Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters











Publication year range
1.
Chem Asian J ; 19(19): e202400637, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38985241

ABSTRACT

We present our results on the synthesis and preliminary in silico and in vitro studies of the toxicology and antioxidant properties of selenylated analogs of Tacrine. Initially, we synthesized 2-aminobenzonitriles containing an organic selenium moiety, resulting in sixteen compounds with various substituents linked to the portion derived from diorganyl diselenide. These compounds were then used as substrates in reactions with cyclic ketones, in the presence of 1.4 equivalents of trifluoroboroetherate as a Lewis acid, to synthesize selenylated analogs of Tacrine with yields ranging from 20 % to 87 %. In silico studies explored computational parameters related to antioxidant activity and hepatotoxicity. In vitro studies elucidated the antioxidant effects of Tacrine and its selenium hybrid (TSe) in neutralizing ABTS radicals, scavenging DPPH radicals, and reducing iron ions. Additionally, the acute oral toxicity of one synthesized compound was evaluated.


Subject(s)
Antioxidants , Biphenyl Compounds , Picrates , Tacrine , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Tacrine/chemistry , Tacrine/pharmacology , Tacrine/chemical synthesis , Animals , Picrates/antagonists & inhibitors , Picrates/chemistry , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Molecular Structure , Rats , Male , Benzothiazoles/chemistry , Benzothiazoles/chemical synthesis , Computer Simulation , Sulfonic Acids/chemistry , Sulfonic Acids/antagonists & inhibitors , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/toxicity
2.
Bioorg Med Chem Lett ; 110: 129860, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942128

ABSTRACT

A series of seleno-containing polyfunctionalized compounds was synthesized exploring cyanohydrin chemistry, including α-hydroxy esters, α-hydroxy acids, 1,2-diols, and 1,2-diacetates, with yields ranging from 26 up to 99 %. The cytotoxicity of all synthesized compounds was then evaluated using a non-tumor cell line (BALB/3T3 murine fibroblasts), and those deemed non-cytotoxic had their anti-melanoma activity evaluated using B16-F10 murine melanoma cells. These assays identified two compounds with selective cytotoxic activity against the tested melanoma cell line, showing a potential anti-melanoma application.


Subject(s)
Antineoplastic Agents , Nitriles , Organoselenium Compounds , Animals , Mice , Anhydrides/chemistry , Anhydrides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , BALB 3T3 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Melanoma/drug therapy , Melanoma/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Molecular Structure , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemical synthesis , Selenium/chemistry , Selenium/pharmacology , Structure-Activity Relationship , Acetates/chemical synthesis , Acetates/chemistry , Acetates/pharmacology
3.
ChemMedChem ; 19(17): e202400063, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38778500

ABSTRACT

The chemical and biological interest in this element and the molecules bearing selenium has been exponentially growing over the years. Selenium, formerly designated as a toxin, becomes a vital trace element for life that appears as selenocysteine and its dimeric form, selenocystine, in the active sites of selenoproteins, which catalyze a wide variety of reactions, including the detoxification of reactive oxygen species and modulation of redox activities. From the point of view of drug developments, organoselenium drugs are isosteres of sulfur-containing and oxygen-containing drugs with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. This statement is the paramount relevance considering the big number of clinically employed compounds bearing sulfur or oxygen atoms in their structures including nucleosides and carbohydrates. Thus, in this article we have focused on the relevant features of the application of selenium in medicinal chemistry. With the increasing interest in selenium chemistry, we have attempted to highlight the most significant published data on this subject, mainly concentrating the analysis on the last years. In consequence, the recent advances of relevant pharmacological organoselenium compounds are discussed.


Subject(s)
Organoselenium Compounds , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Humans , Chemistry, Pharmaceutical , Molecular Structure , Animals , Antioxidants/chemistry , Antioxidants/pharmacology
4.
ACS Chem Neurosci ; 15(9): 1904-1914, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38639539

ABSTRACT

The compound N-(3-(phenylselanyl)prop-2-yn-1-yl)benzamide (SePB), which combines a selenium atom and a benzamide nucleus in an organic structure, has demonstrated a fast antidepressant-like effect in mice. This action is influenced by the serotonergic system and represents a promising development in the search for novel antidepressant drugs to treat major depressive disorder (MDD), which often resists conventional treatments. This study aimed to further explore the mechanism underlying the antidepressant-like effect of SePB by investigating the involvement of the dopaminergic and noradrenergic systems in the tail suspension test (TST) in mice and evaluating its pharmacokinetic profile in silico. Preadministration of the dopaminergic antagonists haloperidol (0.05 mg/kg, intraperitoneally (i.p.)), a nonselective antagonist of dopamine (DA) receptors, SCH23390 (0.01 mg/kg, subcutaneously (s.c.)), a D1 receptor antagonist, and sulpiride (50 mg/kg, i.p.), a D2/3 receptor antagonist, before SePB (10 mg/kg, intragastrically (i.g.)) prevented the anti-immobility effect of SePB in the TST, demonstrating that these receptors are involved in the antidepressant-like effect of SePB. Administration of the noradrenergic antagonists prazosin (1 mg/kg, i.p.), an α1-adrenergic antagonist, yohimbine (1 mg/kg, i.p.), an α2-adrenergic antagonist, and propranolol (2 mg/kg, i.p.), a ß-adrenergic antagonist, did not block the antidepressant-like effect of SePB on TST, indicating that noradrenergic receptors are not involved in this effect. Additionally, the coadministration of SePB and bupropion (a noradrenaline/dopamine reuptake inhibitor) at subeffective doses (0.1 and 3 mg/kg, respectively) produced antidepressant-like effects. SePB also demonstrated good oral bioavailability and low toxicity in computational absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses. These findings suggest that SePB has potential as a new antidepressant drug candidate with a particular focus on the dopaminergic system.


Subject(s)
Antidepressive Agents , Benzamides , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Benzamides/pharmacology , Benzamides/pharmacokinetics , Mice , Male , Dopamine Antagonists/pharmacology , Dopamine Antagonists/pharmacokinetics , Dopamine/metabolism , Hindlimb Suspension , Organoselenium Compounds/pharmacology , Organoselenium Compounds/pharmacokinetics , Organoselenium Compounds/chemistry
5.
Molecules ; 28(21)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37959771

ABSTRACT

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Subject(s)
Organoselenium Compounds , Selenium , Trace Elements , Antioxidants/chemistry , Selenium/pharmacology , Oxidative Stress , Glutathione Peroxidase/metabolism , Organoselenium Compounds/pharmacology , Organoselenium Compounds/chemistry , Thioredoxin-Disulfide Reductase/metabolism
6.
Curr Med Chem ; 30(21): 2357-2395, 2023.
Article in English | MEDLINE | ID: mdl-35708081

ABSTRACT

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.


Subject(s)
Mental Disorders , Organoselenium Compounds , Humans , Neuropharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Mental Disorders/drug therapy , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Organoselenium Compounds/chemistry
7.
Int J Biol Macromol ; 191: 19-26, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34537295

ABSTRACT

The derivatization of chitosan (CS) is widely exploited to endow this polysaccharide with enhanced physicochemical and biological properties. Beyond the synthetic route, the nature of the compounds used to functionalize the CS-derivatives exerts a pivotal role in their final properties. Making use of a simple "click" reaction, we synthesized for the first time an organoselenium-CS derivative through a 1,2,3-triazole formation. The product (CS-TSe) was characterized in detail by FTIR, NMR (1H, 13C, and 77Se) and UV-Vis techniques, and SEM microscopy. The antioxidant activity of CS-TSe was examined by ABTS+ and DPPH (free radical-scavenging) assays. Experimentally, it was demonstrated that CS-TSe has superior antioxidant activity compared with raw CS and "free" organoselenium compound, suggesting a benign and synergistic effect due to the derivatization. In short, the antioxidant property of CS-TSe combined with the other attractive properties of CS and selenium could be useful in the formulation of advanced materials for biomedical and packaging applications.


Subject(s)
Antioxidants/chemical synthesis , Chitosan/analogs & derivatives , Click Chemistry/methods , Organoselenium Compounds/chemistry , Triazoles/chemistry
8.
Mol Inform ; 40(8): e2100028, 2021 08.
Article in English | MEDLINE | ID: mdl-34018687

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.


Subject(s)
Azoles/pharmacology , COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases/metabolism , Organoselenium Compounds/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Viral Matrix Proteins/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Azoles/chemistry , Azoles/metabolism , COVID-19/metabolism , Catalytic Domain/drug effects , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Discovery , Humans , Isoindoles , Molecular Docking Simulation , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Viral Matrix Proteins/antagonists & inhibitors
9.
J Comput Chem ; 42(17): 1225-1235, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33871893

ABSTRACT

There have been significant advances in the biological use of hypervalent selenium and tellurium compounds as cysteine protease inhibitors. However, the full understanding of their reaction mechanisms for and cysteine proteases inhibition is still elusive. Kinetic studies suggest an irreversible inhibition mechanism, which was explained by forming a covalent bond between the enzyme sulfhydryl group and the chalcogen atom at its hypervalent state (+4). In this work, we performed a theoretical investigation using density functional theory to propose the active inhibitor form in an aqueous solution. To this end, we investigated chloride ligand exchange reactions by oxygen and sulfur nucleophiles on hypervalent selenium and tellurium compounds. All tetra- and tri-coordinated chalcogen compounds and distinct protonation states of the nucleophiles were considered, totaling 34 unique species, 7 nucleophiles, and 155 free energies reactions. We discovered that chloride is easily replaced by a nonprotonated nucleophile (SH- or OH- ) in R2 SeCl2 . We also found that tri-coordinate species are more stable than their tetra-coordinate counterparts, with selenoxide (R2 SeO) protonation being strongly exergonic in acid pH. The thermodynamic and kinetic results suggest that the protonated selenoxide (R2 SeOH+ ) is the most probable active chemical species in biological media. The computed energetic profiles paint a possible picture for selenuranes activity, with successive exergonic steps leading to a covalent inhibition of thiol-dependent enzymes, like cysteine proteases. A second pathway has also been uncovered, with a direct reaction to chalcogenonium cation (R2 SeCl+ ) as the inhibition step. Tellurium compounds showed similar trends but formed telluroxide in a pH-independent fashion.


Subject(s)
Cysteine Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Organoselenium Compounds/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Density Functional Theory , Molecular Structure , Organoselenium Compounds/chemistry
10.
Phys Chem Chem Phys ; 23(9): 5447-5454, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33650609

ABSTRACT

The population and depopulation mechanisms leading to the lowest-lying triplet states of 2-Se-Thymine were studied at the MS-CASPT2/cc-pVDZ level of theory. Several critical points on different potential energy hypersurfaces were optimized, including minima, conical intersections, and singlet-triplet crossings. The accessibility of all relevant regions on the potential energy hypersurfaces was investigated by means of minimum energy paths and linear interpolation in internal coordinates techniques. Our analysis indicates that, after the population of the bright S2 state in the Franck-Condon region, the first photochemical event is a barrierless evolution towards one of its two minima. After that, three viable photophysical deactivation paths can take place. In one of them, the population in the S2 state is transferred to the T2 state via intersystem crossing and subsequently to the T1 state by internal conversion. Alternatively, the S1 state could be accessed by internal conversion through two distinct conical intersections with S2 state followed by singlet-triplet crossing with the T2 state. The absence of a second minimum on the T1 state and a small energy barrier on pathway along the potential energy surface towards the ground state from the lowest triplet state are attributed as potential reasons to explain why the lifetime of the triplet state of 2-Se-Thymine might be reduced in comparison with its thio-analogue.


Subject(s)
Organoselenium Compounds/chemistry , Thymidine/analogs & derivatives , Kinetics , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Photochemical Processes , Thermodynamics , Thymidine/chemistry
11.
Med Mycol ; 59(5): 409-421, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33421963

ABSTRACT

Fungal infections are one of the most prevalent diseases in the world and there is a lack of new antifungal drug development for these diseases. We conducted a systematic review of the literature regarding the in vitro antifungal activity of the organoselenium compounds ebselen (Eb) and diphenyl diselenide [(PhSe)2]. A systematic review was carried out based on the search for articles with data concerning Minimal Inhibitory Concentration (MIC) values, indexed in international databases and published until August 2020. A total of 2337 articles were found, and, according to the inclusion and exclusion criteria used, 22 articles were included in the study. Inhibitory activity against 96% (200/208) and 95% (312/328) of the pathogenic fungi tested was described for Eb and [(PhSe)2], respectively. Including in these 536 fungal isolates tested, organoselenium activity was highlighted against Candida spp., Cryptococcus ssp., Trichosporon spp., Aspergillus spp., Fusarium spp., Pythium spp., and Sporothrix spp., with MIC values lower than 64 µg/mL. In conclusion, Eb and [(PhSe)2] have a broad spectrum of in vitro inhibitory antifungal activity. These data added with other pharmacological properties of these organoselenium compounds suggest that both compounds are potential future antifungal drugs. Whether MICs toward the upper end of the ranges described here are compatible with efficacious therapy, and whether they may achieve such end as a result of the favorable non-antimicrobial effects of selenium on the host, requires more in vivo testing.


Fungal infections require the investigation of new drugs. The study is a systematic review of organo-selenium compounds with potential antifungal action. In 22 articles included in this review, in a total of 536 isolates of pathogenic fungi tested, the compounds showed action in more than 90% of them.


Subject(s)
Benzene Derivatives/pharmacology , Fungi/drug effects , Isoindoles/pharmacology , Organoselenium Compounds/pharmacology , Animals , Antifungal Agents/pharmacology , Benzene Derivatives/chemistry , Drug Synergism , Humans , Isoindoles/chemistry , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Organoselenium Compounds/chemistry
12.
Mini Rev Med Chem ; 21(14): 1865-1887, 2021.
Article in English | MEDLINE | ID: mdl-33438538

ABSTRACT

BACKGROUND: Organocalcogens are a class of organic compounds obtained by the synthesis experiments to include S, Se, or Te. Among the elements that comprise this class, Se is characterized as an essential mineral and nutrient for humans. Se has been widely studied in many aspects. Organic synthesis of organoselenides is used for obtaining new potential drug candidates and may be highly beneficial from the use of computational approaches to reduce time and cost of the experiments. Thus, the goal of our study is to evaluate the computational approaches used in the organoselenides research from 1999 to 2019. METHODS: A literature review was performed by searching the database "Web of Sciences". RESULTS: Most of the theoretical studies included structural elucidation or structure-property analysis. We also found research regarding molecular docking approaches and Quantitative Structure-Activity Relationship (QSAR) studies. CONCLUSIONS: Computational studies have been widely applied to organoselenides. They demonstrated promising results and resulted in reduced the cost of research, increased efficacy, and, ultimately, novel organoselenides with desired properties.


Subject(s)
Organoselenium Compounds/chemistry , Drug Design , Humans , Ligands , Molecular Docking Simulation , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Organoselenium Compounds/metabolism , Organoselenium Compounds/therapeutic use , Quantitative Structure-Activity Relationship
13.
J Biochem Mol Toxicol ; 35(3): e22663, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33125183

ABSTRACT

Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular , Liver Neoplasms , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Organoselenium Compounds/chemistry , Pyridines/chemistry , Xenograft Model Antitumor Assays
14.
Molecules ; 25(24)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322179

ABSTRACT

The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.


Subject(s)
Chemistry Techniques, Synthetic , Heterocyclic Compounds/chemical synthesis , Organoselenium Compounds/chemical synthesis , Chemistry Techniques, Synthetic/methods , Chemistry Techniques, Synthetic/trends , Cyclization , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Molecular Structure , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology
15.
AAPS PharmSciTech ; 21(8): 307, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33151442

ABSTRACT

Diphenyl diselenide [(PhSe)2] is a pleiotropic pharmacological agent, but it has low aqueous solubility. The nanoencapsulation of (PhSe)2 allowed the preparation of an aqueous formulation as well as potentiated its in vitro antitumor effect and the effectiveness in a preclinical model of glioblastoma when administered by the intragastric route. Thus, aiming at maximizing the therapeutic potential of (PhSe)2, the present study designed a pegylated-formulation intending to intravenous administration of the (PhSe)2 as a new approach for glioma therapy. The poly(Ɛ-caprolactone) nanocapsules containing (PhSe)2 were physically coated with polyethyleneglycol (PEG) using the preformed polymer interfacial deposition technique and evaluated through physicochemical, morphological, spectroscopic, and thermal characteristics. Hemocompatibility was determined by the in vitro hemolysis test and cytotoxicity assays were performed in astrocytes and glioma C6 cells (10-100 µM). The pegylated-nanocapsules had an average diameter of 218 ± 25 nm, polydispersity index of 0.164 ± 0.046, zeta potential of - 8.1 ± 1.6 mV, pH 6.0 ± 0.09, (PhSe)2 content of 102.00 ± 3.57%, and encapsulation efficiency around 98%. Besides, the (PhSe)2 pegylated-nanocapsules were spherical, presented absence of chemical interaction among the constituents, and showed higher thermal stability than the non-encapsulated materials. PEG-coated nanocapsules did not cause hemolytic effect while formulations without PEG induced a hemolysis rate above 10%. Moreover, pegylated-nanocapsules had superior in vitro antiglioma effect in comparison to free compound (IC50: 24.10 µM and 74.83 µM, respectively). Therefore, the (PhSe)2-loaded pegylated-nanocapsule suspensions can be considered a hemocompatible formulation for the glioma treatment by the intravenous route.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzene Derivatives/administration & dosage , Biocompatible Materials , Glioma/drug therapy , Nanocapsules/chemistry , Organoselenium Compounds/administration & dosage , Polyethylene Glycols/chemistry , Animals , Antineoplastic Agents/chemistry , Astrocytes/drug effects , Benzene Derivatives/chemistry , Organoselenium Compounds/chemistry , Solubility
16.
Org Biomol Chem ; 18(26): 4916-4921, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32353091

ABSTRACT

Herein, we report an eco-friendly, electrosynthetic approach for the intramolecular oxyselenylation of allyl-naphthol/phenol derivatives. This reaction proceeds with 0.2 equiv. of nBu4NClO4 as an electrolyte and Pt working electrodes in an undivided cell, resulting in the selenyl-dihydrofurans in good to excellent yields. Furthermore, several of the synthesized products presented a high percentage of acetylcholinesterase (AChE) inhibition, highlighting their potential anti-Alzheimer activity.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Electrochemical Techniques , Furans/pharmacology , Naphthols/pharmacology , Organoselenium Compounds/pharmacology , Phenols/pharmacology , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Electrodes , Furans/chemical synthesis , Furans/chemistry , Humans , Molecular Structure , Naphthols/chemistry , Organoselenium Compounds/chemical synthesis , Organoselenium Compounds/chemistry , Phenols/chemistry
17.
J Med Chem ; 63(13): 7347-7354, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32462866

ABSTRACT

The recent disclosure of type I 1/2 inhibitors for p38α MAPK demonstrated how the stabilization of the R-spine can be used as a strategy to greatly increase the target residence time (TRT) of inhibitors. Herein, for the first time, we describe N-acylhydrazone and selenophene residues as spine motifs, yielding metabolically stable inhibitors with high potency on enzymatic, NanoBRET, and whole blood assays, improved metabolic stability, and prolonged TRT.


Subject(s)
Dibenzocycloheptenes/chemistry , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship , Amides/chemistry , Drug Design , Drug Stability , Humans , Hydrazones/chemistry , Microsomes, Liver/drug effects , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/metabolism , Organoselenium Compounds/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Time Factors
18.
Mol Biol Rep ; 47(3): 2205-2215, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32095983

ABSTRACT

Intracerebroventricular streptozotocin injection (icv STZ) is a well established sporadic Alzheimer's disease (AD) model in rodents. AD is characterized by neuronal degeneration accompanied by central oxidative stress. Studies also indicate peripheral oxidative damage in AD, but if the icv STZ model of sporadic AD mimics this feature is an open question. This study aimed to investigate if icv STZ administration induces peripheral oxidative stress and the antioxidant action of Ebselen, compared to the reference drug (donepezil), in this sporadic AD model. Male adult Swiss mice received icv STZ (days 1 and 3). Mice received Ebselen (10 mg/kg, i.p) or Donepezil (5 mg/kg, i.p) for 14 days. Mice were killed and the kidney and liver were excised to determine parameters of oxidative stress and toxicity markers. The mice icv STZ-injected showed peripheral oxidative stress. Ebselen reversed renal lipid peroxidation in the icv STZ administered mice by modulating NPSH levels, SOD and CAT activities, whereas Donepezil, modulated only NPSH levels. Ebselen and Donepezil counteracted hepatic lipid peroxidation in STZ-injected mice by modulating NPSH levels and CAT activity. The δ-ALA-D activity was inhibited in the kidney, but not in the liver, whereas the icv STZ-injected mice had an increase in the GST activity in both tissues. Ebselen reversed the increase in the hepatic GST activity of the STZ-injected mice. Donepezil increased renal GST activity in the control mice. In conclusion, this study demonstrates that the icv STZ administration induced peripheral oxidative stress. Ebselen, similar to Donepezil, was effective against peripheral oxidative stress in a mouse model of sporadic AD.


Subject(s)
Alzheimer Disease/metabolism , Antioxidants/pharmacology , Azoles/pharmacology , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Antioxidants/chemistry , Azoles/chemistry , Biomarkers , Catalysis , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Glutathione Transferase/metabolism , Isoindoles , Kidney/drug effects , Kidney/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Metabolomics/methods , Mice , Organoselenium Compounds/chemistry , Oxidation-Reduction/drug effects , Streptozocin/adverse effects
19.
Invest New Drugs ; 38(3): 662-674, 2020 06.
Article in English | MEDLINE | ID: mdl-31264068

ABSTRACT

The aim of this study was to further evaluate the antitumoral effect of (PhSe)2-loaded polymeric nanocapsules (NC (PhSe)2) against a resistant melanoma cell line (SK-Mel-103) and develop a xanthan gum-based hydrogel intending the NC (PhSe)2 cutaneous application. For the in vitro evaluation, cells were incubated with free (PhSe)2 or NC (PhSe)2 (0.7-200 µM) and after 48 h the MTT assay, propidium iodide uptake (necrosis marker) and nitrite levels were assessed. The hydrogels were developed by thickening of the NC (PhSe)2 suspension or (PhSe)2 solution with xanthan gum and characterized in terms of average diameter, polydispersity index, pH, drug content, spreadability, rheological profiles and in vitro permeation in human skin. The results showed that NC (PhSe)2 provided a superior antitumoral effect in comparison to free (PhSe)2 (IC50 value of 47.43 µM and 65.05 µM, respectively) and increased the nitrite content. Both compound forms induced propidium iodide uptake, suggesting a necrosis-related pathway could be involved in the cytotoxic action of (PhSe)2. All hydrogels showed pH values around 7, drug content close to the theoretical values (5 mg/g) and mean diameter in the nanometric range. Besides, formulations were classified as non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor. Skin permeation studies revealed that the compound content was higher for the nano-based hydrogel in the dermis layer, demonstrating its superior permeation, achieved by the compound encapsulation. It is the first report on an adequate formulation development for cutaneous application of NC (PhSe)2 that could be used as an adjuvant treatment in melanoma therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Melanoma, Experimental/drug therapy , Nanocapsules/chemistry , Organoselenium Compounds/pharmacology , Polysaccharides, Bacterial/chemistry , Animals , Antineoplastic Agents/chemistry , Benzene Derivatives/chemistry , Cell Line , Humans , Mice , Organoselenium Compounds/chemistry , Permeability/drug effects , Polymers/chemistry
20.
J Trace Elem Med Biol ; 55: 180-189, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31345356

ABSTRACT

BACKGROUND: Gliomas are the most aggressive malignant tumors of the central nervous system. The diphenyl diselenide [(PhSe)2] is an organoselenium compound that has multiple pharmacological properties. Previous reports showed that (PhSe)2 nanoencapsulation potentiates its in vitro antitumoral action and reduces its toxicity. OBJECTIVE: In this sense, the current study was designed to further evaluate the (PhSe)2 antitumoral effect by a set of in vitro techniques using a glioma cell line as well as by an animal model of gliobastoma. METHODS: For the in vitro tests, the cell viability, propidium iodide uptake and nitrite levels of rat glioma C6 cells were determined after incubation with free (PhSe)2 or (PhSe)2-loaded nanocapsules (NC). The glioblastoma model was induced by implantation of C6 glioma cells in the right striatum of rats. Following, animals were submitted to a repeated intragastric administration treatment with (PhSe)2 or NC (PhSe)2 (1 mg/kg/day for 15 days) to assess the possible antitumor effect. MAIN FINDINGS: Both compound forms decreased the C6 glioma cells viability without causing any effect in astrocytes cells (healthy control). Importantly, the NC (PhSe)2 had superior cytotoxic effect than its free form and increased the nitrite content. Independent of the (PhSe)2 forms, the intragastric treatment reduced brain tumor size and caused neither alteration in the plasma renal and hepatic markers of function nor in the parameters of oxidative balance in brain, liver and kidneys. PRINCIPAL CONCLUSIONS: The (PhSe)2 nanoencapsulation improved its cytotoxic effect against C6 glioma cells and both compound forms attenuated the tumor development.


Subject(s)
Antineoplastic Agents/pharmacology , Benzene Derivatives/pharmacology , Disease Models, Animal , Glioblastoma/drug therapy , Nanocapsules/chemistry , Organoselenium Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Astrocytes/drug effects , Benzene Derivatives/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Screening Assays, Antitumor , Glioblastoma/pathology , Male , Nitrites/analysis , Organoselenium Compounds/chemistry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL