Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.035
Filter
1.
Cells ; 13(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39120330

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks effective treatment strategies to halt or delay its progression. The homeostasis of Ca2+ ions is crucial for ensuring optimal cellular functions and survival, especially for neuronal cells. In the context of PD, the systems regulating cellular Ca2+ are compromised, leading to Ca2+-dependent synaptic dysfunction, impaired neuronal plasticity, and ultimately, neuronal loss. Recent research efforts directed toward understanding the pathology of PD have yielded significant insights, particularly highlighting the close relationship between Ca2+ dysregulation, neuroinflammation, and neurodegeneration. However, the precise mechanisms driving the selective loss of dopaminergic neurons in PD remain elusive. The disruption of Ca2+ homeostasis is a key factor, engaging various neurodegenerative and neuroinflammatory pathways and affecting intracellular organelles that store Ca2+. Specifically, impaired functioning of mitochondria, lysosomes, and the endoplasmic reticulum (ER) in Ca2+ metabolism is believed to contribute to the disease's pathophysiology. The Na+-Ca2+ exchanger (NCX) is considered an important key regulator of Ca2+ homeostasis in various cell types, including neurons, astrocytes, and microglia. Alterations in NCX activity are associated with neurodegenerative processes in different models of PD. In this review, we will explore the role of Ca2+ dysregulation and neuroinflammation as primary drivers of PD-related neurodegeneration, with an emphasis on the pivotal role of NCX in the pathology of PD. Consequently, NCXs and their interplay with intracellular organelles may emerge as potentially pivotal players in the mechanisms underlying PD neurodegeneration, providing a promising avenue for therapeutic intervention aimed at halting neurodegeneration.


Subject(s)
Calcium , Neuroinflammatory Diseases , Parkinson Disease , Sodium-Calcium Exchanger , Humans , Parkinson Disease/metabolism , Parkinson Disease/pathology , Calcium/metabolism , Sodium-Calcium Exchanger/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Animals , Organelles/metabolism , Homeostasis , Mitochondria/metabolism , Mitochondria/pathology
2.
Proc Natl Acad Sci U S A ; 121(34): e2315005121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39133858

ABSTRACT

The process of protein phase separation into liquid condensates has been implicated in the formation of membraneless organelles (MLOs), which selectively concentrate biomolecules to perform essential cellular functions. Although the importance of this process in health and disease is increasingly recognized, the experimental identification of proteins forming MLOs remains a complex challenge. In this study, we addressed this problem by harnessing the power of AlphaFold2 to perform computational predictions of the conformational properties of proteins from their amino acid sequences. We thus developed the CoDropleT (co-condensation into droplet transformer) method of predicting the propensity of co-condensation of protein pairs. The method was trained by combining experimental datasets of co-condensing proteins from the CD-CODE database with curated negative datasets of non-co-condensing proteins. To illustrate the performance of the method, we applied it to estimate the propensity of proteins to co-condense into MLOs. Our results suggest that CoDropleT could facilitate functional and therapeutic studies on protein condensation by predicting the composition of protein condensates.


Subject(s)
Proteins , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Organelles/metabolism , Protein Conformation , Databases, Protein , Amino Acid Sequence
3.
Methods Mol Biol ; 2831: 219-234, 2024.
Article in English | MEDLINE | ID: mdl-39134853

ABSTRACT

The specialized function and extreme geometry of neurons necessitates a unique reliance upon long-distance microtubule-based transport. Appropriate trafficking of axonal cargos by motor proteins is essential for establishing circuitry during development and continuing function throughout a lifespan. Visualizing and quantifying cargo movement provides valuable insight into how axonal organelles are replenished, recycled, and degraded during the dynamic dance of outgoing and incoming axonal traffic. Long-distance axonal trafficking is of particular importance as it encompasses a pathway commonly disrupted in developmental and degenerative disease states. Here, we describe neuronal organelles and outline methods for live imaging and quantifying their movement throughout the axon via transient expression of fluorescently labeled organelle markers. This resource provides recommendations for target proteins/domains and appropriate acquisition time scales for visualizing distinct neuronal cargos in cultured neurons derived from human induced pluripotent stem cells (iPSCs) and primary rat neurons.


Subject(s)
Axonal Transport , Induced Pluripotent Stem Cells , Neurons , Organelles , Animals , Neurons/metabolism , Neurons/cytology , Rats , Organelles/metabolism , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Axons/metabolism , Microtubules/metabolism
4.
ACS Appl Bio Mater ; 7(8): 5359-5368, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39102354

ABSTRACT

We have studied the endocytic mechanisms that determine subcellular localization for three carrier-free chemotherapeutic-photothermal (chemo-PTT) combination ionic nanomedicines (INMs) composed of doxorubicin (DOX) and an near-infrared (NIR) dye (ICG, IR820, or IR783). This study aims to understand the cellular basis for previously published enhanced toxicity results of these combination nanomedicines toward MCF-7 breast cancer cells. The active transport mechanism of INMs, unlike free DOX, which is known to employ passive transport, was validated by conducting temperature-dependent cellular uptake of the drug in MCF-7 cells using confocal microscopy. The internalization pathway of these INMs was further probed in the presence and absence of different endocytosis inhibitors. Detailed examination of the mode of entry of the carrier-free INMs in MCF-7 cells revealed that they are primarily internalized through clathrin-mediated endocytosis. In addition, time-dependent subcellular localization studies were also investigated. Examination of time-dependent confocal images indicated that the INMs targeted multiple organelles, in contrast to free DOX that primarily targets the nucleus. Collectively, the high cellular endocytic uptake in cancerous cells (EPR effect) and the multimode targeting ability demonstrated the main reason for the low half-maxima inhibitory concentration (IC50) value (the high cytotoxicity) of these carrier-free INMs as compared to their respective parent chemo and PTT drugs.


Subject(s)
Doxorubicin , Endocytosis , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Endocytosis/drug effects , MCF-7 Cells , Particle Size , Organelles/metabolism , Organelles/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Ions/chemistry
5.
PLoS Biol ; 22(8): e3002745, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137211

ABSTRACT

Rhoptries are specialized secretory organelles conserved across the Apicomplexa phylum, essential for host cell invasion and critical for subverting of host cellular and immune functions. They contain proteins and membranous materials injected directly into the host cells, participating in parasitophorous vacuole formation. Toxoplasma gondii tachyzoites harbor 8 to 12 rhoptries, 2 of which are docked to an apical vesicle (AV), a central element associated with a rhoptry secretory apparatus prior to injection into the host cell. This parasite is also equipped with 5 to 6 microtubule-associated vesicles, presumably serving as AV replenishment for iterative rhoptry discharge. Here, we characterized a rhoptry protein, rhoptry discharge factor 3 (RDF3), crucial for rhoptry discharge and invasion. RDF3 enters the secretory pathway, localizing near the AV and associated with the rhoptry bulb. Upon invasion, RDF3 dynamically delocalizes, suggesting a critical role at the time of rhoptry discharge. Cryo-electron tomography analysis of RDF3-depleted parasites reveals irregularity in microtubule-associated vesicles morphology, presumably impacting on their preparedness to function as an AV. Our findings suggest that RDF3 is priming the microtubule-associated vesicles for rhoptry discharge by a mechanism distinct from the rhoptry secretory apparatus contribution.


Subject(s)
Microtubules , Protozoan Proteins , Toxoplasma , Toxoplasma/metabolism , Toxoplasma/pathogenicity , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Microtubules/metabolism , Animals , Mice , Host-Parasite Interactions , Humans , Organelles/metabolism , Electron Microscope Tomography , Toxoplasmosis/parasitology , Toxoplasmosis/metabolism
6.
FASEB J ; 38(14): e23811, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031505

ABSTRACT

Since the migrasome concept was first proposed in 2015, extensive research has been conducted on these novel organelles, which grow on retracted fibers at the posterior end of migrating cells. Recently, molecular markers, biological functions, and clinical values based on the initial formation mechanism of migrasomes have emerged. Additionally, researchers are recognizing the significant role that migrasomes play in the pathological and diagnostic processes of clinical diseases. In this review, we summarize recent advances in the biology and clinical application of migrasomes and provide a comprehensive view of the prospective challenges surrounding their clinical application.


Subject(s)
Cell Movement , Organelles , Humans , Organelles/metabolism , Animals
7.
Physiol Plant ; 176(4): e14418, 2024.
Article in English | MEDLINE | ID: mdl-39004808

ABSTRACT

Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.


Subject(s)
RNA, Antisense , RNA, Long Noncoding , RNA, Plant , High-Throughput Nucleotide Sequencing/methods , Organelles/genetics , Organelles/metabolism , Plants/genetics , RNA, Antisense/genetics , RNA, Long Noncoding/genetics , RNA, Plant/genetics , RNA-Seq/methods , Sequence Analysis, RNA/methods , Transcriptome/genetics
8.
Proc Natl Acad Sci U S A ; 121(28): e2315043121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968128

ABSTRACT

Only 30% of embryos from in vitro fertilized oocytes successfully implant and develop to term, leading to repeated transfer cycles. To reduce time-to-pregnancy and stress for patients, there is a need for a diagnostic tool to better select embryos and oocytes based on their physiology. The current standard employs brightfield imaging, which provides limited physiological information. Here, we introduce METAPHOR: Metabolic Evaluation through Phasor-based Hyperspectral Imaging and Organelle Recognition. This non-invasive, label-free imaging method combines two-photon illumination and AI to deliver the metabolic profile of embryos and oocytes based on intrinsic autofluorescence signals. We used it to classify i) mouse blastocysts cultured under standard conditions or with depletion of selected metabolites (glucose, pyruvate, lactate); and ii) oocytes from young and old mouse females, or in vitro-aged oocytes. The imaging process was safe for blastocysts and oocytes. The METAPHOR classification of control vs. metabolites-depleted embryos reached an area under the ROC curve (AUC) of 93.7%, compared to 51% achieved for human grading using brightfield imaging. The binary classification of young vs. old/in vitro-aged oocytes and their blastulation prediction using METAPHOR reached an AUC of 96.2% and 82.2%, respectively. Finally, organelle recognition and segmentation based on the flavin adenine dinucleotide signal revealed that quantification of mitochondria size and distribution can be used as a biomarker to classify oocytes and embryos. The performance and safety of the method highlight the accuracy of noninvasive metabolic imaging as a complementary approach to evaluate oocytes and embryos based on their physiology.


Subject(s)
Blastocyst , Oocytes , Animals , Blastocyst/metabolism , Mice , Oocytes/metabolism , Female , Organelles/metabolism , Optical Imaging/methods
9.
ACS Appl Mater Interfaces ; 16(31): 40667-40681, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39069732

ABSTRACT

Artificial organelles (AOs) encapsulating enzymes are engineered to facilitate biocatalytic reactions for exerting therapeutic effects in various diseases. Exploiting the confinement effect, these catalytic properties exhibit significant enhancements without being influenced by the surrounding medium, enabling more efficient cascade reactions. In this study, we present a novel approach for synergistic tumor starvation therapy by developing multicomponent artificial organelles that combine enzymatic oncotherapy with chemotherapy. The construction process involves a microfluidic-based approach that enables the encapsulation of cationic cores containing doxorubicin (DOX), electrostatic adsorption of cascade enzymes, and surface assembly of the protective lipid membrane. Additionally, these multicomponent AOs possess multicompartment structures that enable the separation and sequential release of each component. By coencapsulating enzymes and chemotherapeutic agent DOX within AOs, we achieve enhanced enzymatic cascade reactions (ECR) and improved intrinsic permeability of DOX due to spatial confinement. Furthermore, exceptional therapeutic effects on 4T1 xenograft tumors are observed, demonstrating the feasibility of utilizing AOs as biomimetic implants in living organisms. This innovative approach that combines starvation therapy with chemotherapy using multicompartment AOs represents a promising paradigm in the field of precise cancer therapy.


Subject(s)
Doxorubicin , Doxorubicin/chemistry , Doxorubicin/pharmacology , Animals , Mice , Cell Line, Tumor , Humans , Female , Organelles/metabolism , Organelles/chemistry , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/therapy
11.
Commun Biol ; 7(1): 832, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977899

ABSTRACT

An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.


Subject(s)
Actomyosin , Organelles , Animals , Organelles/metabolism , Actomyosin/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Myosin Type V/metabolism , Myosin Type V/genetics , Actins/metabolism , Humans , Choanoflagellata/metabolism , Actin Cytoskeleton/metabolism , Biological Evolution , Evolution, Molecular , Formins/metabolism , rab GTP-Binding Proteins/metabolism , Phylogeny , Nuclear Proteins
12.
Cell Biol Int ; 48(9): 1254-1265, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010645

ABSTRACT

Migrasome is a newly discovered organelle composed of small vesicular structures enclosed in membrane structures. Since its discovery in 2014, migrasome has attracted increasing attention in cell biology due to its critical role in multiple disease processes. Its pivotal role in various disease processes, including cell migration, intercellular communication, removal of damaged mitochondria, embryogenesis localization, immune cell chemotaxis, and virus transmission, underscores its significance in biological systems. With research on migrasome steadily increasing, it becomes a unique resource for undergraduate cell biology education. For deeper understanding of migrasome, we applied a bibliometric approach. Here we conducted a comprehensive analysis of migrasome research by retrieving relevant literature from databases such as Web of Science, Scopus, and PubMed using the keywords "migrasome" or "migrasomes." Employing CiteSpace software and Prism, we analyzed annual publication trends, identified core authors and institutions, assessed national contributions, examined keywords, and scrutinized highly cited literature related to migrasome research. This study presents a comprehensive overview of migrasome research, elucidating its literature characteristics, key contributors, research hotspots, and emerging trends. By shedding light on the current status and future trajectories of migrasome research, we aim to provide valuable insights for teachers in cell biology education. We propose for the integration of migrasome research into undergraduate curricula to enhance the understanding of cell biology among premedical, medical, and biomedical students, thereby fostering a deeper appreciation for the intricate mechanisms governing cellular behavior and disease processes.


Subject(s)
Cell Biology , Humans , Organelles/metabolism , Learning/physiology , Animals , Cell Movement
13.
Curr Opin Chem Biol ; 81: 102505, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39053236

ABSTRACT

Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.


Subject(s)
Drug Development , Glutathione , Humans , Glutathione/metabolism , Drug Development/methods , Animals , Organelles/metabolism , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism
14.
J Phys Chem Lett ; 15(28): 7280-7287, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38979955

ABSTRACT

Liquid-liquid phase separation (LLPS) within cells gives rise to membraneless organelles, which play pivotal roles in numerous cellular functions. A comprehensive understanding of the functional aspects of intrinsically disordered protein (IDP) condensates necessitates elucidating their inherent structures and establishing correlations with biological functions. Coarse-grained (CG) molecular dynamics (MD) simulations present a promising avenue for gaining insights into LLPS mechanisms of biomacromolecules. Essential to this endeavor is the development of tailored CG force fields for MD simulations, incorporating the full spectrum of biomolecules involved in the formation of condensates and accounting for real-time biochemical reactions coupled to the LLPS. Moreover, developing accurate theoretical frameworks and establishing links between condensate structure and its function are imperative for a thorough comprehension of LLPS of biological systems.


Subject(s)
Intrinsically Disordered Proteins , Molecular Dynamics Simulation , Intrinsically Disordered Proteins/chemistry , Liquid-Liquid Extraction/methods , Organelles/chemistry , Organelles/metabolism , Phase Separation
15.
Chem Commun (Camb) ; 60(63): 8170-8185, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38979965

ABSTRACT

Destruction of subcellular organelles can cause dysfunction and even death of cells to elicit immune responses. In this review, the characteristics and functions of important organelles are mainly summarized. Then, the intelligent immunotherapeutic strategies and suggestions based on influencing the organelles are further highlighted. This review will provide ideas for developing novel and effective immunotherapy strategies and advance the development of cancer immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Organelles , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals
16.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39008679

ABSTRACT

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Subject(s)
Caveolin 1 , Cell Movement , rab GTP-Binding Proteins , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Humans , Caveolin 1/metabolism , Caveolin 1/genetics , Macrophages/metabolism , Phosphorylation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Myosin Type V/metabolism , Myosin Type V/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Biological Transport , Wound Healing/physiology , Organelles/metabolism
17.
Nat Commun ; 15(1): 6244, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080253

ABSTRACT

Recent discoveries in biology have highlighted the importance of protein and RNA-based condensates as an alternative to classical membrane-bound organelles. Here, we demonstrate the design of pure RNA condensates from nanostructured, star-shaped RNA motifs. We generate condensates using two different RNA nanostar architectures: multi-stranded nanostars whose binding interactions are programmed via linear overhangs, and single-stranded nanostars whose interactions are programmed via kissing loops. Through systematic sequence design, we demonstrate that both architectures can produce orthogonal (distinct and immiscible) condensates, which can be individually tracked via fluorogenic aptamers. We also show that aptamers make it possible to recruit peptides and proteins to the condensates with high specificity. Successful co-transcriptional formation of condensates from single-stranded nanostars suggests that they may be genetically encoded and produced in living cells. We provide a library of orthogonal RNA condensates that can be modularly customized and offer a route toward creating systems of functional artificial organelles for the task of compartmentalizing molecules and biochemical reactions.


Subject(s)
Aptamers, Nucleotide , Nucleotide Motifs , RNA , RNA/chemistry , RNA/metabolism , RNA/genetics , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/genetics , Nanostructures/chemistry , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Nucleic Acid Conformation , Organelles/metabolism
18.
ACS Chem Biol ; 19(8): 1773-1785, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39069657

ABSTRACT

Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.


Subject(s)
2-Naphthylamine , Laurates , Membrane Fluidity , Organelles , Humans , Laurates/chemistry , Laurates/pharmacology , 2-Naphthylamine/analogs & derivatives , 2-Naphthylamine/chemistry , Membrane Fluidity/drug effects , Organelles/metabolism , Organelles/drug effects , Fluorescent Dyes/chemistry , Fatty Acids/metabolism , Lysosomes/metabolism , Lysosomes/drug effects , Intracellular Membranes/metabolism , Intracellular Membranes/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects
19.
Nat Cell Biol ; 26(8): 1227-1228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969760
20.
Nat Cell Biol ; 26(8): 1261-1273, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969763

ABSTRACT

Eukaryotic cells contain several membrane-separated organelles to compartmentalize distinct metabolic reactions. However, it has remained unclear how these organelle systems are coordinated when cells adapt metabolic pathways to support their development, survival or effector functions. Here we present OrgaPlexing, a multi-spectral organelle imaging approach for the comprehensive mapping of six key metabolic organelles and their interactions. We use this analysis on macrophages, immune cells that undergo rapid metabolic switches upon sensing bacterial and inflammatory stimuli. Our results identify lipid droplets (LDs) as primary inflammatory responder organelle, which forms three- and four-way interactions with other organelles. While clusters with endoplasmic reticulum (ER) and mitochondria (mitochondria-ER-LD unit) help supply fatty acids for LD growth, the additional recruitment of peroxisomes (mitochondria-ER-peroxisome-LD unit) supports fatty acid efflux from LDs. Interference with individual components of these units has direct functional consequences for inflammatory lipid mediator synthesis. Together, we show that macrophages form functional multi-organellar units to support metabolic adaptation and provide an experimental strategy to identify organelle-metabolic signalling hubs.


Subject(s)
Endoplasmic Reticulum , Fatty Acids , Inflammation , Lipid Droplets , Lipid Metabolism , Macrophages , Mitochondria , Macrophages/metabolism , Animals , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Mitochondria/metabolism , Inflammation/metabolism , Inflammation/pathology , Fatty Acids/metabolism , Peroxisomes/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction , Organelles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL