Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.711
1.
BMC Biol ; 22(1): 130, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825681

BACKGROUND: Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS: We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS: The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.


Protein Transport , Trichomonas vaginalis , Trichomonas vaginalis/metabolism , Protozoan Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondria/metabolism , Organelles/metabolism
2.
J Exp Bot ; 75(11): 3209-3213, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38845354

This article comments on: Casaes PA, Ferreira dos Santos JM, Silva VC, Rhem MFK, Teixeira Cota MM, de Faria SM, Rando JG, James EK, Gross E. 2024. The radiation of nodulated Chamaecrista species from the rainforest into more diverse habitats has been accompanied by a reduction in growth form and a shift from fixation threads to symbiosomes. Journal of Experimental Botany 75, 3643-3662.


Biological Evolution , Organelles , Symbiosis , Organelles/metabolism
3.
Nat Commun ; 15(1): 3767, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704407

Tools for accessing and studying organelles remain underdeveloped. Here, we present a method by which giant organelle vesicles (GOVs) are generated by submitting cells to a hypotonic medium followed by plasma membrane breakage. By this means, GOVs ranging from 3 to over 10 µm become available for micromanipulation. GOVs are made from organelles such as the endoplasmic reticulum, endosomes, lysosomes and mitochondria, or in contact with one another such as giant mitochondria-associated ER membrane vesicles. We measure the mechanical properties of each organelle-derived GOV and find that they have distinct properties. In GOVs procured from Cos7 cells, for example, bending rigidities tend to increase from the endoplasmic reticulum to the plasma membrane. We also found that the mechanical properties of giant endoplasmic reticulum vesicles (GERVs) vary depending on their interactions with other organelles or the metabolic state of the cell. Lastly, we demonstrate GERVs' biochemical activity through their capacity to synthesize triglycerides and assemble lipid droplets. These findings underscore the potential of GOVs as valuable tools for studying the biophysics and biology of organelles.


Endoplasmic Reticulum , Intracellular Membranes , Animals , Chlorocebus aethiops , COS Cells , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Organelles/metabolism , Lipid Droplets/metabolism , Triglycerides/metabolism , Humans , Lysosomes/metabolism
4.
Int Rev Neurobiol ; 176: 455-479, 2024.
Article En | MEDLINE | ID: mdl-38802180

Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.


Amyotrophic Lateral Sclerosis , Cytoplasmic Granules , Ribonucleoproteins , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/metabolism , Neurodegenerative Diseases/metabolism , Organelles/metabolism
5.
Methods Mol Biol ; 2807: 113-125, 2024.
Article En | MEDLINE | ID: mdl-38743224

The postnuclear entry steps of HIV-1 involve reverse transcription, uncoating, and integration into the host genome. The differential regulation of these steps has a significant impact on HIV overall replication, including integration site selection and viral gene expression. Recently, another important phenomenon has been uncovered as part of HIV interplay with the nuclear environment, specifically involving the cleavage and polyadenylation specific factor 6 (CPSF6) protein. This phenomenon is the formation of nuclear HIV-induced membraneless organelles (HIV-1 MLOs). In this article, we will describe the methods used to assess the composition and liquid-liquid phase separation (LLPS) properties of these organelles using fluorescence microscopy. The study of HIV-1 MLOs represents a new frontier that may reveal previously unknown key players in the fate of HIV-infected cells.


Cell Nucleus , HIV-1 , Microscopy, Fluorescence , Humans , Microscopy, Fluorescence/methods , HIV-1/physiology , HIV-1/genetics , Cell Nucleus/metabolism , Organelles/metabolism , HIV Infections/virology , HIV Infections/metabolism
6.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38748249

Bacteria, omnipresent in our environment and coexisting within our body, exert dual beneficial and pathogenic influences. These microorganisms engage in intricate interactions with the human body, impacting both human health and disease. Simultaneously, certain organelles within our cells share an evolutionary relationship with bacteria, particularly mitochondria, best known for their energy production role and their dynamic interaction with each other and other organelles. In recent years, communication between bacteria and mitochondria has emerged as a new mechanism for regulating the host's physiology and pathology. In this review, we delve into the dynamic communications between bacteria and host mitochondria, shedding light on their collaborative regulation of host immune response, metabolism, aging, and longevity. Additionally, we discuss bacterial interactions with other organelles, including chloroplasts, lysosomes, and the endoplasmic reticulum (ER).


Bacteria , Host-Pathogen Interactions , Mitochondria , Animals , Humans , Bacteria/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/microbiology , Lysosomes/metabolism , Lysosomes/microbiology , Mitochondria/metabolism , Organelles/metabolism
7.
PLoS Biol ; 22(5): e3002608, 2024 May.
Article En | MEDLINE | ID: mdl-38713727

Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.


Magnoliopsida , Mitochondrial Proteins , Phylogeny , Plastids , Plastids/metabolism , Plastids/genetics , Magnoliopsida/genetics , Magnoliopsida/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Evolution, Molecular , Biological Evolution , Mitochondria/metabolism , Mitochondria/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proteome/metabolism , Symbiosis/genetics , Organelles/metabolism , Organelles/genetics
8.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693874

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Glucose Oxidase , Horseradish Peroxidase , beta-Galactosidase , Glucose Oxidase/chemistry , Humans , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Organelles/metabolism , Fluorescent Dyes/chemistry , Polymers/chemistry , Fluorescence , HeLa Cells , Mitochondria/metabolism
9.
Front Immunol ; 15: 1393852, 2024.
Article En | MEDLINE | ID: mdl-38711526

Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.


Genital Neoplasms, Female , Mitochondria , Organelles , Humans , Female , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organelles/metabolism , Cell Survival , Animals , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Autophagy , Energy Metabolism , Signal Transduction
10.
Adv Drug Deliv Rev ; 209: 115327, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703895

Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.


Drug Delivery Systems , Neoplasms , Organelles , Peptides , Humans , Peptides/chemistry , Organelles/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals
11.
Rev Assoc Med Bras (1992) ; 70(5): e20231337, 2024.
Article En | MEDLINE | ID: mdl-38775506

OBJECTIVE: It has been previously shown that brain-derived neurotrophic factor is linked with various types of cancer. Brain-derived neurotrophic factor is found to be highly expressed in multiple human cancers and associated with tumor growth, invasion, and metastasis. Adipokinetic hormones are functionally related to the vertebrate glucagon, as they have similar functionalities that manage the nutrient-dependent secretion of these two hormones. Migrasomes are new organelles that contain numerous small vesicles, which aid in transmitting signals between the migrating cells. Therefore, the aim of this study was to investigate the effects of Anax imperator adipokinetic hormone on brain-derived neurotrophic factor expression and ultrastructure of cells in the C6 glioma cell line. METHODS: The rat C6 glioma cells were treated with concentrations of 5 and 10 Anax imperator adipokinetic hormone for 24 h. The effects of the Anax imperator adipokinetic hormone on the migrasome formation and brain-derived neurotrophic factor expression were analyzed using immunocytochemistry and transmission electron microscope. RESULTS: The rat C6 glioma cells of the 5 and 10 µM Anax imperator adipokinetic hormone groups showed significantly high expressions of brain-derived neurotrophic factor and migrasomes numbers, compared with the control group. CONCLUSION: A positive correlation was found between the brain-derived neurotrophic factor expression level and the formation of migrasome, which indicates that the increased expression of brain-derived neurotrophic factor and the number of migrasomes may be involved to metastasis of the rat C6 glioma cell line induced by the Anax imperator adipokinetic hormone. Therefore, the expression of brain-derived neurotrophic factor and migrasome formation may be promising targets for preventing tumor proliferation, invasion, and metastasis in glioma.


Brain-Derived Neurotrophic Factor , Glioma , Oligopeptides , Pyrrolidonecarboxylic Acid , Glioma/metabolism , Glioma/pathology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Rats , Cell Line, Tumor , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/metabolism , Oligopeptides/pharmacology , Insect Hormones/metabolism , Cell Movement/drug effects , Immunohistochemistry , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Organelles/metabolism , Organelles/drug effects , Organelles/ultrastructure
12.
Proc Natl Acad Sci U S A ; 121(22): e2219470121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38776365

NRF2 (nuclear factor erythroid-2-related factor 2) is a key regulator of genes involved in the cell's protective response to oxidative stress. Upon activation by disturbed redox homeostasis, NRF2 promotes the expression of metabolic enzymes to eliminate reactive oxygen species (ROS). Cell internalization of peroxisome-like artificial organelles that harbor redox-regulating enzymes was previously shown to reduce ROS-induced stress and thus cell death. However, if and to which extent ROS degradation by such nanocompartments interferes with redox signaling pathways is largely unknown. Here, we advance the design of H2O2-degrading artificial nano-organelles (AnOs) that exposed surface-attached cell penetrating peptides (CPP) for enhanced uptake and were equipped with a fluorescent moiety for rapid visualization within cells. To investigate how such AnOs integrate in cellular redox signaling, we engineered leukemic K562 cells that report on NRF2 activation by increased mCherry expression. Once internalized, ROS-metabolizing AnOs dampen intracellular NRF2 signaling upon oxidative injury by degrading H2O2. Moreover, intracellular AnOs conferred protection against ROSinduced cell death in conditions when endogenous ROS-protection mechanisms have been compromised by depletion of glutathione or knockdown of NRF2. We demonstrate CPP-facilitated AnO uptake and AnO-mediated protection against ROS insults also in the T lymphocyte population of primary peripheral blood mononuclear cells from healthy donors. Overall, our data suggest that intracellular AnOs alleviated cellular stress by the on-site reduction of ROS.


Hydrogen Peroxide , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Humans , NF-E2-Related Factor 2/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , K562 Cells , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Organelles/metabolism
13.
Adv Microb Physiol ; 84: 243-307, 2024.
Article En | MEDLINE | ID: mdl-38821633

Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.


Organelles , Organelles/metabolism , Mitochondria/metabolism , Eukaryota/metabolism , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics
14.
Methods Mol Biol ; 2800: 231-244, 2024.
Article En | MEDLINE | ID: mdl-38709488

In this chapter, we describe protocols for using the CellOrganizer software on the Jupyter Notebook platform to analyze and model cell and organelle shape and spatial arrangement. CellOrganizer is an open-source system for using microscope images to learn statistical models of the structure of cell components and how those components are organized relative to each other. Such models capture the statistical variation in the organization of cellular components by jointly modeling the distributions of their number, shape, and spatial distributions. These models can be created for different cell types or conditions and compared to reflect differences in their spatial organizations. The models are also generative, in that they can be used to synthesize new cell instances reflecting what a model learned and to provide well-structured cell geometries that can be used for biochemical simulations.


Software , Image Processing, Computer-Assisted/methods , Models, Biological , Humans , Computer Simulation , Organelles/metabolism
15.
Nat Commun ; 15(1): 4644, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821943

The SARS-CoV-2 viral infection transforms host cells and produces special organelles in many ways, and we focus on the replication organelles, the sites of replication of viral genomic RNA (vgRNA). To date, the precise cellular localization of key RNA molecules and replication intermediates has been elusive in electron microscopy studies. We use super-resolution fluorescence microscopy and specific labeling to reveal the nanoscopic organization of replication organelles that contain numerous vgRNA molecules along with the replication enzymes and clusters of viral double-stranded RNA (dsRNA). We show that the replication organelles are organized differently at early and late stages of infection. Surprisingly, vgRNA accumulates into distinct globular clusters in the cytoplasmic perinuclear region, which grow and accommodate more vgRNA molecules as infection time increases. The localization of endoplasmic reticulum (ER) markers and nsp3 (a component of the double-membrane vesicle, DMV) at the periphery of the vgRNA clusters suggests that replication organelles are encapsulated into DMVs, which have membranes derived from the host ER. These organelles merge into larger vesicle packets as infection advances. Precise co-imaging of the nanoscale cellular organization of vgRNA, dsRNA, and viral proteins in replication organelles of SARS-CoV-2 may inform therapeutic approaches that target viral replication and associated processes.


Endoplasmic Reticulum , Organelles , RNA, Viral , SARS-CoV-2 , Virus Replication , SARS-CoV-2/physiology , SARS-CoV-2/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/metabolism , RNA, Viral/genetics , Virus Replication/physiology , Humans , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endoplasmic Reticulum/ultrastructure , Organelles/virology , Organelles/metabolism , Organelles/ultrastructure , Chlorocebus aethiops , Vero Cells , Animals , COVID-19/virology , COVID-19/metabolism , Viral Proteins/metabolism , Viral Proteins/genetics , Microscopy, Fluorescence , Viral Replication Compartments/metabolism , RNA, Double-Stranded/metabolism
16.
Nat Commun ; 15(1): 3290, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632225

The functions of cellular organelles and sub-compartments depend on their protein content, which can be characterized by spatial proteomics approaches. However, many spatial proteomics methods are limited in their ability to resolve organellar sub-compartments, profile multiple sub-compartments in parallel, and/or characterize membrane-associated proteomes. Here, we develop a cross-link assisted spatial proteomics (CLASP) strategy that addresses these shortcomings. Using human mitochondria as a model system, we show that CLASP can elucidate spatial proteomes of all mitochondrial sub-compartments and provide topological insight into the mitochondrial membrane proteome. Biochemical and imaging-based follow-up studies confirm that CLASP allows discovering mitochondria-associated proteins and revising previous protein sub-compartment localization and membrane topology data. We also validate the CLASP concept in synaptic vesicles, demonstrating its applicability to different sub-cellular compartments. This study extends the scope of cross-linking mass spectrometry beyond protein structure and interaction analysis towards spatial proteomics, and establishes a method for concomitant profiling of sub-organelle and membrane proteomes.


Membrane Proteins , Proteome , Humans , Proteome/metabolism , Membrane Proteins/metabolism , Proteomics/methods , Organelles/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
17.
J Physiol ; 602(8): 1637-1654, 2024 Apr.
Article En | MEDLINE | ID: mdl-38625711

The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.


Lysosomes , Organelles , Membrane Potentials , Organelles/metabolism , Lysosomes/metabolism , Endoplasmic Reticulum/metabolism , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
18.
Biol Direct ; 19(1): 29, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654312

BACKGROUND: Oocyte quality is critical for the mammalian reproduction due to its necessity on fertilization and early development. During aging, the declined oocytes showing with organelle dysfunction and oxidative stress lead to infertility. AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase which is important for energy homeostasis for metabolism. Little is known about the potential relationship between AMPK with oocyte aging. RESULTS: In present study we reported that AMPK was related with low quality of oocytes under post ovulatory aging and the potential mechanism. We showed the altered AMPK level during aging and inhibition of AMPK activity induced mouse oocyte maturation defect. Further analysis indicated that similar with its upstream regulator PKD1, AMPK could reduce ROS level to avoid oxidative stress in oocytes, and this might be due to its regulation on mitochondria function, since loss of AMPK activity induced abnormal distribution, reduced ATP production and mtDNA copy number of mitochondria. Besides, we also found that the ER and Golgi apparatus distribution was aberrant after AMPK inhibition, and enhanced lysosome function was also observed. CONCLUSIONS: Taken together, these data indicated that AMPK is important for the organelle function to reduce oxidative stress during oocyte meiotic maturation.


AMP-Activated Protein Kinases , Oocytes , Oxidative Stress , Animals , Female , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cellular Senescence , Mitochondria/metabolism , Oocytes/metabolism , Organelles/metabolism , Reactive Oxygen Species/metabolism
20.
Nat Commun ; 15(1): 3620, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684657

Photobodies (PBs) are membraneless subnuclear organelles that self-assemble via concentration-dependent liquid-liquid phase separation (LLPS) of the plant photoreceptor and thermosensor phytochrome B (PHYB). The current PHYB LLPS model posits that PHYB phase separates randomly in the nucleoplasm regardless of the cellular or nuclear context. Here, we established a robust Oligopaints method in Arabidopsis to determine the positioning of individual PBs. We show surprisingly that even in PHYB overexpression lines - where PHYB condensation would be more likely to occur randomly - PBs positioned at twelve distinct subnuclear locations distinguishable by chromocenter and nucleolus landmarks, suggesting that PHYB condensation occurs nonrandomly at preferred seeding sites. Intriguingly, warm temperatures reduce PB number by inducing the disappearance of specific thermo-sensitive PBs, demonstrating that individual PBs possess different thermosensitivities. These results reveal a nonrandom PB nucleation model, which provides the framework for the biogenesis of spatially distinct individual PBs with diverse environmental sensitivities within a single plant nucleus.


Arabidopsis Proteins , Arabidopsis , Cell Nucleus , Phytochrome B , Phytochrome B/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Temperature , Plants, Genetically Modified , Organelles/metabolism
...