Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Environ Toxicol Pharmacol ; 110: 104521, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39069195

ABSTRACT

The ability of organophosphate pesticides to disturb immune function has been demonstrated by in vivo and in vitro studies, but evidence of such effects on humans remains scarce. To assess the association between organophosphate pesticides exposure and cytokine levels in Mexican flower workers, a cross-sectional study was carried out. A questionnaire was provided to 121 male flower workers, and urine and blood samples were collected. Using gas chromatography, urinary concentrations of dialkylphosphate metabolites were determined. The serum cytokine levels, IL-4, IL-5, IL-6, IL-8, and IL-10, were measured using multiplex analysis, and levels of INF-γ and TNF-α by ELISA. We found that a higher dialkylphosphate concentration decreased the pro-inflammatory cytokines INF-γ (ß = -0.63; 95 % CI: -1.22, -0.05), TNF-α (ß= -1.18; 95 % CI: -2.38, 0.02), and IL-6 (ß= -0.59; 95 % CI: -1.29, 0.12), and increased IL-10 (ß=0.56; 95 % CI: 0.02, 1.09), the main anti-inflammatory cytokine, suggesting an imbalance of the immune response in flower workers.


Subject(s)
Cytokines , Occupational Exposure , Pesticides , Humans , Mexico , Male , Occupational Exposure/analysis , Adult , Cytokines/blood , Pesticides/urine , Pesticides/blood , Pesticides/toxicity , Middle Aged , Cross-Sectional Studies , Flowers , Young Adult , Organophosphorus Compounds/urine , Organophosphates/urine , Organophosphates/blood
2.
Chemosphere ; 354: 141713, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490613

ABSTRACT

Historical pesticide use in agriculture and trace metal accumulation have long term impact on soil, sediment, and water quality. This research quantifies legacy and current-use pesticides and trace metals, assessing their occurrence and toxicological implications on a watershed scale in the Sogamoso River basin, tributary of the Magdalena River in Colombia. Organochlorine pesticides (22), organophosphates (7), and azole fungicides (5), as well as trace metals cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were analyzed in croplands and along the river. Toxic units (TU) and hazard quotients (HQ) were calculated to assess the mixture toxicity. Organochlorines were detected in 84% of soils, 100% of sediments, and 80% of water samples. Organophosphates were found in 100% of soil and sediment samples, as well as in 70% of water samples. Azole fungicides were present in 79% of soils, 60% of sediments, and in 10% of water samples. Total pesticide concentrations ranged from 214.2 to 8497.7 µg/kg in soils, 569.6-12768.2 µg/kg in sediments, and 0.2-4.1 µg/L in water. In addition, the use of partition coefficient (Kd) and organic carbon fraction (foc) allowed the distribution analysis for most of the pesticides in sediments, suspended particulate matter (SPM), and water systems, but not for soils. Concentrations of trace metals Cu, Zn, Pb, and Zn exceeded international quality guidelines for agricultural soils in 16% of the samples. Furthermore, Cu and Zn concentrations exceeded sediment quality guidelines in 50 and 90% of the samples, respectively. These findings demonstrate the broad distribution of complex mixtures of trace metals, legacy organochlorines, and current-use pesticides across the basin, indicating that conventional agriculture is a significant source of diffuse pollution. Sustainable agricultural practices are needed to mitigate adverse impacts on ecosystems and human health.


Subject(s)
Fungicides, Industrial , Metals, Heavy , Pesticides , Trace Elements , Humans , Soil , Metals, Heavy/analysis , Pesticides/analysis , Ecosystem , Rivers , Fungicides, Industrial/analysis , Colombia , Lead/analysis , Environmental Monitoring , Trace Elements/analysis , Agriculture , Zinc/analysis , Azoles/analysis , Organophosphates , Geologic Sediments , Risk Assessment , China
3.
Sci Rep ; 14(1): 3544, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347059

ABSTRACT

Acute poisonings are a global public health problem, which implies costs and disease burden for society. In Colombia, there is a significant underreporting of data on acute poisoning and data gaps on the toxicological profile of the population. This study aims to identify the epidemiology of acute poisoning in a high-complexity hospital in southwestern Colombia. A descriptive study with retrospective data collection was performed. The variables were expressed through the measure of central tendency and dispersion. Categorical variables were described in proportions. A total of 406 patients were included. The median age was 31 years (IQR 23-48), 56.2% were male, and only 19.2% had a history of mental illness. Suicidal intent represented 58.8% of the cases, and the most frequent route of exposure was the oral route (81.6%). The most prevalent groups of substances were pesticides (34.2%) and medicines (32%). The most common etiological agent was organophosphates (16.5%). Cholinergic toxidrome was the most common. The average stay in the ICU was 4.5 days (± 4.8), and the mortality was 4.2%. The principal causes of acute poisoning were drugs and pesticides, with a predominant etiology of organophosphates and depressants of the central nervous system. There was a significant predominance of young male patients with suicidal intent, low mental disorders, elevated unemployment rate, and similar mortality reported in other studies. This study improves the knowledge about acute poisoning in southwestern Colombian to carry out multicenter analytic studies.


Subject(s)
Pesticides , Poisoning , Adult , Female , Humans , Male , Colombia/epidemiology , Emergency Service, Hospital , Hospitals, University , Organophosphates , Retrospective Studies
4.
Biomed Chromatogr ; 38(3): e5746, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37723598

ABSTRACT

The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas. This paper aims to conduct an integrative review of the most used analytical methods for identifying and quantifying dialkylphosphate-which are metabolites of organophosphate insecticides-in the urine of exposed workers, discussing their advantages, limitations and applicability. Searches utilized the PubMed, the Scientific Electronic Library Online and the Brazilian Digital Library of Theses and Dissertations databases between 2000 and 2021. Twenty-five studies were selected. The extraction methods most used were liquid-liquid extraction (LLE) (36%) and solid-phase extraction (SPE) (36%), with the SPE being more economical in terms of time and amount of solvents needed, and presenting the best percentage of recovery of analytes, when compared with LLE. Nineteen studies (76%) used the gas chromatography method of separation, and among these, 12 records (63%) indicated mass spectrometry used as a detection technology (analyzer). Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure.


Subject(s)
Insecticides , Pesticides , Humans , Insecticides/analysis , Gas Chromatography-Mass Spectrometry , Organophosphorus Compounds/analysis , Organophosphates/urine
5.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Article in English | MEDLINE | ID: mdl-37839173

ABSTRACT

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Subject(s)
Antineoplastic Agents , Aurora Kinase A , Humans , Aurora Kinase A/metabolism , Quinazolines/pharmacology , Organophosphates/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Receptors, Colony-Stimulating Factor
6.
Environ Monit Assess ; 196(1): 10, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38049584

ABSTRACT

The general population and workers are exposed to organophosphate insecticides, one of the leading chemical classes of pesticides used in rural and urban areas, in the control of arboviruses and agriculture. These pesticides cause environmental/occupational exposure and associated risks to human and environmental health. The objective of this study was to carry out an integrative review of epidemiological studies that identified and quantified dialkylphosphate metabolites in the urine of exposed populations, focusing on the vector control workers, discussing the application and the results found. Searches utilized the Pubmed, Scielo, and the Brazilian Digital Library of Theses and Dissertations (BDTD) databases between 2000 and 2021. From the 194 selected studies, 75 (39%) were with children/adolescents, 48 (24%) with rural workers, 36 (19%) with the general population, 27 (14%) with pregnant women, and 9 (4%) with vector control workers. The total dialkylphosphate concentrations found in the occupationally exposed population were higher than in the general population. Studies demonstrate that dialkylphosphates are sensitive and representative exposure biomarkers for environmental and occupational organophosphate exposure. The work revealed a lack of studies with vector control workers and a lack of studies in developing countries.


Subject(s)
Insecticides , Occupational Exposure , Pesticides , Child , Humans , Female , Pregnancy , Adolescent , Environmental Monitoring , Organophosphorus Compounds , Environmental Exposure/analysis , Organophosphates
7.
Vet Clin Pathol ; 52(4): 646-653, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37914538

ABSTRACT

BACKGROUND: Cholinesterase is a biomarker for poisonings by anticholinesterase agents, but its reference values are scarce, and possible interaction with collars containing parasiticides has not been studied. OBJECTIVES: We aimed to evaluate the serum cholinesterase activity of healthy dogs without a history of contact with anticholinesterase agents and healthy animals exposed to commercial collars containing organophosphate. METHODS: Ninety-nine dogs were used and included healthy animals without recent exposure to anticholinesterase agents and healthy animals previously exposed to diazinon collars. Serum quantification of the enzyme butyrylcholinesterase (BuchE) through spectrophotometry was conducted on all samples. In experiment 1, BuchE activity was quantified at time 0 and 7 days after, a time when the samples were kept at -18°C. In experiment 2, sampling times were 0, 7, 14, 21, 28, and 56 days. RESULTS: Time 0 values were 4622.38 ± 1311.53 U/L. After 7 days, a significant decay was observed, with a mean of 3934.45 ± 1430.45 U/L. Spearman's test was performed, finding a weak correlation between ALT, creatinine, total plasma proteins, age, weight, red blood cells, platelets, leukocytes, and BuchE activities. In experiment 2, the mean at time 0 was 4753 ± 454.8 U/L. With exposure to the collar, there was a decay of up to 93% after 14 days. CONCLUSIONS: Normality values of serum BuchE in healthy dogs without a history of exposure to anticholinesterase agents were 4360.8-4883.96 U/L. Freezing serum caused a decrease in BuchE activity. Exposure to commercial collars containing diazinon also reduced BuchE activity without clinical signs, indicating that previously exposed animals should be evaluated carefully.


Subject(s)
Butyrylcholinesterase , Diazinon , Dogs , Animals , Diazinon/toxicity , Cholinesterase Inhibitors/toxicity , Organophosphates
8.
Neotrop Entomol ; 52(6): 1155-1164, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37861966

ABSTRACT

Neurotoxicant compounds interfere with the behaviour and biology of insects, significantly altering their locomotion patterns. However, little is known about the effect of organophosphates, neurotoxicants for agricultural, domestic and industrial use, on the larval movement of necrophagous flies, although being responsible for frequent cases of poisoning and accidental or intentional deaths. Thus, we aimed to study the influence of Terbufos (organophosphate) on the activity and mobility patterns of Lucilia eximia (Wiedemann 1819) (Calliphoridae) and Peckia (Peckia) chrysostoma (Wiedemann 1830) (Sarcophagidae) immatures collected from rat carcasses intoxicated with 5, 10 or 20 mg/kg of Terbufos, to evaluate (i) peristaltic movements and body contractions, and (ii) distance and shape of the trajectory travelled by the larva. Behavioural parameters were analysed in loco and through videos. We observed that the presence of Terbufos altered poisoned larvae's activity and body mobility in both taxon and dose-dependent manner. Lucilia eximia larvae were more active, with greater frequency of body movements and lateral contractions when intoxicated with high and intermediate doses of Terbufos. On the other hand, P. (P.) chrysostoma immatures were less active, with fewer body and lateral contractions when intoxicated with the high dose of the compound. This work experimentally demonstrates that the presence of Terbufos can alters the mobility and movement of intoxicated necrophagous Diptera, essential components of the cadaveric fauna.


Subject(s)
Diptera , Sarcophagidae , Humans , Animals , Rats , Organophosphates , Larva , Calliphoridae
9.
Biomedica ; 43(2): 296-304, 2023 06 30.
Article in English, Spanish | MEDLINE | ID: mdl-37433166

ABSTRACT

Introduction. Dengue is a public health problem in La Guajira region. Control has focused on the vector using insecticides, including organophosphates. Objective. To evaluate the state of susceptibility to organophosphates insecticides in fifteen Aedes aegypti (L.) populations in La Guajira, Colombia. Materials and methods. We collected samples of third-instar larvae and adult mosquitoes of Ae. aegypti in the municipalities of Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita, Villanueva. Bioassays for temefos, malathion, and pirimiphos-methyl were carried out following the methodology of the World Health Organization, and the bottle technique using the guidance of the Centers for Disease Control and Prevention. Susceptibility to temefos was determined through the resistance ratio between lethal concentration 50 and lethal concentration 95; for the compounds temefos, malathion and pirimiphos-methyl, susceptibility was calculated using diagnostic dose and diagnostic time in the populations evaluated. Rockefeller susceptible strain was used as a control. Results: All evaluated populations of Ae. aegypti from La Guajira were found to be susceptible to temefos (ratio resistance to CL50<5.0; ratio resistance to CL95<5.0; 98 - 100 % mortality); pirimiphosmethyl (99 - 100 % mortality), and malathion (100 % mortality). Conclusion. Based on the results, the use of temefos, malathion, and pirimiphosmethyl is feasible for the control of Ae. aegypti in the evaluated populations.


Introducción. El dengue es un problema de salud pública para el departamento de La Guajira. El control se ha enfocado en el vector con el uso de insecticidas, entre ellos los organofosforados. Objetivo. Evaluar el estado de la sensibilidad a insecticidas organofosforados de quince poblaciones de Aedes aegypti (L.) en el departamento de La Guajira, Colombia. Materiales y métodos. Se realizaron bioensayos para temefos, malatión y metil-pirimifos en larvas de tercer estadio y mosquitos adultos de Ae. aegypti en los municipios de Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita y Villanueva, siguiendo la metodología de la Organización Mundial de la Salud (OMS) y la técnica de botellas usando la guía de los de los Centers for Disease Control and Prevention, respectivamente. Se determinó la sensibilidad por medio de la razón de resistencia a CL50 y CL95 (RRCL50, RRCL95) para temefos y a dosis y tiempo diagnóstico para temefos, malatión y metilpirimifos en las poblaciones de campo evaluadas, usando como control la cepa sensible Rockefeller. Resultados. Las 15 poblaciones del departamento de La Guajira son sensibles a: temefos (razón de la resistencia a RRCL50<5,0; relación de resistencia a CL95<5,0; 98 a 100 % de mortalidad); metil-pirimifos (99 a 100 % de mortalidad) y malatión (100 % de mortalidad). Conclusión. Con base en los resultados obtenidos, es factible el uso de temefos, malatión y metil-pirimifos para el control de Ae. aegypti en las poblaciones evaluadas.


Subject(s)
Aedes , United States , Animals , Organophosphates , Colombia , Temefos , Mosquito Vectors
10.
Article in English | MEDLINE | ID: mdl-37491117

ABSTRACT

Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.


Subject(s)
Insecticides , Pesticides , Male , Female , Humans , Animals , Mice , Malathion/toxicity , Mice, Inbred BALB C , Leukocytes, Mononuclear/chemistry , HeLa Cells , Organophosphorus Compounds/toxicity , Organophosphates/toxicity , DNA Damage , Bone Marrow Cells/metabolism , Pesticides/toxicity , Environmental Exposure
11.
Parasitol Res ; 122(10): 2267-2278, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37493957

ABSTRACT

The current work evaluated the efficacy of 10 commercial acaricides in different pHs (4.5, 5.5, and 6.5) in laboratory (adult immersion tests (AIT), pH evaluation over time) and field assays (tick counts and efficacy). In the AIT (n=70), higher efficacies were obtained when the acaricide emulsion had a more acidic pH (4.5), mainly for two combinations of pyrethroids + organophosphate (acaricide 3 and acaricide 9). For amidine, a higher pH (6.5) showed a higher efficacy. Over time, there was a trend in the pH of these emulsions increasing. When the efficacy of chlorpyrifos + cypermethrin + piperonyl butoxide (acaricide 3) at different pHs was evaluated over time (0, 6, 12, and 24h) by AIT, the less acidic pH (6.5) showed a strongly variation in the acaricide efficacy range. The mean pH of the water samples from different regions of Brazil was 6.5. In the field, the association of pyrethroid + organophosphates (acaricide 9) with pH of 4.5 and 5.5 were more effective in tick control than the emulsion prepared with this same spray formulation at pH 6.5. The pH of the acaricide emulsions is an important point of attention and is recommended that the veterinary industry start to develop/share information regarding how the pH can affect the acaricide efficacy.


Subject(s)
Acaricides , Rhipicephalus , Tick Control , Animals , Cattle , Hydrogen-Ion Concentration , Acaricides/chemistry , Acaricides/pharmacology , Emulsions , Tick Control/methods , Pyrethrins/chemistry , Pyrethrins/pharmacology , Organophosphates/chemistry , Organophosphates/pharmacology , Rhipicephalus/drug effects
12.
Chem Biol Interact ; 382: 110593, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37270087

ABSTRACT

The non-cholinergic molecular targets of organophosphate (OP) compounds have recently been investigated to explain their role in the generation of non-neurological diseases, such as immunotoxicity and cancer. Here, we evaluated the effects of malathion and its dialkylphosphate (DAP) metabolites on the cytoskeleton components and organization of RAW264.7 murine macrophages as non-cholinergic targets of OP and DAPs toxicity. All OP compounds affected actin and tubulin polymerization. Malathion, dimethyldithiophosphate (DMDTP) dimethylthiophosphate (DMTP), and dimethylphosphate (DMP) induced elongated morphologies and the formation of pseudopods rich in microtubule structures, and increased filopodia formation and general actin disorganization in RAW264.7 cells and slightly reduced stress fibers in the human fibroblasts GM03440, without significantly disrupting the tubulin or vimentin cytoskeleton. Exposure to DMTP and DMP increased cell migration in the wound healing assay but did not affect phagocytosis, indicating a very specific modification in the organization of the cytoskeleton. The induction of actin cytoskeleton rearrangement and cell migration suggested the activation of cytoskeletal regulators such as small GTPases. We found that DMP slightly reduced Ras homolog family member A activity but increased the activities of Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) from 5 min to 2 h of exposure. Chemical inhibition of Rac1 with NSC23766 reduced cell polarization and treatment with DMP enhanced cell migration, but Cdc42 inhibition by ML-141 completely inhibited the effects of DMP. These results suggest that methylated OP compounds, especially DMP, can modify macrophage cytoskeleton function and configuration via activation of Cdc42, which may represent a potential non-cholinergic molecular target for OP compounds.


Subject(s)
Insecticides , Malathion , Mice , Humans , Animals , Malathion/toxicity , Malathion/metabolism , rho GTP-Binding Proteins/metabolism , Actins/metabolism , Tubulin/metabolism , Actin Cytoskeleton/metabolism , Insecticides/toxicity , Insecticides/metabolism , Cell Movement , Organophosphorus Compounds/metabolism , Organophosphates/metabolism
13.
Ticks Tick Borne Dis ; 14(4): 102190, 2023 07.
Article in English | MEDLINE | ID: mdl-37167772

ABSTRACT

The present study compared the efficacy of different methods to apply an acaricide formulation to control Rhipicephalus (Boophilus) microplus. To compare the methods, an acaricide blend containing three active ingredients (a pyrethroid and two organophosphates) was used. In experiment 1 (farm 1: Goiânia, GO, Brazil), three methods were tested: a backpack sprayer (BS), power sprayer (PS) and spray race (SR). In experiment 2 (farm 2: São José do Rio Pardo, SP, Brazil), two methods were tested: BS and PS. In both experiments, 10 cattle with similar tick burdens were used. On day 0 in both experiments, the animals were treated with the acaricide. On day +1 (only in experiment 1), +3, +7, +14, +21, +28 and +35 (only in experiment 2), tick counts were performed to determine the control efficacy. The time application, pressure (KPa), volume applied (L) and ergonomic aspects of each spraying system were also evaluated. The adult immersion test (AIT) using three different acaricide blends (combinations of pyrethroid + organophosphate) was performed to compare the susceptibility of strains of each farm. In experiment 1, all treatments significantly reduced (p < 0.05) the number of ticks on the animals, and PS resulted in the greatest acaricide efficacy since day +1. In experiment 2, both treatments (PS and BS) reduced (p < 0.05) the tick burden, and as observed in experiment 1, PS resulted in the best reduction. The application times were 4.5, 150 and 330 s, while pressures were 306.8, 4,826.3 and 220.6 KPa for SR, PS and BS, respectively. In the AIT, the efficacy values were between 99.8 and 100% for the tick strain form farm 1 (Goiânia), while for tick strain from farm 2 (São José do Rio Pardo), the efficacy was between 67.2 and 80.9%. We conclude that the sprayer methods chosen influences the efficacy of the acaricide. All sprayer methods were efficient for acaricide application; the best efficacy was obtained using the PS, while the SR resulted in good efficacy and lower application time. The strain from farm 2 was less susceptible to all acaricides tested.


Subject(s)
Acaricides , Cattle Diseases , Pyrethrins , Rhipicephalus , Tick Infestations , Animals , Cattle , Acaricides/pharmacology , Pyrethrins/pharmacology , Organophosphates , Brazil , Cattle Diseases/prevention & control , Tick Infestations/prevention & control , Tick Infestations/veterinary
14.
Environ Pollut ; 330: 121802, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37169239

ABSTRACT

Organophosphates are a worldwide threat because of their presence in agrochemicals and chemical warfare. Situations of misuse, apprehensions of prohibited chemicals (e.g. pesticides), undesired stockpiles and chemical attacks require effective measures for neutralization and removal. Herein, a green approach is shown by functionalizing the agricultural waste rice husk with amidoximes leading to heterogeneous catalysts that were applied in the degradation/scavenging of toxic organophosphates. In aqueous medium, the waste-derived catalyst was efficient in the catalytic neutralization of a phosphotriester (increments up to 1 × 104-fold), while allying important features: selective, recyclable and lead to less toxic products. Curiously, the amidoximated rice husk behaved as a scavenger in the aprotic polar solvents MeCN and acetone by covalently bonding to the phosphoryl moiety. Upon addition of water, this bond is broken and the phosphoryl liberated (hydrolyzed) to the aqueous medium. Thus, the scavenging process is reversible and can be used to remove toxic organophosphates. 31P nuclear magnetic resonance spectroscopy was crucial for confirming the overall mechanisms involved. In summary, a sustainable material was synthetized from a waste source and employed as catalyst and scavenger for eliminating threatening organophosphates. This is promising for assuring chemical security such as in chemical emergencies.


Subject(s)
Oryza , Water Pollutants, Chemical , Oryza/chemistry , Organophosphates , Oximes , Agriculture , Water Pollutants, Chemical/analysis
15.
Chemosphere ; 334: 138974, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37207896

ABSTRACT

Organophosphate esters (OPEs) are substances that have been detected in several matrices due to their use as flame retardants and plasticizers. Human exposure to OPEs can cause endocrine disruption, neurotoxicity, and reproductive disturbance. Ingestion of contaminated food can be a significant route of exposure to OPEs. Food can be contaminated by OPEs in the food chain, during cultivation, and by contact with plasticizers during the production chain of processed foods. In this study, a method for the determination of 10 OPEs in commercial bovine milk was developed. The procedure was based on QuEChERS extraction and gas chromatography coupled to mass spectrometry (GC-MS) analysis. QuEChERS modification included a freezing-out step after the extraction followed by the concentration of the entire acetonitrile phase before the clean-up step. Calibration linearity, matrix effects, recovery, and precision were evaluated. Significant matrix effects were observed, which were compensated by matrix-matched calibration curves. Recoveries ranged from 75 to 105%, with a relative standard deviation ranging from 3 to 38%. The method detection limits (MDLs) were in the range of 0.43-4.5 ng mL-1, while the method quantification limits (MQLs) were within the range from 0.98 to 15 ng mL-1. The proposed method was successfully validated and applied to determine the concentrations of OPEs in bovine milk. The 2-ethylhexyl diphenyl phosphate (EHDPHP) was detected in the analyzed milk samples but at levels below the MQL.


Subject(s)
Flame Retardants , Milk , Humans , Animals , Gas Chromatography-Mass Spectrometry/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Plasticizers/analysis , Organophosphates/analysis , Flame Retardants/analysis , Esters/analysis
16.
Int J Mol Sci ; 24(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37047231

ABSTRACT

The evidence supporting the biological plausibility of the association of permethrin and malathion with hematological cancer is limited and contradictory; thus, further studies are needed. This study aimed to investigate whether in vitro exposure to 0.1 µM permethrin and malathion at 0, 24, 48 and 72 h after cell culture initiation induced changes in the gene expression and DNA methylation in mononuclear cells from bone marrow and peripheral blood (BMMCs, PBMCs). Both pesticides induced several gene expression modifications in both tissues. Through gene ontology analysis, we found that permethrin deregulates ion channels in PBMCs and BMMCs and that malathion alters genes coding proteins with nucleic acid binding capacity, which was also observed in PBMCs exposed to permethrin. Additionally, we found that both insecticides deregulate genes coding proteins with chemotaxis functions, ion channels, and cytokines. Several genes deregulated in this study are potentially associated with cancer onset and development, and some of them have been reported to be deregulated in hematological cancer. We found that permethrin does not induce DNA hypermethylation but can induce hypomethylation, and that malathion generated both types of events. Our results suggest that these pesticides have the potential to modify gene expression through changes in promoter DNA methylation and potentially through other mechanisms that should be investigated.


Subject(s)
Bone Marrow Cells , DNA Methylation , Gene Expression , Insecticides , Malathion , Organophosphates , Permethrin , Gene Expression/drug effects , DNA Methylation/drug effects , Hematopoiesis/drug effects , Hematopoiesis/genetics , Permethrin/toxicity , Malathion/toxicity , Insecticides/toxicity , Organophosphates/toxicity , Bone Marrow Cells/drug effects , Blood Cells/drug effects , Humans , Male , Young Adult , Cells, Cultured
17.
Chemosphere ; 328: 138571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37019402

ABSTRACT

Legacy and emerging organic pollutants pose an ever-expanding challenge for the marine environment. This study analysed a dated sediment core from Cienfuegos Bay, Cuba, to assess the occurrence of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), alternative halogenated flame retardants (aHFRs), organophosphate esters (OPEs), and phthalates (PAEs) from 1990 to 2015. The results evidence the continuing presence of historical regulated contaminants (PCBs, OCPs, and PBDEs) in the southern basin of Cienfuegos Bay. PCB contamination declined since 2007, likely in response to the gradual global phasing out of PCB containing materials. There have been relatively consistent low accumulation rates for OCPs and PBDEs at this location (in 2015 approximately 1.9 and 0.26ng/cm2/year, respectively, with 2.8ng/cm2/year for Σ6PCBs), with indications of recent local DDT use in response to public health emergencies. In contrast, sharp increases are observed between 2012 and 2015 for the contaminants of emerging concern (PAEs, OPEs, and aHFRs), and in the case of two PAEs (DEHP and DnBP) the concentrations were above the established environmental effect limits for sediment dwelling organisms. These increasing trends reflect the growing global usage of both alternative flame retardants and plasticizer additives. Local drivers for these trends include nearby industrial sources such as a plastic recycling plant, multiple urban waste outfalls, and a cement factory. The limited capacity for solid waste management may also contribute to the high concentrations of emerging contaminants, especially plastic additives. For the most recent year (2015), the accumulation rates for Σ17aHFRs, Σ19PAEs, and Σ17OPEs into sediment at this location were estimated to be 10, 46 000, and 750ng/cm2/year, respectively. This data provides an initial survey of emerging organic contaminants within this understudied region of the world. The increasing temporal trends observed for aHFRs, OPEs, and PAEs highlights the need for further research concerning the rapid influx of these emerging contaminants.


Subject(s)
Flame Retardants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Polychlorinated Biphenyls/analysis , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Cuba , Bays , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Organophosphates/analysis , Plastics , Environmental Monitoring
18.
Int J Legal Med ; 137(4): 1253-1261, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36977846

ABSTRACT

Fatal poisonings with diazinon may occur both accidentally or intentionally in suicide cases. Forensic entomotoxicology can aid in understanding these deaths by detecting and analyzing the interference of toxic substances in the biology of necrophagous insects. Hence, this study sought to evaluate diazinon's effect on the composition and succession of calliphorid species in the tropical savannas of the Amazon. Nine rabbit carcasses were divided into three groups: one control and two diazinon treatments (100 mg/kg and 300 mg/kg); each group had three replicates. Three fragments of the Amazon tropical savanna were selected for the experiments. Daily collections of adult and immature calliphorids were performed. Five decomposition stages were observed: fresh, bloated, active decay co-occurring, advanced decay, and dry. Eight species of Calliphoridae were identified among the collected adults: Chloroprocta idioidea (0.1%), Chrysomya albiceps (58.3%), Chrysomya megacephala (14.2%), Chrysomya putoria (2.6%), Cochliomyia hominivorax (1.3%), Cochliomyia macellaria (0.5%), Lucilia eximia (19.8%), and Paralucilia paraensis (3.3%). The adult specimens in the control group with the highest abundance were observed only from the advanced decay stage onward. In the dry stage, abundance was higher in control than in treated carcasses. From the sampled 941 Calliphorid immatures, three species were identified: C. albiceps (76,3%), C. putoria (1%), and L. eximia (22,7). The number of immatures was higher in control than in treated carcasses. Therefore, diazinon interferes with the putrefaction timeframe in carcasses, slowing the decomposition stages and affecting their colonization by immature forms of Calliphoridae.


Subject(s)
Calliphoridae , Diptera , Animals , Rabbits , Diazinon , Organophosphates , Cadaver
19.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982434

ABSTRACT

Organophosphate pesticides (OPs) have greatly facilitated food production worldwide, and their use is not limited to agriculture and the control of pests and disease vectors. However, these substances can directly affect the immune response of non-target organisms. In this sense, exposure to OPs can have negative effects on innate and adaptive immunity, promoting deregulation in humoral and cellular processes such as phagocytosis, cytokine expression, antibody production, cell proliferation, and differentiation, which are crucial mechanisms for host defense against external agents. This review focuses on the scientific evidence of exposure to OPs and their toxic effects on the immune system of non-target organisms (invertebrates and vertebrates) from a descriptive perspective of the immuno-toxic mechanisms associated with susceptibility to the development of bacterial, viral, and fungal infectious diseases. During the exhaustive review, we found that there is an important gap in the study of non-target organisms, examples of which are echinoderms and chondrichthyans. It is therefore important to increase the number of studies on other species directly or indirectly affected by Ops, to assess the degree of impact at the individual level and how this affects higher levels, such as populations and ecosystems.


Subject(s)
Insecticides , Pesticides , Animals , Ecosystem , Invertebrates , Vertebrates , Organophosphorus Compounds , Immunity , Organophosphates , Pesticides/toxicity
20.
Chemosphere ; 322: 138244, 2023 May.
Article in English | MEDLINE | ID: mdl-36841459

ABSTRACT

Brazil is the third largest exporter of fruits and vegetables in the world and, consequently, uses large amounts of pesticides. Food contamination with pesticide residues (PRs) is a serious concern, especially in developing countries. Several research reports revealed that some Brazilian farmers spray pesticides on fruits and vegetables in large quantities, generating PRs after harvest. Thus, ingestion of food contaminated with PRs can cause adverse health effects. Based on information obtained through a systematic review of essential information from 33 articles, we studied the assessment of potential health risks associated with fruit and vegetable consumption in children and adults from Brazilian states. This study identified 111 PRs belonging to different chemical groups, mainly organophosphates and organochlorines, in 26 fruit and vegetable samples consumed and exported by Brazil. Sixteen of these PRs were above the Maximum Residue Limit (MRL) established by local and international legislation. We did not identify severe acute and chronic dietary risks, but the highest risk values were observed in São Paulo and Santa Catarina, associated with the consumption of tomatoes and sweet peppers due to the high concentrations of organophosphates. A high long-term health risk is associated with the consumption of oranges in São Paulo and grapes in Bahia due to chlorothalonil and procymidone. We also identified that 26 PRs are considered carcinogenic by the United States Environmental Protection Agency (US EPA), and the carcinogenic risk analysis revealed no severe risk in any Brazilian state investigated due to the cumulative hazard index (HI) < 1. However, the highest HI values were in São Paulo due to acephate and carbaryl in sweet pepper and in Bahia due to dichlorvos. This information can help regulatory authorities define new guidelines for pesticide residue limits in fruits and vegetables commonly consumed and exported from Brazil and monitor the quality of commercial formulations.


Subject(s)
Pesticide Residues , Pesticides , Adult , Child , United States , Humans , Pesticide Residues/analysis , Vegetables/chemistry , Fruit/chemistry , Brazil , Pesticides/analysis , Risk Assessment , Organophosphates/analysis , Food Contamination/analysis
SELECTION OF CITATIONS
SEARCH DETAIL