Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.122
1.
Sci Rep ; 14(1): 12665, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830927

Quantum dots, which won the Nobel Prize in Chemistry, have recently gained significant attention in precision medicine due to their unique properties, such as size-tunable emission, high photostability, efficient light absorption, and vibrant luminescence. Consequently, there is a growing demand to identify new types of quantum dots from various sources and explore their potential applications as stimuli-responsive biosensors, biomolecular imaging probes, and targeted drug delivery agents. Biomass-waste-derived carbon quantum dots (CQDs) are an attractive alternative to conventional QDs, which often require expensive and toxic precursors, as they offer several merits in eco-friendly synthesis, preparation from renewable sources, and cost-effective production. In this study, we evaluated three CQDs derived from biomass waste for their potential application as non-toxic bioimaging agents in various cell lines, including human dermal fibroblasts, HeLa, cardiomyocytes, induced pluripotent stem cells, and an in-vivo medaka fish (Oryzias latipes) model. Confocal microscopic studies revealed that CQDs could assist in visualizing inflammatory processes in the cells, as they were taken up more by cells treated with tumor necrosis factor-α than untreated cells. In addition, our quantitative real-time PCR gene expression analysis has revealed that citric acid-based CQDs can potentially reduce inflammatory markers such as Interleukin-6. Our studies suggest that CQDs have potential as theragnostic agents, which can simultaneously identify and modulate inflammatory markers and may lead to targeted therapy for immune system-associated diseases.


Biomass , Carbon , Fluorescent Dyes , Inflammation , Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Inflammation/metabolism , Oryzias , Tumor Necrosis Factor-alpha/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects
2.
Zoolog Sci ; 41(3): 251-256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38809863

The east coast of the Indochinese Peninsula is a well-known transition zone from subtropical to tropical systems, yet only a small number of studies have been conducted on the biogeography and phylogeography of aquatic organisms in this region. The Hau Giang medaka, Oryzias haugiangensis, was originally described from the Mekong Delta in southern Vietnam, and later reported also from southeastern Thailand, west of the Mekong Delta region. However, the species' full geographic range and population genetic structures remain unknown. Field surveys showed a widespread distribution of this species along the east coast of the Indochinese Peninsula, as far as northern Vietnam. A mitochondrial gene phylogeny and population genetic structure analysis using genome-wide single nucleotide polymorphisms revealed that the populations of O. haugiangensis are highly structuralized along the east coast of Vietnam, with the southernmost Mekong Delta population clearly separated from three populations north of central Vietnam. Further field collections are necessary to determine the boundary between the southern and northern populations, and the presence or absence of a hybrid zone.


Animal Distribution , Oryzias , Animals , Vietnam , Oryzias/genetics , Phylogeny , Genetic Variation , Polymorphism, Single Nucleotide , Genetics, Population
3.
Chemosphere ; 358: 142163, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697572

Diphenhydramine (DPH) is an antihistamine drug. It has been frequently detected in the environment, because it is not completely degraded in wastewater treatment plants. Recent studies have shown the adverse effects of DPH exposure to various aquatic organisms; however, its chronic effects on fish have been poorly elucidated. In this study, several pairs of mature Japanese medaka (Oryzias latipes) were exposed to DPH for a long period to determine the effects of DPH exposure on the subsequent generations, number of spawned and fertilized eggs, expression of sex-related genes, feeding behavior, embryo development, hatching rate, malformations among the hatched larvae, and mortality rate. The number of spawned eggs significantly decreased, when the parent fish were continuously exposed to 31.6 µg/L DPH for over 46 days. DPH exposure also altered the feeding behavior of medaka individuals, and increased the larval mortality rate. The effects of DPH exposure to fish may occur to some extent in the actual aquatic environment, although the risk evaluations in the field are limited.


Diphenhydramine , Oryzias , Reproduction , Water Pollutants, Chemical , Animals , Oryzias/physiology , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Diphenhydramine/toxicity , Male , Female , Larva/drug effects , Feeding Behavior/drug effects
4.
Environ Toxicol Pharmacol ; 108: 104474, 2024 Jun.
Article En | MEDLINE | ID: mdl-38763435

Antiepileptic drugs, such as phenytoin, are often leaked into aquatic systems through sewage facilities due to their low metabolic rate. Fish, such as the Japanese medaka (Oryzias latipes), demonstrate abnormal swimming behavior such as equilibrium abnormalities, rotational behavior, and vertical swimming, when exposed to phenytoin. Therefore, it is hypothesized that predator avoidance may be hindered. This study aimed to investigate the effects of phenytoin exposure-induced behavioral abnormalities in predator avoidance in Japanese medaka. The results showed that individuals with behavioral abnormalities had a reduced ability to avoid danger. Furthermore, the fish demonstrated a delayed recognition reaction to approaching predators. Additionally, predatory fish, such as silver pike characin (Ctenolucius hujeta), were more likely to prey upon abnormal individuals. In conclusion, the fish exposed to phenytoin demonstrated behavioral changes that increased its predation risk. This study is the first to determine the effects of behavioral abnormalities in Japanese medaka which was induced after phenytoin exposure on predator risk avoidance.


Anticonvulsants , Behavior, Animal , Oryzias , Phenytoin , Predatory Behavior , Water Pollutants, Chemical , Animals , Phenytoin/toxicity , Oryzias/physiology , Anticonvulsants/toxicity , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Predatory Behavior/drug effects , Avoidance Learning/drug effects
5.
Proc Natl Acad Sci U S A ; 121(22): e2316459121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38781215

Adult male animals typically court and attempt to mate with females, while attacking other males. Emerging evidence from mice indicates that neurons expressing the estrogen receptor ESR1 in behaviorally relevant brain regions play a central role in mediating these mutually exclusive behavioral responses to conspecifics. However, the findings in mice are unlikely to apply to vertebrates in general because, in many species other than rodents and some birds, androgens-rather than estrogens-have been implicated in male behaviors. Here, we report that male medaka (Oryzias latipes) lacking one of the two androgen receptor subtypes (Ara) are less aggressive toward other males and instead actively court them, while those lacking the other subtype (Arb) are less motivated to mate with females and conversely attack them. These findings indicate that, in male medaka, the Ara- and Arb-mediated androgen signaling pathways facilitate appropriate behavioral responses, while simultaneously suppressing inappropriate responses, to males and females, respectively. Notably, males lacking either receptor retain the ability to discriminate the sex of conspecifics, suggesting a defect in the subsequent decision-making process to mate or fight. We further show that Ara and Arb are expressed in intermingled but largely distinct populations of neurons, and stimulate the expression of different behaviorally relevant genes including galanin and vasotocin, respectively. Collectively, our results demonstrate that male teleosts make adaptive decisions to mate or fight as a result of the activation of one of two complementary androgen signaling pathways, depending on the sex of the conspecific that they encounter.


Androgens , Oryzias , Receptors, Androgen , Sexual Behavior, Animal , Signal Transduction , Animals , Male , Oryzias/metabolism , Oryzias/physiology , Sexual Behavior, Animal/physiology , Female , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Androgens/metabolism , Aggression/physiology
6.
Zoolog Sci ; 41(3): 263-274, 2024 Jun.
Article En | MEDLINE | ID: mdl-38809865

cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.


Oryzias , Steroid 21-Hydroxylase , Animals , Oryzias/genetics , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/metabolism , Female , Male , Glucocorticoids/metabolism , Hyperplasia/genetics , Hyperplasia/veterinary , Hydrocortisone/metabolism , Adrenal Hyperplasia, Congenital/genetics , Adrenal Hyperplasia, Congenital/veterinary , Mutation , Fish Diseases/genetics , Larva/genetics , Larva/metabolism
7.
Zoolog Sci ; 41(3): 314-322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38809870

Formation of the synaptonemal complex (SC) is a prerequisite for proper recombination and chromosomal segregation during meiotic prophase I. One mechanism that ensures SC formation is chromosomal movement, which is driven by the force derived from cytoskeletal motors. Here, we report the phenotype of medaka mutants lacking the telomere repeat binding bouquet formation protein 1 (TERB1), which, in combination with the SUN/KASH protein, mediates chromosomal movement by connecting telomeres and cytoskeletal motors. Mutations in the terb1 gene exhibit defects in SC formation in medaka. Although SC formation was initiated, as seen by the punctate lateral elements and fragmented transverse filaments, it was not completed in the terb1 mutant meiocytes. The mutant phenotype further revealed that the introduction of double strand breaks was independent of synapsis completion. In association with these phenotypes, meiocytes in both the ovaries and testes exhibited an aberrant arrangement of homologous chromosomes. Interestingly, although oogenesis halted at the zygotene-like stage in terb1 mutant, testes continued to produce sperm-like cells with aberrant DNA content. This indicates that the mechanism of meiotic checkpoint is sexually different in medaka, similar to the mammalian checkpoint in which oogenesis proceeds while spermatogenesis is arrested. Moreover, our results suggest that spermatogenesis is mechanistically dissociable from meiosis.


Gametogenesis , Mutation , Oryzias , Synaptonemal Complex , Animals , Oryzias/genetics , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism , Male , Gametogenesis/genetics , Female , Meiosis , Fish Proteins/genetics , Fish Proteins/metabolism
8.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38599405

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Carbon , Copper , Oryzias , Salinity , Water Pollutants, Chemical , Copper/toxicity , Copper/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Carbon/metabolism , Oryzias/metabolism , Oryzias/physiology , Bioaccumulation
9.
Article En | MEDLINE | ID: mdl-38663833

Disruption of the thyroid hormone system by synthetic chemicals is gaining attention owing to its potential negative effects on organisms. In this study, the effects of the dio-inhibitor iopanoic acid (IOP) on the levels of thyroid hormone and related gene expression, swim bladder inflation, and swimming performance were investigated in Japanese medaka. Iopanoic acid exposure suppressed thyroid-stimulating hormone ß (tshß), tshß-like, iodotyronin deiodinase 1 (dio1), and dio2 expression, and increased T4 and T3 levels. In addition, IOP exposure inhibited swim bladder inflation, reducing swimming performance. Although adverse outcome pathways of thyroid hormone disruption have been developed using zebrafish, no adverse outcome pathways have been developed using Japanese medaka. This study confirmed that IOP inhibits dio expression (a molecular initiating event), affects T3 and T4 levels (a key event), and reduces swim bladder inflation (a key event) and swimming performance (an adverse outcome) in Japanese medaka.


Air Sacs , Iopanoic Acid , Oryzias , Swimming , Thyroid Hormones , Animals , Oryzias/physiology , Air Sacs/drug effects , Air Sacs/metabolism , Thyroid Hormones/metabolism , Thyroid Hormones/blood , Iopanoic Acid/toxicity , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects , Thyroxine/blood , Triiodothyronine/blood , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism
10.
Aquat Toxicol ; 271: 106927, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643640

As awareness of BPA's health risks has increased, many countries and regions have implemented strict controls on its use. Consequently, bisphenol analogues like BPF and BPAF are being increasingly used as substitutes. However, these compounds are also becoming increasingly prevalent in the environment due to production, use and disposal processes. The oceans act as a repository for various pollutants, and recent studies have revealed the extensive presence of bisphenols (BPs, including BPA, BPF, BPAF, etc.) in the marine environment, posing numerous health hazards to marine wildlife. Nevertheless, the reproductive toxicity of these chemicals on marine fish is not comprehensively comprehended yet. Thus, the histological features of the gonads and the gene expression profiles of HPG (Hypothalamic-Pituitary-Gonadal) axis-related genes in marine medaka (Oryzias melastigma) were studied after exposure to single and combined BPs for 70 days. The effects of each exposure group on spawning, embryo fertilization, and hatching in marine medaka were also assessed. Furthermore, the impacts of each exposure group on the genes related to methylation in the F2 and F3 generations were consistently investigated. BPs exposure was found to cause follicular atresia, irregular oocytes, and empty follicles in the ovary; but no significant lesions in the testis were observed. The expression of several HPG axis genes, including cyp19b, 17ßhsd, 3ßhsd, and fshr, resulted in significant changes compared to the control group. The quantity of eggs laid and fertilization rate decreased in all groups treated with BPs, with the BPAF-treated group showing a notable reduction in the number of eggs laid. Additionally, the hatching rate showed a more significant decline in the BPF-treated group. The analysis of methylated genes in the offspring of bisphenol-treated groups revealed significant changes in the expression of genes including amh, dnmt1, dnmt3ab, mbd2, and mecp2, indicating a potential transgenerational impact of bisphenols on phenotype through epigenetic modifications. Overall, the potential detrimental impact of bisphenol on the reproduction of marine medaka emphasizes the need for caution in considering the use of BPAF and BPF as substitutes.


Benzhydryl Compounds , Oryzias , Phenols , Reproduction , Water Pollutants, Chemical , Animals , Oryzias/genetics , Oryzias/physiology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Water Pollutants, Chemical/toxicity , Male , Reproduction/drug effects , Female , Gonads/drug effects
11.
Environ Toxicol Chem ; 43(6): 1339-1351, 2024 Jun.
Article En | MEDLINE | ID: mdl-38661510

Pharmaceuticals are found in aquatic environments due to their widespread use and environmental persistence. To date, a range of impairments to aquatic organisms has been reported with exposure to pharmaceuticals; however, further comparisons of their impacts across different species on the molecular level are needed. In the present study, the crustacean Daphnia magna and the freshwater fish Japanese medaka, common model organisms in aquatic toxicity, were exposed for 48 h to the common analgesics acetaminophen (ACT), diclofenac (DCF), and ibuprofen (IBU) at sublethal concentrations. A targeted metabolomic-based approach, using liquid chromatography-tandem mass spectrometry to quantify polar metabolites from individual daphnids and fish was used. Multivariate analyses and metabolite changes identified differences in the metabolite profile for D. magna and medaka, with more metabolic perturbations for D. magna. Pathway analyses uncovered disruptions to pathways associated with protein synthesis and amino acid metabolism with D. magna exposure to all three analgesics. In contrast, medaka exposure resulted in disrupted pathways with DCF only and not ACT and IBU. Overall, the observed perturbations in the biochemistry of both organisms were different and consistent with assessments using other endpoints reporting that D. magna is more sensitive to pollutants than medaka in short-term studies. Our findings demonstrate that molecular-level responses to analgesic exposure can reflect observations of other endpoints, such as immobilization and mortality. Thus, environmental metabolomics can be a valuable tool for selecting sentinel species for the biomonitoring of freshwater ecosystems while also uncovering mechanistic information. Environ Toxicol Chem 2024;43:1339-1351. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Acetaminophen , Daphnia , Diclofenac , Ibuprofen , Metabolomics , Oryzias , Water Pollutants, Chemical , Animals , Oryzias/metabolism , Daphnia/drug effects , Daphnia/metabolism , Acetaminophen/toxicity , Ibuprofen/toxicity , Water Pollutants, Chemical/toxicity , Diclofenac/toxicity , Daphnia magna
12.
Chemosphere ; 357: 141967, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615950

The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.


DDT , Endocrine Disruptors , Oryzias , Reproduction , Water Pollutants, Chemical , Animals , Oryzias/physiology , DDT/toxicity , Female , Reproduction/drug effects , Endocrine Disruptors/toxicity , Water Pollutants, Chemical/toxicity , Reproductive Health , Male
13.
Chemosphere ; 357: 142103, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653400

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.


Benzhydryl Compounds , Endocrine Disruptors , Oryzias , Phenols , Reproduction , Salinity , Water Pollutants, Chemical , Animals , Oryzias/physiology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Water Pollutants, Chemical/toxicity , Female , Reproduction/drug effects , Male , Endocrine Disruptors/toxicity , Behavior, Animal/drug effects , Ovary/drug effects , Spermatozoa/drug effects
14.
Aquat Toxicol ; 270: 106885, 2024 May.
Article En | MEDLINE | ID: mdl-38479125

Rising carbon dioxide (CO2) in aquatic ecosystems due to climate change is a challenge for aquatic ectotherms. We examined whether interindividual variation in behavioural responses to CO2 could predict how a teleost fish would respond to elevated CO2 for multiple phenotypic and molecular traits. To this end, we first quantified behavioural responses of individuals exposed to acute elevated CO2, and used these to assign individuals as either high or low responders relative to the population mean. Subsequently, we exposed both high and low responders to elevated CO2 for 6 weeks and quantified the effect on body condition, behaviour, and mRNA transcript responses of gill and liver genes associated with relevant physiological processes. Generally, we found few relationships between the phenotypic groups and body condition and behaviour following the CO2 exposure period; however, stark differences between the phenotypic groups with respect to gene transcripts from each tissue related to various processes were found, mostly independent of CO2 exposure. The most pronounced changes were in the gill transcripts related to acid-base regulation, suggesting that the observed behavioural variation used to assign fish to phenotypic groups may have an underlying molecular origin. Should the link between behaviour and gene transcripts be shown to have a fitness advantage and be maintained across generations, interindividual variation in behavioural responses to acute CO2 exposure may be a viable and non-invasive tool to predict future population responses to elevated aquatic CO2.


Oryzias , Water Pollutants, Chemical , Animals , Oryzias/genetics , Carbon Dioxide/toxicity , RNA, Messenger/genetics , Ecosystem , Water Pollutants, Chemical/toxicity
15.
Sci Data ; 11(1): 322, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548787

Oryzias sinensis, also known as Chinese medaka or Chinese ricefish, is a commonly used animal model for aquatic environmental assessment in the wild as well as gene function validation or toxicology research in the lab. Here, a high-quality chromosome-level genome assembly of O. sinensis was generated using single-tube long fragment read (stLFR) reads, Nanopore long-reads, and Hi-C sequencing data. The genome is 796.58 Mb, and a total of 712.17 Mb of the assembled sequences were anchored to 23 pseudo-chromosomes. A final set of 22,461 genes were annotated, with 98.67% being functionally annotated. The Benchmarking Universal Single-Copy Orthologs (BUSCO) benchmark of genome assembly and gene annotation reached 95.1% (93.3% single-copy) and 94.6% (91.7% single-copy), respectively. Furthermore, we also use ATAC-seq to uncover chromosome transposase-accessibility as well as related genome area function enrichment for Oryzias sinensis. This study offers a new improved foundation for future genomics research in Chinese medaka.


Oryzias , Animals , Chromosomes/genetics , Genome , Genomics , Molecular Sequence Annotation , Oryzias/genetics , Phylogeny
16.
PLoS One ; 19(3): e0300981, 2024.
Article En | MEDLINE | ID: mdl-38517842

Taste receptor type 1 (T1r) proteins are responsible for recognizing nutrient chemicals in foods. In humans, T1r2/T1r3 and T1r1/T1r3 heterodimers serve as the sweet and umami receptors that recognize sugars or amino acids and nucleotides, respectively. T1rs are conserved among vertebrates, and T1r2a/T1r3 from medaka fish is currently the only member for which the structure of the ligand-binding domain (LBD) has been solved. T1r2a/T1r3 is an amino acid receptor that recognizes various l-amino acids in its LBD as observed with other T1rs exhibiting broad substrate specificities. Nevertheless, the range of chemicals that are recognized by T1r2a/T1r3LBD has not been extensively explored. In the present study, the binding of various chemicals to medaka T1r2a/T1r3LBD was analyzed. A binding assay for amino acid derivatives verified the specificity of this protein to l-α-amino acids and the importance of α-amino and carboxy groups for receptor recognition. The results further indicated the significance of the α-hydrogen for recognition as replacing it with a methyl group resulted in a substantially decreased affinity. The binding ability to the protein was not limited to proteinogenic amino acids, but also to non-proteinogenic amino acids, such as metabolic intermediates. Besides l-α-amino acids, no other chemicals showed significant binding to the protein. These results indicate that all of the common structural groups of α-amino acids and their geometry in the l-configuration are recognized by the protein, whereas a wide variety of α-substituents can be accommodated in the ligand binding sites of the LBDs.


Oryzias , Taste , Animals , Humans , Receptors, G-Protein-Coupled/metabolism , Oryzias/metabolism , Receptors, Amino Acid , Ligands , Amino Acids
17.
Sci Total Environ ; 927: 171448, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38453088

Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.


Embryo, Nonmammalian , Oryzias , Parabens , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical , Animals , Oryzias/embryology , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian/drug effects , Parabens/toxicity , Teratogens/toxicity , Toxicity Tests
18.
Commun Biol ; 7(1): 388, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38553567

In seasonally breeding mammals and birds, the production of the hormones that regulate reproduction (gonadotropins) is controlled by a complex pituitary-brain-pituitary pathway. Indeed, the pituitary thyroid-stimulating hormone (TSH) regulates gonadotropin expression in pituitary gonadotropes, via dio2-expressing tanycytes, hypothalamic Kisspeptin, RFamide-related peptide, and gonadotropin-releasing hormone neurons. However, in fish, how seasonal environmental signals influence gonadotropins remains unclear. In addition, the seasonal regulation of gonadotrope (gonadotropin-producing cell) proliferation in the pituitary is, to the best of our knowledge, not elucidated in any vertebrate group. Here, we show that in the vertebrate model Japanese medaka (Oryzias latipes), a long day seasonally breeding fish, photoperiod (daylength) not only regulates hormone production by the gonadotropes but also their proliferation. We also reveal an intra-pituitary pathway that regulates gonadotrope cell number and hormone production. In this pathway, Tsh regulates gonadotropes via folliculostellate cells within the pituitary. This study suggests the existence of an alternative regulatory mechanism of seasonal gonadotropin production in fish.


Oryzias , Animals , Oryzias/metabolism , Seasons , Reproduction/physiology , Vertebrates/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropins/metabolism , Mammals , Thyrotropin/metabolism
19.
Chemosphere ; 353: 141643, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447901

There is global concern that microplastics may harm aquatic life. Here, we examined the effects of fine polystyrene microplastics (PS-MPs, 2-µm diameter, 0.1 mg/L, 2.5 × 107 particles/L) on the behavior and the microbiome (linked to brain-gut interaction) of a fish model using medaka, Oryzias latipes. We found that shoaling behavior was reduced in PS-MP-exposed medaka compared with control fish during the exposure period, but it recovered during a depuration period. There was no difference in swimming speed between the PS-MP-exposed and control groups during the exposure period. Analysis of the dominant bacterial population (those comprising ≥1% of the total bacterial population) in the gut of fish showed that exposure to PS-MPs tended to increase the relative abundance of the phylum Fusobacteria and the genus Vibrio. Furthermore, structural-equation modeling of gut bacteria on the basis of machine-learning data estimated strong relationship involved in the reduction of the functional bacterial species of minority (<1% of the total bacterial population) such as the genera Muribaculum (an undefined role), Aquaspirillum (a candidate for nitrate metabolism and magnetotactics), and Clostridium and Phascolarctobacterium (potential producers of short-chain fatty acids, influencing behavior by affecting levels of neurotransmitters) as a group of gut bacteria in association with PS-MP exposure. Our results suggest that fish exposure to fine microplastics may cause dysbiosis and ultimately cause social behavior disorders linked to brain-gut interactions. This effect could be connected to reduction of fish fitness in the ecosystem and reduced fish survival.


Oryzias , Water Pollutants, Chemical , Animals , Polystyrenes/toxicity , Polystyrenes/analysis , Microplastics/toxicity , Microplastics/analysis , Plastics , Dysbiosis , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
20.
Development ; 151(5)2024 Mar 01.
Article En | MEDLINE | ID: mdl-38471539

Gametogenesis is the process through which germ cells differentiate into sexually dimorphic gametes, eggs and sperm. In the teleost fish medaka (Oryzias latipes), a germ cell-intrinsic sex determinant, foxl3, triggers germline feminization by activating two genetic pathways that regulate folliculogenesis and meiosis. Here, we identified a pathway involving a dome-shaped microtubule structure that may be the basis of oocyte polarity. This structure was first established in primordial germ cells in both sexes, but was maintained only during oogenesis and was destabilized in differentiating spermatogonia under the influence of Sertoli cells expressing dmrt1. Although foxl3 was dispensable for this pathway, dazl was involved in the persistence of the microtubule dome at the time of gonocyte development. In addition, disruption of the microtubule dome caused dispersal of bucky ball RNA, suggesting the structure may be prerequisite for the Balbiani body. Collectively, the present findings provide mechanistic insight into the establishment of sex-specific polarity through the formation of a microtubule structure in germ cells, as well as clarifying the genetic pathways implementing oocyte-specific characteristics.


Oryzias , Animals , Female , Male , Oryzias/genetics , Semen , Germ Cells/metabolism , Gametogenesis , Oogenesis/physiology
...