Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.853
Filter
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1815-1824, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233410

ABSTRACT

Exploring the physical fractions of organic carbon and influencing mechanisms in grassland, forest, and farmland soils in wind erosion area can provide scientific basis for carbon sequestration, land utilization, wind prevention measure making, and fertility restoration of sloping farmland in the region. We examined the differentiation of aggregate organic carbon and density fractionation organic carbon in 0-15 cm soil layer across grassland, forest, and sloping farmland with 350 m long and 5° slope gradient in the wind erosion area of Meilisi District, Qiqihar, Heilongjiang, as well as the sloping farmland in the downhill section, middle section, and uphill section with every 100 m apart from the bottom to the top. The results showed that soil aggregates >2 mm were all destroyed across grassland, forest, and farmland soils, while the percentage of aggregates <0.053 mm was significantly higher than that of other sizes. The percentage of various soil aggregates, organic carbon content from density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in farmland were significantly lower than that in grassland and forest soils. Soil aggregates in the uphill section of farmland were completely destroyed, and organic carbon content in various size aggregates and density fractionations gradually decreased with increasing slope. The proportion of organic carbon in the heavy fraction aggregates decreased, but that in light fraction aggregates increased gradually. Soil organic carbon and available potassium were key factors affecting aggregate stability, aggregate organic carbon content, and organic carbon content in density fractionations, while the loss of organic carbon in aggregate led to a decrease in aggregate stability. In summary, compared with grassland and forest soils, the stability of soil aggregates, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in heavy fraction aggregates in farmland all decreased in the wind erosion area of Northeast China. With the increases of slope, the aggregate organic carbon content, the organic carbon content in density fractionations, and the proportion of organic carbon in the heavy fraction aggregates in sloping farmland all decreased. Planting trees, conserving and expanding grassland area, and increasing the application of organic materials in sloping farmland in wind erosion area are effective approaches to stabilize and increase carbon storage, improve soil structure, and enhance soil quality.


Subject(s)
Carbon , Organic Chemicals , Soil , Wind , China , Carbon/analysis , Carbon/chemistry , Soil/chemistry , Organic Chemicals/analysis , Crops, Agricultural/growth & development , Grassland , Soil Erosion , Forests , Trees/growth & development , Poaceae/growth & development , Conservation of Natural Resources , Ecosystem
2.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1590-1598, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235017

ABSTRACT

Soil organic matter serves as a crucial indicator for soil quality. Albic soil, characterized by a barrier layer, exhibits limitations in organic matter content, which can adversely affect crop growth and development. To elucidate the impact of deep mixing of various organic materials on the redistribution of organic matter in the surface soil of albic soil could provide theoretical and technical insights for establishing suitable plough layers for albic soil in Northeast China. We conducted a two-year positioning experiment in Shuangyashan, Heilongjiang Province with five treatments, conventional shallow tillage (0-15 cm, CK), inversion tillage (0-35 cm) without or with straw return (T35 and T35+S), inversion tillage with cattle manure (T35+M) and cattle manure plus maize straw (T35+S+M). The results showed that soil fertilization via deep mixing of organic materials to a depth of 35 cm significantly increased maize yield in albic soil, with the T35+S+M treatment demonstrating the most pronounced effect, yielding an average production of 2934.76 kg·hm-2. Compared to CK, the T35 treatment resulted in a significant 8.4% decrease in organic matter content in the tillage layer, a significant 7.6% increase in organic matter in the sub-tillage layer, and a relative richness degree of soil organic matter in the sub-tillage layer increased by 17.5%. Deep mixed return of organic materials following deep ploughing markedly increased organic matter content of the plough layer, with organic matter conversion ranging from 16.3% to 31.0%. In comparison to the T35 treatment, there was no significant increase in soil organic matter content in the T35+S tillage layer and sub-tillage layer. Conversely, soil organic matter content increased by 4.6% and 6.9% in the T35+M and T35+S+M treatments, with corresponding increase of 11.2% and 15.4% in sub-tillage layer, respectively. Additionally, the soil organic matter richness index in sub-tillage layer increased by 2.5% and 5.1%, respectively. There was a significant positive correlation between organic matter content in the entire plough layer and maize yield, with a contribution rate of 17.5%. Therefore, the utilization of organic fertilizer or a combination of organic fertilizer and straw deep mixing can quickly fertilize albic soil by increasing soil organic matter content in both the whole tillage layer (0-35 cm) and the sub-tillage layer (15-35 cm).


Subject(s)
Agriculture , Fertilizers , Organic Chemicals , Soil , Zea mays , Soil/chemistry , Organic Chemicals/analysis , China , Zea mays/growth & development , Agriculture/methods , Fertilizers/analysis , Manure , Crops, Agricultural/growth & development
3.
Water Sci Technol ; 90(3): 1033-1046, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141050

ABSTRACT

The water-rock interactions significantly affect the dissolution and release of dissolved organic matter (DOM) during the reinjection of mine water into the underground reservoir. In this study, the surface characteristics and chemical composition of the natural medium from the open-pit coal mine were characterized. The waste consists mainly of quartz-dominated sandstone (43.64%) and mudstone dominated by sanidine (76.36%). During the 35-day experiment, two protein-like, one humus-like, and one fulvic acid-like substances were identified by PARAFAC. It was observed that the type of aqueous medium significantly affected the variational trend of DOM. Compared to the artificial medium, the fluorescence intensity of waste materials in the waste dump increased significantly during the reinjection process. Therefore, a positive correlation was observed between the fraction of mudstone in the aqueous medium and the DOM composition, mainly due to the dissolution of polycyclic aromatic hydrocarbon substances from the mudstone. The results revealed that the natural water storage medium had a certain water storage feasibility when compared with the expensive artificial medium. However, the fraction of mudstone in the water storage medium should be controlled to minimize the release of organic matter into the environment.


Subject(s)
Organic Chemicals , Organic Chemicals/analysis , Mining , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Groundwater/chemistry
4.
Water Sci Technol ; 90(3): 995-1008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39141047

ABSTRACT

The depth-dependent dynamics of dissolved organic matter (DOM) structure and humification in an artificial lake limits the understanding of lake eutrophication and carbon cycling. Using fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC) models to analyze the 3D fluorescence spectroscopy dataset, we revealed the depth-dependent structure and vertical distribution of DOM in the estuarine and center regions of Lake Hongfeng. The percentage fluorescence response (Pi,n) showed humic acid is an important part of DOM in Lake Hongfeng. Fluorescence results show that the fulvic-like and protein-like materials in HF1-DOM located at the estuarine position showed greater variation in the middle stage, probably due to human influence and sediment suspension. Fluorescence index (PI+II+IV,n/PIII+V,n and FIC4/FIC3) can be used to indicate the degree of humification of DOM in artificial lakes. Results of each index show that the estuary is more affected by human activities, and the humification degree is significantly lower than that of the center of the lake. The evaluation index system of the humification degree of artificial lake established in this study can effectively predict the eutrophication state of the typical area of artificial lake and deeply understand the possible important influence of human activities on the carbon cycle of lake.


Subject(s)
Humic Substances , Lakes , Lakes/chemistry , Humic Substances/analysis , Spectrometry, Fluorescence , Organic Chemicals/analysis , Organic Chemicals/chemistry , Environmental Monitoring/methods , Eutrophication
5.
Astrobiology ; 24(8): 795-812, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159437

ABSTRACT

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.


Subject(s)
Exobiology , Extraterrestrial Environment , Salts , Exobiology/methods , Extraterrestrial Environment/chemistry , Salts/analysis , Salts/chemistry , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Amino Acids/analysis , Salinity , Organic Chemicals/analysis , Space Flight , Seawater/chemistry , Seawater/microbiology , Seawater/analysis
6.
J Environ Manage ; 368: 122236, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39191055

ABSTRACT

The chemical composition of dissolved organic matter (DOM) exerts significant influence on aquatic energy dynamics, pollutant transportation, and carbon storage, thereby playing pivotal roles in the local water quality and regional-global biogeochemical cycling. However, the effects of natural climate change and local human activities on watershed characteristics and in-river processes have led to uncertainties regarding their contributions to DOM chemistry in coastal rivers, creating challenges for effective water management and the study of organic matter cycling. In this investigation, we employed a combination of stable isotopic analysis, optical techniques, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to elucidate the sources, optical properties, and molecular composition of DOM in three South China coastal rivers. Our results suggest that terrestrial DOM entering the three rivers through natural or anthropogenic pathways is gradually diluted by in situ primary production as it moves downstream, ultimately being influenced by seawater intrusion near the estuary. Additionally, terrestrial processes influenced by temperature likely govern DOC concentration, while seawater intrusion promotes the natural production of S-containing organic compounds. In contrast, human-altered landcover significantly impacts DOM molecular composition. Increased water areas lead to the enrichment of lignins with high disinfection byproduct formation potential, and agricultural residue burning appears to be the dominant source of pyrogenic DOM in these coastal rivers. Our distinct results suggest that the development of specific water management plans that consider the combined effects of temperature, seawater intrusion, landcover changes, and agricultural practices will be essential to ensure sustainable water resource.


Subject(s)
Rivers , Rivers/chemistry , Humans , Environmental Monitoring , Organic Chemicals/analysis , China , Water Quality , Water Pollutants, Chemical/analysis , Seawater/chemistry
7.
Huan Jing Ke Xue ; 45(8): 4696-4708, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168688

ABSTRACT

Accurately assessing the changes in soil organic carbon storage (SOCS) before and after the Grain for Green Project (GFG) in the Loess Plateau (LP) and exploring the relationship between its spatial and temporal distribution and the influencing factors were important references for the development of regional recycling as well as the formulation of ecological protection policies. Based on the data of climate, human activities, and SOCD in the surface (0-20 cm) and deep (0-100 cm) soil before and after GFG in the LP from 2001 to 2020, we investigated the changes in SOCD at different spatial and temporal scales by using the methods of trend analysis, the kriging method, and variance partitioning analysis. The results showed that: ① Before and after the GFG, the surface SOCS of the whole region increased by 8 338.7×104 t; the deep SOCS increased by 1 160.02×104 t. ② In each bioclimatic subregion, the whole-region average SOCD of Ⅰ (Semi-Humid Forest Region), Ⅱ (Semi-Humid Semi-Arid Forest and Grassland Region), and Ⅲ (Semi-Arid Typical Grassland Region) showed a significant increasing trend, with a decreasing trend in Ⅳ (arid semi-arid desert grassland area) and Ⅴ (arid desert area). ③ The average surface SOCS increase in different ecosystems was ranked as follows: cropland > grassland > woodland > shrubs > bare land and sparse vegetation. The deep soil increase was ranked as follows: grassland > cropland > woodland > shrubs > bare land and sparse vegetation. ④ Climate factors were the most important driving factors for changes in SOCD; the annual average temperature and precipitation were significantly positively correlated with changes in SOCD. The results of the study could provide data support for regional ecological management and land use policy formulation to promote high quality development of the ecological environment in the LP.


Subject(s)
Carbon , Climate Change , Soil , Soil/chemistry , China , Carbon/analysis , Organic Chemicals/analysis , Conservation of Natural Resources , Human Activities , Forests , Ecosystem , Environmental Monitoring/methods , Altitude , Grassland , Carbon Sequestration , Humans , Crops, Agricultural/growth & development
8.
Environ Sci Pollut Res Int ; 31(38): 50700-50708, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39098969

ABSTRACT

In this contribution, we report the study of nuclear resonance magnetic spectroscopy techniques (1H-NMR, 13C-NMR, and 2D-NMR) efficiency in the characterisation of the functional composition of water-soluble organic compounds (WSOC) from atmospheric aerosols. The chosen site was our scientific and technical center of research (CRAPC) situated in Algerian Bou-Ismail city. where the concentrations of PM10 were found to be between 15.66 and 142.19 µg.m-3. As results, 1H-NMR analysis showed the coexistence of biological material and emissions from urban and biomass burning. The dominant source was identified by quantitative integration of each 1H NMR spectral region. By using the HSQC technique, many peaks are revealed in biogenic samples including biomass burning. On the other hand, the identification of the source of various organic compounds and their functional composition is possible through specific NMR spectra, which can also be used to adjust the surrounding organic aerosol sources.


Subject(s)
Aerosols , Air Pollutants , Environmental Monitoring , Organic Chemicals , Aerosols/analysis , Algeria , Organic Chemicals/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Magnetic Resonance Spectroscopy , Particulate Matter/analysis , Water/chemistry
9.
Environ Sci Pollut Res Int ; 31(38): 50820-50838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102145

ABSTRACT

Submarine groundwater drainage (SGD) changes the elemental composition of the neighboring coastal ocean and impacts the biogeochemical cycles. To examine the seasonal and spatial variability in dissolved organic carbon (DOC) and labile organic compound biochemical compounds like dissolved carbohydrates (TDCHO), dissolved proteins (TDPRO), and dissolved free amino acid (TDFAA) concentrations during the dry and wet periods, groundwater samples were taken at 90 locations (180 samples) along the Indian coast. The mean DOC contents in Indian coastal groundwaters were more significant than the global mean values. DOC, TDCHO, TDPRO, and TDFAA concentrations are higher during wet than dry periods. The DOC and labile organic compound showed a substantial positive association with soil organic carbon, and respective labile compounds in soil, population, and land usage and poor relation with woodland territories, implying that soil organic compounds leaching is a source of DOC and other labile organic compounds into the groundwater. DOC and other labile compounds concentrations were linearly associated with population density, land usage, and sewage production, demonstrating that anthropogenic activities tightly regulate the formation of DOC in groundwater. During the wet and dry periods, total labile organic compounds (TDCHO, TDFAA, and TDPRO) constituted 21% and 10.5% of DOC, respectively. Compared to the wet time, more aromatic compounds accumulated during the dry season but were less bioavailable. SGD DOC flux contributed 2-7% of riverine DOC flux to the coastal ocean. The SGD flux from the Indian subcontinent to the nearby northern Indian Ocean accounts for approximately 2% of the worldwide SGD flux. The effect of DOC flux via SGD on coastal bacterial activity, the plankton food web, and the oxygen minimum zone must be studied.


Subject(s)
Carbon , Environmental Monitoring , Groundwater , Organic Chemicals , India , Groundwater/chemistry , Carbon/analysis , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Seasons
10.
Water Sci Technol ; 90(1): 373-383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007325

ABSTRACT

This study investigated the characteristics of dissolved organic matter (DOM) in two distinct water bodies, through the utilization of three-dimensional fluorescence spectroscopy coupled with self-organizing map (SOM) methodology. Specifically, this analysis concentrated on neurons 3, 14, and 17 within the SOM model, identifying notable differences in the DOM compositions of a coal subsidence water body (TX) and the MaChang Reservoir (MC). The humic substance content of DOM TX exceeded that of MC. The origin of DOM in TX was primarily linked to agricultural inputs and rainfall runoff, whereas the DOM in MC was associated with human activities, displaying distinctive autochthonous features and heightened biological activity. Principal component analysis revealed that humic substances dominated the DOM in TX, while the natural DOM in MC was primarily autochthonous. Furthermore, a multiple linear regression model (MLR) determined that external pollution was responsible for 99.11% of variation in the humification index (HIX) of water bodies.


Subject(s)
Humic Substances , Humic Substances/analysis , Organic Chemicals/analysis , Organic Chemicals/chemistry , Environmental Monitoring/methods , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Principal Component Analysis
11.
Huan Jing Ke Xue ; 45(7): 4177-4186, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022964

ABSTRACT

Changes in soil organic carbon (SOC) are of great importance to the evolution of soil quality. The distribution characteristics of soil organic carbon (SOC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were investigated in the 0-50 cm soil layer of the Phragmites australis, Suaeda salsa, and Tamarix chinensis communities of the supratidal zone in the Yellow River Delta as the research subjects. Then, the composition and sources of soil dissolved organic matter (DOM) were analyzed based on the UV-vis spectroscopy, three-dimensional excitation emission matrix spectroscopy, and parallel factor analysis (PARAFAC). Finally, the key factors affecting the characteristics of soil organic carbon and DOM fractions of different plant communities were finally revealed in combination with the physicochemical properties of the soil. The results showed that: ① Comparing different communities, the S. salsa community had the highest ω(SOC) at 7.53 g·kg-1, the T. chinensis community had the highest ω(DOC) at 0.98 g·kg-1, and the P. australis community had significantly higher ω(EOC) and ω(POC) than those of the S. salsa and T. chinensis communities at 1.47 g·kg-1 and 0.65 g·kg-1, respectively. The vertical distribution showed a tendency to decrease with deeper soil layers, except for POC concentration. ② The main components of soil DOM of the P. australis, S. salsa, and T. chinensis communities were humus, protein-like substances, and fulvic acid-like substances, of which exogenous components accounted for 55.80%, 56.41%, and 52.81% in the above communities, respectively. ③ Comparing different communities, the humification degree of the P. australis community was significantly higher than that of the S. salsa and T. chinensi communities, but its aromaticity and proportion of biological sources were significantly lower than those of the T. chinensi community. On the vertical profile of the soil, DOM aromaticity and humification degree gradually increased with the deepening of the soil layer, and the deeper soils were mainly dominated by small molecular weight DOM with a lower proportion of hydrophobic fraction. ④ Redundant analysis showed that N (P<0.01), NO2--N (P<0.01), and NH4+-N (P<0.05) were the key factors affecting the changes in soil organic carbon and DOM fractions.


Subject(s)
Carbon , Chenopodiaceae , Organic Chemicals , Rivers , Soil , Soil/chemistry , Carbon/analysis , China , Organic Chemicals/analysis , Rivers/chemistry , Chenopodiaceae/growth & development , Poaceae/growth & development , Tamaricaceae/growth & development , Ecosystem , Environmental Monitoring
12.
Molecules ; 29(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999144

ABSTRACT

This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.


Subject(s)
Camellia , Laurates , Monoglycerides , Organic Chemicals , Plant Oils , Waxes , Camellia/chemistry , Waxes/chemistry , Plant Oils/chemistry , Laurates/chemistry , Organic Chemicals/chemistry , Organic Chemicals/analysis , Monoglycerides/chemistry , Meat Products/analysis , Taste , Fatty Acids/chemistry , Fatty Acids/analysis
13.
Anal Biochem ; 694: 115620, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39029642

ABSTRACT

GC-MS/MS combines the superior chromatographic resolution of GC with the specific and sensitive detection of tandem MS. On paper, it is an ideal system for the routine analyses of organic acids, yet very few studies have used and published such methods. This is likely due to several challenges highlighted in this communication. Briefly, the combination of EI ionization with MRM detection provides arguably insufficient specificity when targeting organic acids. Moreover, the narrow peaks generally produced by GC can lead to inaccurate quantification when the mass spectrometer's cycle time is too long. Potential solutions to these problems are discussed.


Subject(s)
Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Organic Chemicals/analysis , Organic Chemicals/chemistry , Acids/analysis , Acids/chemistry
14.
Water Res ; 262: 122094, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083902

ABSTRACT

In electrokinetic remediation (EKR), the sedimentary dissolved organic matter (DOM) could impede remediation by scavenging reactive species and generating unintended byproducts. Yet its transformation and mechanisms remained largely unknown. This study conducted molecular-level characterization of the water-extractable DOM (WEOM) in EKR using negative-ion electrospray ionization coupled to 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR MS). The results suggested that ∼55 % of the ∼7,000 WEOM compounds identified were reactive, and EKR lowered their diversity, molecular weight distribution, and double-bond equivalent (DBE) through a combination of electrochemical and microbial redox reactions. Heteroatom-containing WEOM (CHON and CHOS) were abundant (∼ 35% of the total WEOM), with CHOS generally being more reactive than CHON. Low electric potential (1 V/cm) promoted the growth of dealkylation and desulfurization bacteria, and led to anodic CO2 mineralization, anodic cleavage of -SO and -SO3, and cathodic cleavage of -SH2; high electric potential (2 V/cm) only enriched desulfurization bacteria, and differently, led to anodic oxygenation and cathodic hydrogenation of unsaturated and phenolic compounds, in addition to cathodic cleavage of -SH2. The long-term impact of these changes on soil quality and nitrogen-sulfur-carbon flux may be need to studied to identify unknown risks and new applications of EKR.


Subject(s)
Geologic Sediments , Geologic Sediments/chemistry , Mass Spectrometry , Environmental Restoration and Remediation , Fourier Analysis , Organic Chemicals/chemistry , Organic Chemicals/analysis
15.
Chemosphere ; 363: 142862, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029713

ABSTRACT

The effectiveness of ozonation, one of the techniques known for destroying organic contaminants from wastewater, depends on the composition of the wastewater matrix. The required ozone (O3) dose is determined based on the target compounds during ozonation. Hydroxyl radicals are quantified using a probe compound. The para-chlorobenzoic acid (pCBA) is typically used as a probe compound to measure hydroxyl radicals. However, real-time measurement is impossible, as the analysis process consumes time and resources. This study aimed to evaluate the spectroscopic characteristics of various organic substances in wastewater ozonation through fluorescence excitation-emission matrix and parallel factor analysis. The study also demonstrated that real-time analyzable tryptophan-like fluorescence (TLF) can be used as a hydroxyl radical index. Importantly, the correlation between para-chlorobenzoic acid and TLF was derived, and the results showed a high correlation (R2 = 0.91), confirming the reliability of our findings. Seven trace organic compounds, classified based on their reactivity with O3 and hydroxyl radicals, were selected as target compounds and treated with O3. The TLF index was used as a model factor for the removal rate of the target compounds. The experimental and model values matched when the O3 dose was below 1.0 g O3/g DOC (RMSE: 0.0445-0.0895).


Subject(s)
Hydroxyl Radical , Ozone , Tryptophan , Wastewater , Water Pollutants, Chemical , Ozone/chemistry , Ozone/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Tryptophan/analysis , Tryptophan/chemistry , Hydroxyl Radical/chemistry , Hydroxyl Radical/analysis , Fluorescence , Waste Disposal, Fluid/methods , Organic Chemicals/analysis , Organic Chemicals/chemistry , Chlorobenzoates/chemistry , Chlorobenzoates/analysis , Spectrometry, Fluorescence/methods , Water Purification/methods
16.
Water Res ; 262: 122084, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39018578

ABSTRACT

Global land-use changes alter the delivery of fluvial dissolved organic matter (DOM) along land-to-sea continuum. To study how spatial variations in watershed anthropogenic disturbances control chemodiversity and reactivity of DOM exported to oceans, we used fluorescent and ultra-high-resolution mass spectrometry to investigate spatial and seasonal variations of DOM properties along two subtropical coastal rivers with contrasting anthropogenic land-use distributions (North and West tributaries of Jiulong River, southeast China). Dissolved organic carbon (DOC) concentration and humic- and protein-like fluorescent DOM (FDOM) intensities were high in the mixed urban-agricultural impacted upper North River and lower West River. DOM molecular signatures suggested that the urban-sourced DOM is dominated by bio-labile, S-rich compounds, whereas the agricultural-sourced DOM is characterized by a mixture of bio-labile CHONS and bio-refractory CHON. This anthropogenic-induced spatial variation in DOM signatures was especially prominent during the dry season. Molecular analysis indicated that heteroatomic-containing (phosphorus-sulfur-nitrogen) DOM compounds are more biologically degradable, whereas most of the heteroatom-depleted and highly unsaturated CHO was stable during transport. Due to a longer transit distance and reservoir impoundment in North River, the urban-sourced aliphatic compounds were largely microbially removed or transformed into bio-refractory components, resulting in lower DOC fluxes and an increase of recalcitrance in the DOM exported to the ocean. Conversely, shorter transit times for anthropogenic inputs from the middle/lower West River increased watershed yield and export fluxes of DOC with higher bio-lability. Our study documents that transit history plays a crucial role in assessing the fate of anthropogenic DOM along the land-to-ocean continuum.


Subject(s)
Oceans and Seas , Rivers , Rivers/chemistry , China , Environmental Monitoring , Seasons , Organic Chemicals/analysis , Anthropogenic Effects , Carbon/analysis , Seawater/chemistry
17.
Environ Geochem Health ; 46(9): 350, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073511

ABSTRACT

Dissolved organic matter (DOM), a pivotal component in the global carbon cycle, plays a crucial role in maintaining the productivity and functionality of aquatic ecosystems. However, the driving factors of variations in the properties of riverine DOM in tropical islands still remain unclear. In this study, the spatiotemporal response of the optical characteristics of riverine DOM to seasonality and land use on Hainan Island in southern China was investigated. Our results revealed that DOM in the rivers of Hainan Island exhibited a relatively high proportion of fulvic acid and demonstrated strong terrestrial sources. The optical properties of DOM exhibited significant variations both seasonally and spatially. Land use exerted a dominant influence on riverine DOM. Specifically, during the wet season, riverine DOM exhibited larger molecular weight, increased chromophoric DOM (CDOM) abundance, and higher Fmax compared to the dry season. Furthermore, riverine DOM influenced by grassland and farmland showed higher CDOM abundance, Fmax, and humification degree in contrast to those impacted by forest and urban. Random forest and correlation analysis results indicated that grassland and farmland enhanced the Fmax of DOM by increasing levels of TP, NO3--N, Chl a, and NH4+-N in the dry season. However, during the wet season, the increased Fmax of DOM induced by grassland and farmland relied on the increments of Chl a and TP concentrations. This study improves our understanding of the spatiotemporal fluctuations of DOM in the rivers of Hainan Island, highlighting the effects of season and land use on DOM. It offers valuable support for improving water quality and contributes to enhancing human comprehension of the global carbon cycle.


Subject(s)
Environmental Monitoring , Rivers , Seasons , Rivers/chemistry , China , Environmental Monitoring/methods , Islands , Tropical Climate , Spatio-Temporal Analysis , Humic Substances/analysis , Agriculture , Organic Chemicals/analysis , Benzopyrans/analysis
18.
J Hazard Mater ; 477: 135278, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047566

ABSTRACT

Human hair has become a promising non-invasive matrix in assessing exposure to environmental organic pollutants (OPs). However, exogenous contaminants, which were absorbed into the hair via sweat, sebum, and air particles/dust, could contribute to OP levels in hair and interfere with the precise exposure assessment. So far, the microscopic mechanisms underlying the absorption of exogenous OPs into hair remain inadequately understood. This study focused on the in-situ investigation of the diffusion processes of exogenous OPs into the hair structure using secondary ion mass spectrometry (SIMS) and isotopic tracer techniques. Results showed that the relative signal intensities of deuterium-labeled tris(1,3-dichloro-2-propyl) phosphate (TDCPP), 1-hydroxypyrene (1-OH-Pry), and bisphenol A (BPA) in the hair cortex were notably elevated after a 6-hour exposure. Diffusion coefficients of contaminants were related to their molecular weight, and absorption volumes to their water solubility and molecular structures. Exposure duration and solvent influenced the rate of diffusion and absorption volumes. The distribution of deuterium-labeled molecules in exposed hair samples after washing with two different solvents (acetone or water) was similar to that before washing. Our findings revealed the diffusion of OPs in hair cross-sections, indicating exogenous contributions to contaminants that are biologically incorporated into the hair.


Subject(s)
Environmental Pollutants , Hair , Spectrometry, Mass, Secondary Ion , Humans , Hair/chemistry , Environmental Pollutants/chemistry , Environmental Pollutants/analysis , Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Phenols/analysis , Phenols/chemistry , Female , Organic Chemicals/analysis , Organic Chemicals/chemistry , Adult , Environmental Monitoring/methods , Diffusion
19.
Oecologia ; 205(3-4): 487-496, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38976074

ABSTRACT

Litter-derived dissolved organic matter (DOM) plays an essential role in biogeochemical cycles. In wetlands, species relative abundance and its change have great influences on input features of litter-derived DOM, including chemical characteristics per se and functional diversity of chemical characteristics. Functional diversity is an important factor controlling organic matter biodegradation, but little is known in terms of the DOM. We mixed litter leachates of four macrophytes with a constant concentration (20 mg DOC L-1) but varying dominant species and volume ratios, i.e. 15:1:1:1 (low-evenness), 5:1:1:1 (mid-evenness), and 2:1:1:1 (high-evenness), generating a gradient of chemical characteristics and functional diversity (represented by functional dispersion index FDis). Based on a 42-d incubation, we measured degradation dynamics of these DOM mixtures, and analyzed potential determinants. After 42 days of incubation, the high-evenness treatments, along with mid-evenness treatments sometimes, had most degradation, while the low-evenness treatments always had least degradation. The degradation of mixtures related significantly to not only the volume-weighted mean chemical characteristics but also FDis. Furthermore, the FDis even explained more variation of degradation. The non-additive mixing effects, synergistic effects (faster degradation than predicted) in particular, on degradation of DOM mixtures were rather common, especially in the high- and mid-evenness treatments. Remarkably, the mixing effects increased linearly with the FDis values (r2adj. = 0.426). This study highlights the critical role of functional diversity in regulating degradation of mixed litter-derived DOM. Resulting changes in chemistry and composition of litter leachates due to plant community succession may exert substantial influences on biogeochemical cycling.


Subject(s)
Biodegradation, Environmental , Fresh Water , Wetlands , Organic Chemicals/analysis
20.
Environ Res ; 260: 119605, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39002632

ABSTRACT

Understanding the spatial patterns of dissolved organic matter (DOM) and factors that influence them is crucial for maintaining river ecosystem functions and riverine health, considering the significant role of DOM in water quality and aquatic ecosystems. Nevertheless, there is limited knowledge regarding the spatial variation of DOM bioavailability and the factors driving them in large river systems. This study involved 39 sampling locations along the main stem of the Changjiang River, spanning its entire length (>5000 km) during a dry season. Spatial patterns of DOM were assessed by measurements of DOC concentrations and eight fluorescence DOM indices, namely fluorescence index (FI-A and FI-B), Trytophan/Tyrosine, Humic A, Humic C, humification indices (HIX-A and HIX-B), and Freshness index (ß/α). The results revealed that the water DOM in the main stem of the Changjiang River primarily originated from terrestrial sources. A decline in DOM bioavailability was observed from the upper to the lower basin, aligning with the carbon processing prediction rather than the river continuum concept (RCC). The pure effect of physicochemical factors (25.30%) was greater than that of geographic factors (9.40%). The internal transformation processes determined the significant longitudinal decreases of DOM bioavailability. While no significant difference in DOM bioavailability was observed between reaches before and after the dams, the construction of dams was found to improve DOM bioavailability at the subsection scale and reduce the spatial autocorrelation of DOM bioavailability across the entire basin.


Subject(s)
Environmental Monitoring , Rivers , Rivers/chemistry , China , Environmental Monitoring/methods , Organic Chemicals/analysis , Organic Chemicals/pharmacokinetics , Water Pollutants, Chemical/analysis , Humic Substances/analysis , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL