV) by orexin-A (20 µg) in rotated animals. Motion sickness responses were differentially inhibited by orexin-A injection into the DMV (anorexia and hypoactivity), the PVN (conditioned gaping) and the PMV (hypothermia). SB-334867 and TCS-OX2-29 (i.c.v. and intranucleus injection) inhibited behavioural and thermal effects of orexin-A. Orexin-A (60 µg·kg-1) and scopolamine inhibited rotation-induced emesis and non-retching/vomiting symptoms, while orexin-A also attenuated anorexia with mild salivation in motion sickness cats. CONCLUSION AND IMPLICATIONS: Orexin-A might relieve motion sickness through acting on OX1 and OX2 receptors in various hypothalamus nuclei. Intranasal orexin-A could be a potential strategy against motion sickness.


Subject(s)
Benzoxazoles , Hypothermia , Motion Sickness , Naphthyridines , Urea/analogs & derivatives , Rats , Cats , Animals , Orexins/pharmacology , Orexin Receptors/metabolism , Anorexia/metabolism , Hypothalamus/metabolism , Motion Sickness/drug therapy , Motion Sickness/metabolism , Scopolamine/metabolism , Scopolamine/pharmacology , Orexin Receptor Antagonists/metabolism , Orexin Receptor Antagonists/pharmacology
20.
Br J Pharmacol ; 181(1): 87-106, 2024 01.
Article in English | MEDLINE | ID: mdl-37553894

ABSTRACT

BACKGROUND AND PURPOSE: Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH: Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS: Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS: Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.


Subject(s)
Neurodegenerative Diseases , Orexin Receptors , Sleep Wake Disorders , Tauopathies , Animals , Female , Male , Mice , Cognition , Disease Models, Animal , Hypnotics and Sedatives/pharmacology , Mice, Transgenic , Orexins , Sleep/physiology , Tauopathies/drug therapy , Tauopathies/genetics , Tauopathies/pathology , Wakefulness/physiology , Orexin Receptors/metabolism , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...