Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.624
Filter
1.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
2.
Theor Appl Genet ; 137(7): 150, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847846

ABSTRACT

Grain size is a crucial agronomic trait that determines grain weight and final yield. Although several genes have been reported to regulate grain size in rice (Oryza sativa), the function of Wall-Associated Kinase family genes affecting grain size is still largely unknown. In this study, we identified GRAIN WEIGHT AND NUMBER 1 (GWN1) using map-based cloning. GWN1 encodes the OsWAK74 protein kinase, which is conserved in plants. GWN1 negatively regulates grain length and weight by regulating cell proliferation in spikelet hulls. We also found that GWN1 negatively influenced grain number by influencing secondary branch numbers and finally increased plant grain yield. The GWN1 gene was highly expressed in inflorescences and its encoded protein is located at the cell membrane and cell wall. Moreover, we identified three haplotypes of GWN1 in the germplasm. GWN1hap1 showing longer grain, has not been widely utilized in modern rice varieties. In summary, GWN1 played a very important role in regulating grain length, weight and number, thereby exhibiting application potential in molecular breeding for longer grain and higher yield.


Subject(s)
Edible Grain , Oryza , Plant Proteins , Seeds , Oryza/genetics , Oryza/growth & development , Oryza/enzymology , Edible Grain/genetics , Edible Grain/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/growth & development , Seeds/genetics , Phenotype , Gene Expression Regulation, Plant , Cloning, Molecular , Chromosome Mapping , Haplotypes , Cell Wall/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Genes, Plant
3.
Biochem J ; 481(12): 779-791, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38829839

ABSTRACT

ent-Kaurene is a biosynthetic intermediate diterpene of phytohormone gibberellins, and is biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP). The successive cyclization is catalyzed by two distinct diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS). Homologs of these diterpene synthase genes have been reported to be involved in the biosynthesis of specialized-metabolic diterpenoids for defense in several plant species, including rice (Oryza sativa). These diterpene synthases consist of three domains, αßγ domains. Active sites of ent-CPS exist at the interface of ß and γ domain, while those of KS are located within the α domain. We herein carried out domain-deletion experiments using several KSs and KS like enzymes (KSLs) to obtain insights into the roles of domains other than active-site domains. As previously reported in taxadiene synthase, deletion of γ or ßγ domains drastically decreased activities of specialized-metabolic OsKSL5, OsKSL8, OsKSL7 and OsKSL10 in O. sativa. However, unexpectedly, only α domains of several gibberellin-biosynthetic KSs, including OsKS1 in O. sativa, AtKS in Arabidopsis thaliana, TaKS in wheat (Triticum aestivum) and BdKS1 in Brachypodium distachyon, retained their original functions. Additionally, the specialized-metabolic OsKSL4, which is closely related to OsKS1, also functioned without its ßγ domains. Domain-swapping experiments showed that replacing ßγ domains in OsKSL7 with those from other KS/KSLs retained the OsKSL7 activity. Moreover, deletion of ßγ domains of bifunctional PpCPS/KS in moss (Physcomitrella patens) drastically impaired its KS-related activity. Thus, we demonstrate that monofunctional gibberellin-biosynthetic KSs are the unique diterpene synthases that retain their functions without ßγ domains.


Subject(s)
Alkyl and Aryl Transferases , Gibberellins , Oryza , Plant Proteins , Gibberellins/metabolism , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/chemistry , Oryza/enzymology , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Catalytic Domain , Diterpenes, Kaurane/metabolism , Diterpenes, Kaurane/chemistry , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Diterpenes/metabolism , Diterpenes/chemistry , Protein Domains , Catalysis
4.
Biochem Biophys Res Commun ; 718: 150087, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38735139

ABSTRACT

Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.


Subject(s)
Acetolactate Synthase , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics , Amino Acids, Branched-Chain/metabolism , Oxygen/metabolism , Protein Subunits/metabolism , Protein Subunits/genetics
5.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752706

ABSTRACT

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Subject(s)
Acetyl-CoA Carboxylase , Enzyme Inhibitors , Herbicide Resistance , Herbicides , Mutation , Oryza , Plant Proteins , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/chemistry , Oryza/genetics , Oryza/enzymology , Herbicides/pharmacology , Herbicides/chemistry , Herbicide Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/enzymology
6.
Planta ; 259(6): 149, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724681

ABSTRACT

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/enzymology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Mutation , Gene Editing , Stress, Physiological/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Abscisic Acid/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
7.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791550

ABSTRACT

Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.


Subject(s)
Alkyl and Aryl Transferases , Gene Expression Regulation, Plant , Multigene Family , Oryza , Phylogeny , Plant Proteins , Stress, Physiological , Oryza/genetics , Oryza/enzymology , Stress, Physiological/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Gibberellins/metabolism , Genome, Plant
8.
Nature ; 629(8014): 1158-1164, 2024 May.
Article in English | MEDLINE | ID: mdl-38750355

ABSTRACT

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Subject(s)
Oryza , Plant Immunity , Plant Proteins , Ubiquitin , Animals , Chitin/metabolism , Homeostasis , Ligands , Oryza/enzymology , Oryza/immunology , Oryza/metabolism , Oryza/microbiology , Phosphorylation , Plant Proteins/antagonists & inhibitors , Plant Proteins/immunology , Plant Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Phosphoserine/metabolism , Conserved Sequence
9.
Plant J ; 119(1): 413-431, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625788

ABSTRACT

The protein-repairing enzyme (PRE) PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) influences seed vigor by repairing isoaspartyl-mediated protein damage in seeds. However, PIMTs function in other seed traits, and the mechanisms by which PIMT affects such seed traits are still poorly understood. Herein, through molecular, biochemical, and genetic studies using overexpression and RNAi lines in Oryza sativa and Arabidopsis thaliana, we demonstrate that PIMT not only affects seed vigor but also affects seed size and weight by modulating enolase (ENO) activity. We have identified ENO2, a glycolytic enzyme, as a PIMT interacting protein through Y2H cDNA library screening, and this interaction was further validated by BiFC and co-immunoprecipitation assay. We show that mutation or suppression of ENO2 expression results in reduced seed vigor, seed size, and weight. We also proved that ENO2 undergoes isoAsp modification that affects its activity in both in vivo and in vitro conditions. Further, using MS/MS analyses, amino acid residues that undergo isoAsp modification in ENO2 were identified. We also demonstrate that PIMT repairs such isoAsp modification in ENO2 protein, protecting its vital cellular functions during seed maturation and storage, and plays a vital role in regulating seed size, weight, and seed vigor. Taken together, our study identified ENO2 as a novel substrate of PIMT, and both ENO2 and PIMT in turn implicate in agronomically important seed traits.


Subject(s)
Arabidopsis , Oryza , Phosphopyruvate Hydratase , Protein D-Aspartate-L-Isoaspartate Methyltransferase , Seeds , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Seeds/genetics , Seeds/physiology , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Oryza/genetics , Oryza/enzymology , Oryza/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified
10.
Plant Physiol Biochem ; 211: 108635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688114

ABSTRACT

Meristem activity is important for normal plant growth as well as adaptive plastic development under abiotic stresses. Cytokinin has been recognized to have a major role in regulating meristem function which is controlled by cytokinin activating enzymes by fine-tuning the concentrations and spatial distribution of its bioactive forms. It was previously reported that LONELY GUY (LOG) acts in the direct activation pathway of cytokinin in rice shoot meristems. LOG has a cytokinin specific phosphoribohydrolase activity, which transforms inactive cytokinin nucleotides into active free bases. Here, we explored the role of OsLOG in controlling meristem activity mediated by cytokinin and its effects on growth, development, and stress resilience of rice plants. Overexpression of OsLOG in rice led to significant alterations in cytokinin levels in the inflorescence meristem, leading to enhanced plant growth, biomass and grain yield under both non-stress as well as stress conditions such as drought and salinity. Moreover, our study provides insight into how overexpression of OsLOG improves the ability of plants to withstand stress. The OsLOG-overexpressing lines exhibit reduced accumulation of H2O2 along with elevated antioxidant enzyme activities, thereby maintaining better redox homeostasis under stress conditions. This ultimately reduces the negative impact of stresses on grain yield and improves harvest index, as evidenced by observations in the OsLOG-overexpressing lines. In summary, our study emphasizes the diverse role of OsLOG, not only in regulating plant growth and yield via cytokinin but also in enhancing adaptability to abiotic stresses. This highlights its potential to improve crop yield and promote sustainable agriculture.


Subject(s)
Cytokinins , Oryza , Plant Proteins , Stress, Physiological , Oryza/genetics , Oryza/enzymology , Oryza/growth & development , Oryza/metabolism , Cytokinins/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Edible Grain/growth & development , Edible Grain/genetics , Gene Expression Regulation, Plant , Meristem/growth & development , Meristem/genetics , Meristem/metabolism , Droughts
11.
Int J Biol Macromol ; 269(Pt 1): 131738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670177

ABSTRACT

The processing quality of indica rice must undergo ripening after harvest to achieve stability and improvement. However, the mechanism underlying this process remains incompletely elucidated. Starch, the predominant component in indica rice, plays a crucial role in determining its properties. This study focused on analyzing the rheological properties and starch fine structure, as well as the related biosynthetic enzymes of indica rice during the after-ripening process. The results showed that after-ripened rice exhibited increased elastic modulus (G') and viscous modulus (G″), accompanied by a decrease in the loss tangent (Tan δ), indicating an enhancement in viscoelasticity and the gel network structure. Moreover, the proportions of amylopectin super long chains (DP 37-60) decreased, while those of medium chains (DP 13-24 and DP 25-36) or short chains (DP 6-12) of amylopectin increased. Additionally, the activities of starch branching enzyme (SBE) and starch debranching enzyme (DBE) declined over the after-ripening period. Pearson correlation analysis revealed that the rheological properties of after-ripened rice were correlated with the chain length distribution (CLD) of starch, which, in turn, was associated with its related endogenous enzymes. These findings provied new insights into understanding the quality changes of after-ripened indica rice.


Subject(s)
Oryza , Rheology , Starch , Oryza/chemistry , Oryza/enzymology , Starch/chemistry , Starch/metabolism , Viscosity , Amylopectin/chemistry , 1,4-alpha-Glucan Branching Enzyme/metabolism , 1,4-alpha-Glucan Branching Enzyme/chemistry
12.
Plant Cell Physiol ; 65(6): 1065-1079, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38501734

ABSTRACT

Grass xylan consists of a linear chain of ß-1,4-linked xylosyl residues that often form domains substituted only with either arabinofuranose (Araf) or glucuronic acid (GlcA)/methylglucuronic acid (MeGlcA) residues, and it lacks the unique reducing end tetrasaccharide sequence found in dicot xylan. The mechanism of how grass xylan backbone elongation is initiated and how its distinctive substitution pattern is determined remains elusive. Here, we performed biochemical characterization of rice xylan biosynthetic enzymes, including xylan synthases, glucuronyltransferases and methyltransferases. Activity assays of rice xylan synthases demonstrated that they required short xylooligomers as acceptors for their activities. While rice xylan glucuronyltransferases effectively glucuronidated unsubstituted xylohexaose acceptors, they transferred little GlcA residues onto (Araf)-substituted xylohexaoses and rice xylan 3-O-arabinosyltransferase could not arabinosylate GlcA-substituted xylohexaoses, indicating that their intrinsic biochemical properties may contribute to the distinctive substitution patterns of rice xylan. In addition, we found that rice xylan methyltransferase exhibited a low substrate binding affinity, which may explain the partial GlcA methylation in rice xylan. Furthermore, immunolocalization of xylan in xylem cells of both rice and Arabidopsis showed that it was deposited together with cellulose in secondary walls without forming xylan-rich nanodomains. Together, our findings provide new insights into the biochemical mechanisms underlying xylan backbone elongation and substitutions in grass species.


Subject(s)
Oryza , Plant Proteins , Xylans , Xylans/metabolism , Oryza/genetics , Oryza/enzymology , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pentosyltransferases/metabolism , Pentosyltransferases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Xylem/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics
13.
New Phytol ; 242(5): 2077-2092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494697

ABSTRACT

Rice is susceptible to chilling stress. Identifying chilling tolerance genes and their mechanisms are key to improve rice performance. Here, we performed a genome-wide association study to identify regulatory genes for chilling tolerance in rice. One major gene for chilling tolerance variation in Indica rice was identified as a casein kinase gene OsCTK1. Its function and natural variation are investigated at the physiological and molecular level by its mutants and transgenic plants. Potential substrates of OsCTK1 were identified by phosphoproteomic analysis, protein-protein interaction assay, in vitro kinase assay, and mutant characterization. OsCTK1 positively regulates rice chilling tolerance. Three of its putative substrates, acidic ribosomal protein OsP3B, cyclic nucleotide-gated ion channel OsCNGC9, and dual-specific mitogen-activated protein kinase phosphatase OsMKP1, are each involved in chilling tolerance. In addition, a natural OsCTK1 chilling-tolerant (CT) variant exhibited a higher kinase activity and conferred greater chilling tolerance compared with a chilling-sensitive (CS) variant. The CT variant is more prevalent in CT accessions and is distributed more frequently in higher latitude compared with the CS variant. This study thus enables a better understanding of chilling tolerance mechanisms and provides gene variants for genetic improvement of chilling tolerance in rice.


Subject(s)
Cold Temperature , Oryza , Plant Proteins , Adaptation, Physiological/genetics , Genes, Plant , Genetic Variation , Genome-Wide Association Study , Mutation/genetics , Oryza/genetics , Oryza/enzymology , Oryza/physiology , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Substrate Specificity
15.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336294

ABSTRACT

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Subject(s)
Enzyme Assays , Fucosyltransferases , Glycosyltransferases , Plant Proteins , Apium/enzymology , Apium/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/chemistry , Cell Wall/enzymology , Cell Wall/metabolism , Enzyme Assays/instrumentation , Enzyme Assays/methods , Fucosyltransferases/analysis , Fucosyltransferases/classification , Fucosyltransferases/metabolism , Glycosyltransferases/analysis , Glycosyltransferases/metabolism , Mass Spectrometry , Oryza/enzymology , Plant Proteins/analysis , Plant Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
16.
Plant Physiol ; 195(1): 326-342, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38345835

ABSTRACT

Photoreactivation enzyme that repairs cyclobutane pyrimidine dimer (CPD) induced by ultraviolet-B radiation, commonly called CPD photolyase (PHR) is essential for plants living under sunlight. Rice (Oryza sativa) PHR (OsPHR) is a unique triple-targeting protein. The signal sequences required for its translocation to the nucleus or mitochondria are located in the C-terminal region but have yet to be identified for chloroplasts. Here, we identified sequences located in the N-terminal region, including the serine-phosphorylation site at position 7 of OsPHR, and found that OsPHR is transported/localized to chloroplasts via a vesicle transport system under the control of serine-phosphorylation. However, the sequence identified in this study is only conserved in some Poaceae species, and in many other plants, PHR is not localized to the chloroplasts. Therefore, we reasoned that Poaceae species need the ability to repair CPD in the chloroplast genome to survive under sunlight and have uniquely acquired this mechanism for PHR chloroplast translocation.


Subject(s)
Chloroplasts , Deoxyribodipyrimidine Photo-Lyase , Oryza , Ultraviolet Rays , Chloroplasts/metabolism , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Oryza/genetics , Oryza/enzymology , Oryza/radiation effects , Oryza/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pyrimidine Dimers/metabolism , Poaceae/genetics , Poaceae/enzymology , Poaceae/radiation effects , Poaceae/metabolism , Amino Acid Sequence , Protein Transport
17.
Plant Cell ; 36(5): 1913-1936, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38242836

ABSTRACT

Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Histone Deacetylases , Oryza , Plant Proteins , Protein Stability , Transcriptional Activation , Oryza/genetics , Oryza/enzymology , Oryza/metabolism , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Transcriptional Activation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Acetylation
18.
Plant J ; 118(3): 856-878, 2024 May.
Article in English | MEDLINE | ID: mdl-38261531

ABSTRACT

Members of the glycosyltransferase (GT)43 and GT47 families have been associated with heteroxylan synthesis in both dicots and monocots and are thought to assemble into central cores of putative xylan synthase complexes (XSCs). Currently, it is unknown whether protein-protein interactions within these central cores are specific, how many such complexes exist, and whether these complexes are functionally redundant. Here, we used gene association network and co-expression approaches in rice to identify four OsGT43s and four OsGT47s that assemble into different GT43/GT47 complexes. Using two independent methods, we showed that (i) these GTs assemble into at least six unique complexes through specific protein-protein interactions and (ii) the proteins interact directly in vitro. Confocal microscopy showed that, when alone, all OsGT43s were retained in the endoplasmic reticulum (ER), while all OsGT47s were localized in the Golgi. co-expression of OsGT43s and OsGT47s displayed complexes that form in the ER but accumulate in Golgi. ER-to-Golgi trafficking appears to require interactions between OsGT43s and OsGT47s. Comparison of the central cores of the three putative rice OsXSCs to wheat, asparagus, and Arabidopsis XSCs, showed great variation in GT43/GT47 combinations, which makes the identification of orthologous central cores between grasses and dicots challenging. However, the emerging picture is that all central cores from these species seem to have at least one member of the IRX10/IRX10-L clade in the GT47 family in common, suggesting greater functional importance for this family in xylan synthesis. Our findings provide a new framework for future investigation of heteroxylan biosynthesis and function in monocots.


Subject(s)
Golgi Apparatus , Oryza , Plant Proteins , Oryza/genetics , Oryza/enzymology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Golgi Apparatus/metabolism , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Endoplasmic Reticulum/metabolism , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Xylans/metabolism , Gene Expression Regulation, Plant
19.
Plant J ; 118(3): 892-904, 2024 May.
Article in English | MEDLINE | ID: mdl-38281119

ABSTRACT

The indole alkaloid gramine, 3-(dimethylaminomethyl)indole, is a defensive specialized metabolite found in some barley cultivars. In its biosynthetic process, the tryptophan (Trp) side chain is shortened by two carbon atoms to produce 3-(aminomethyl)indole (AMI), which is then methylated by N-methyltransferase (HvNMT) to produce gramine. Although side chain shortening is one of the crucial scaffold formation steps of alkaloids originating from aromatic amino acids, the gene and enzyme involved in the Trp-AMI conversion reactions are unknown. In this study, through RNA-seq analysis, 35 transcripts were shown to correlate with gramine production; among them, an uncharacterized cytochrome P450 (CYP) gene, CYP76M57, and HvNMT were identified as candidate genes for gramine production. Transgenic Arabidopsis thaliana and rice overexpressing CYP and HvNMT accumulate AMI, N-methyl-AMI, and gramine. CYP76M57, heterologously expressed in Pichia pastoris, was able to act on Trp to produce AMI. Furthermore, the amino group nitrogen of Trp was retained during the CYP76M57-catalyzed reaction, indicating that the C2 shortening of Trp proceeds with an unprecedented biosynthetic process, the removal of the carboxyl group and Cα and the rearrangement of the nitrogen atom to Cß. In some gramine-non-accumulating barley cultivars, arginine 104 in CYP76M57 is replaced by threonine, which abolished the catalytic activity of CYP76M57 to convert Trp into AMI. These results uncovered the missing committed enzyme of gramine biosynthesis in barley and contribute to the elucidation of the potential functions of CYPs in plants and undiscovered specialized pathways.


Subject(s)
Cytochrome P-450 Enzyme System , Hordeum , Indole Alkaloids , Plant Proteins , Tryptophan , Hordeum/genetics , Hordeum/enzymology , Hordeum/metabolism , Tryptophan/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Indole Alkaloids/metabolism , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/enzymology , Arabidopsis/metabolism , Oryza/genetics , Oryza/enzymology , Oryza/metabolism , Gene Expression Regulation, Plant , Methyltransferases/genetics , Methyltransferases/metabolism
20.
Genome Biol ; 24(1): 198, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37649077

ABSTRACT

BACKGROUND: The Fe (II)- and α-ketoglutarate-dependent AlkB family dioxygenases are implicated in nucleotide demethylation. AlkB homolog1 (ALKBH1) is shown to demethylate DNA adenine methylation (6mA) preferentially from single-stranded or unpaired DNA, while its demethylase activity and function in the chromatin context are unclear. RESULTS: Here, we find that loss-of-function of the rice ALKBH1 gene leads to increased 6mA in the R-loop regions of the genome but has a limited effect on the overall 6mA level. However, in the context of mixed tissues, rather than on individual loci, the ALKBH1 mutation or overexpression mainly affects the expression of genes with a specific combination of chromatin modifications in the body region marked with H3K4me3 and H3K27me3 but depleted of DNA CG methylation. In the similar context of mixed tissues, further analysis reveals that the ALKBH1 protein preferentially binds to genes marked by the chromatin signature and has a function to maintain a high H3K4me3/H3K27me3 ratio by impairing the binding of Polycomb repressive complex 2 (PRC2) to the targets, which is required for both the basal and stress-induced expression of the genes. CONCLUSION: Our findings unravel a function of ALKBH1 to control the balance between the antagonistic histone methylations for gene activity and provide insight into the regulatory mechanism of PRC2-mediated H3K27me3 deposition within the gene body region.


Subject(s)
Oryza , Protein Binding , AlkB Homolog 1, Histone H2a Dioxygenase/genetics , AlkB Homolog 1, Histone H2a Dioxygenase/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oryza/enzymology , Oryza/genetics , Oryza/growth & development , Mutation , Histones/metabolism , Chromatin
SELECTION OF CITATIONS
SEARCH DETAIL
...