Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.118
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273648

ABSTRACT

Skeletal disorders encompass a wide array of conditions, many of which are associated with short stature. Among these, Desbuquois dysplasia is a rare but severe condition characterized by profound dwarfism, distinct facial features, joint hypermobility with multiple dislocations, and unique vertebral and metaphyseal anomalies. Desbuquois dysplasia is inherited in an autosomal recessive manner, with both the DBQD1 (MIM 251450) and DBQD2 (MIM 615777) forms resulting from biallelic mutations. Specifically, DBQD1 is associated with homozygous or compound heterozygous mutations in the CANT1 gene, while DBQD2 can result from mutations in either the CANT1 or XYLT1 genes. This review synthesizes the findings of 111 published case reports, including 54 cases of DBQD1, 39 cases of DBQD2, and 14 cases of the Kim variant (DDKV). Patients in this cohort had a median birth weight of 2505 g, a median length of 40 cm, and a median occipitofrontal circumference of 33 cm. The review highlights the phenotypic variations across Desbuquois dysplasia subtypes, particularly in facial characteristics, joint dislocations, and bone deformities. Genetic analyses revealed a considerable diversity in mutations, with over 35% of cases involving missense mutations, primarily affecting the CANT1 gene. Additionally, approximately 60% of patients had a history of parental consanguinity, indicating a potential genetic predisposition in certain populations. The identified mutations included deletions, insertions, and nucleotide substitutions, many of which resulted in premature stop codons and the production of truncated, likely nonfunctional proteins. These findings underscore the genetic and clinical complexity of Desbuquois dysplasia, highlighting the importance of early diagnosis and the potential for personalized therapeutic approaches. Continued research is essential to uncover the underlying mechanisms of this disorder and improve outcomes for affected individuals through targeted treatments.


Subject(s)
Dwarfism , Mutation , Humans , Dwarfism/genetics , Phenotype , Joint Instability/genetics , Joint Dislocations/genetics , Joint Dislocations/pathology , Hydrolases/genetics , Female , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Male , Nucleotidases , Ossification, Heterotopic , Polydactyly , Craniofacial Abnormalities
2.
JCI Insight ; 9(17)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088268

ABSTRACT

Cantú syndrome is a multisystem disorder caused by gain-of-function (GOF) mutations in KCNJ8 and ABCC9, the genes encoding the pore-forming inward rectifier Kir6.1 and regulatory sulfonylurea receptor SUR2B subunits, respectively, of vascular ATP-sensitive K+ (KATP) channels. In this study, we investigated changes in the vascular endothelium in mice in which Cantú syndrome-associated Kcnj8 or Abcc9 mutations were knocked in to the endogenous loci. We found that endothelium-dependent dilation was impaired in small mesenteric arteries from Cantú mice. Loss of endothelium-dependent vasodilation led to increased vasoconstriction in response to intraluminal pressure or treatment with the adrenergic receptor agonist phenylephrine. We also found that either KATP GOF or acute activation of KATP channels with pinacidil increased the amplitude and frequency of wave-like Ca2+ events generated in the endothelium in response to the vasodilator agonist carbachol. Increased cytosolic Ca2+ signaling activity in arterial endothelial cells from Cantú mice was associated with elevated mitochondrial [Ca2+] and enhanced reactive oxygen species (ROS) and peroxynitrite levels. Scavenging intracellular or mitochondrial ROS restored endothelium-dependent vasodilation in the arteries of mice with KATP GOF mutations. We conclude that mitochondrial Ca2+ overload and ROS generation, which subsequently leads to nitric oxide consumption and peroxynitrite formation, cause endothelial dysfunction in mice with Cantú syndrome.


Subject(s)
Endothelium, Vascular , Hypertrichosis , Mitochondria , Osteochondrodysplasias , Peroxynitrous Acid , Reactive Oxygen Species , Vasodilation , Animals , Mice , Hypertrichosis/genetics , Hypertrichosis/metabolism , Reactive Oxygen Species/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Peroxynitrous Acid/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Mitochondria/metabolism , Vasodilation/genetics , Sulfonylurea Receptors/metabolism , Sulfonylurea Receptors/genetics , Calcium/metabolism , Male , Vasoconstriction , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , KATP Channels/metabolism , KATP Channels/genetics , Humans , Disease Models, Animal , Gain of Function Mutation , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Cardiomegaly/metabolism , Cardiomegaly/genetics
3.
Curr Med Sci ; 44(4): 735-740, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39028414

ABSTRACT

OBJECTIVE: The Vickers ligament is thought to hinder the growth of palmar ulnar radius by tethering the lunate to the radius, leading to Madelung deformity. The purpose of this study was to clarify the nature of the Vickers ligament and investigate its pathogenesis in Madelung deformities based on our observation of the Vickers ligament. METHODS: All 22 patients (33 wrists) with Madelung deformities treated surgically between 2018 and 2022 were included. The diagnosis was confirmed radiographically in all patients. The three-dimensional computed tomography (3D-CT) data of 16 patients (19 wrists) were available. Magnetic resonance imaging (MRI) data were available for 9 patients (14 wrists). Wrist arthroscopy was used in 4 patients. The Vickers ligament was resected and submitted for histopathological examination in 8 patients. Radiographic outcomes, 3D-CT, MRI, arthroscopy, surgical findings, and histopathology of the Vickers ligament were evaluated. RESULTS: The 3D-CT revealed that the Vickers ligament originated in the metaphysis and formed a metaphyseal defect at the palmar ulnar radius. In the sequential MR coronal images, the Vickers ligament could be divided into 3 branches, extending to the lunate, triquetrum and ulnar styloid. Arthroscopy and surgical findings revealed that the nature of the Vickers ligament was the stretched palmar ligament of the wrist. The histopathology results revealed ligamentous tissue and fibrocartilaginous metaplasia with a structure similar to that of the triangular fibrocartilage complex (TFCC). CONCLUSIONS: The Vickers ligament is not a separate aberrant ligament. The nature of the Vickers ligament is a combination of the stretched TFCC ligament (palmar radioulnar ligament, ulnotriquetral ligament and ulnolunate ligament) and radiolunate ligament. The possible pathogenesis of Madelung deformity might be focal early epiphyseal closure at the middle part of the sigmoid notch, which leads to focal growth retardation of the radius and pulls palmar ligaments proximally to form the Vickers ligament.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Adult , Adolescent , Tomography, X-Ray Computed , Wrist Joint/diagnostic imaging , Wrist Joint/pathology , Wrist Joint/abnormalities , Young Adult , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/pathology , Arthroscopy , Child , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/pathology , Imaging, Three-Dimensional , Radius/diagnostic imaging , Radius/abnormalities , Radius/pathology , Middle Aged , Growth Disorders
4.
Orphanet J Rare Dis ; 19(1): 245, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956600

ABSTRACT

BACKGROUND: Multiple epiphyseal dysplasia-4 (MED-4, MIM 226900) is a rare autosomal recessive disease characterized by disproportionate height and early onset osteoarthritis of the lower limbs. MED-4 is caused by homozygous or compound heterozygous pathogenic variants in the SLC26A2 gene. However, the underlying pathogenic mechanisms in chondrocytes remains unknown. This study aimed to identify the pathogenic variants within a MED-4 family and explore the molecular etiology of this condition in human primary chondrocyte cells. METHODS: Clinical data were recorded and peripheral blood samples were collected for analysis. Whole exome sequencing (WES) and bioinformatic analyses were performed to determine causative variants. Wild-type SLC26A2 and corresponding mutant expression plasmids were constructed and transfected into human primary chondrocytes. The expression and subcellular distribution of SLC26A2 protein in chondrocytes were detected by immunoblotting and immunofluorescence. Effects of these variants on chondrocytes viability and apoptosis were measured by Cell Counting Kit-8 (CCK-8) assay. Expression of genes related to cartilage homeostasis was subsequently analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: We identified two compound heterozygous variants c.1020_1022delTGT(p.Val341del) and c.1262 T > C(p.Ile421Thr) in the SLC26A2 gene in the patients. Mutant SLC26A2Val341del and SLC26A2Ile421Thr proteins were distributed in relatively few cells and were observed only within the nucleus. The viability of chondrocytes with the SLC26A2 variant group was similar to the wild-type (WT) group. However, the protein expressions of SLC26A2Val341del and SLC26A2Ile421Thr were decreased compared with SLC26A2WT. Expression levels of matrix metallopeptidase 13 (MMP13), α-1 chain of type X collagen (COL10A1), and Runt-related transcription factor 2 (RUNX2) were significantly decreased in the variant group. However, aggrecan (ACAN) expression was higher in the variant group than the WT group. CONCLUSIONS: Overall, our data demonstrate that the variants p.Val341del and p.Ile421Thr in SLC26A2 cause MED-4 and that these two variants promote chondrocyte proliferation while inhibiting chondrocyte differentiation.


Subject(s)
Chondrocytes , Osteochondrodysplasias , Sulfate Transporters , Humans , Chondrocytes/metabolism , Chondrocytes/pathology , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Male , Female , Homeostasis/genetics , Exome Sequencing
5.
Function (Oxf) ; 5(5)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38984978

ABSTRACT

Cantú syndrome (CS), a multisystem disease with a complex cardiovascular phenotype, is caused by gain-of-function (GoF) variants in the Kir6.1/SUR2 subunits of ATP-sensitive potassium (KATP) channels and is characterized by low systemic vascular resistance, as well as tortuous, dilated, vessels, and decreased pulse-wave velocity. Thus, CS vascular dysfunction is multifactorial, with both hypomyotonic and hyperelastic components. To dissect whether such complexities arise cell autonomously within vascular smooth muscle cells (VSMCs) or as secondary responses to the pathophysiological milieu, we assessed electrical properties and gene expression in human induced pluripotent stem cell-derived VSMCs (hiPSC-VSMCs), differentiated from control and CS patient-derived hiPSCs, and in native mouse control and CS VSMCs. Whole-cell voltage clamp of isolated aortic and mesenteric arterial VSMCs isolated from wild-type (WT) and Kir6.1[V65M] (CS) mice revealed no clear differences in voltage-gated K+ (Kv) or Ca2+ currents. Kv and Ca2+ currents were also not different between validated hiPSC-VSMCs differentiated from control and CS patient-derived hiPSCs. While pinacidil-sensitive KATP currents in control hiPSC-VSMCs were similar to those in WT mouse VSMCs, they were considerably larger in CS hiPSC-VSMCs. Under current-clamp conditions, CS hiPSC-VSMCs were also hyperpolarized, consistent with increased basal K conductance and providing an explanation for decreased tone and decreased vascular resistance in CS. Increased compliance was observed in isolated CS mouse aortae and was associated with increased elastin mRNA expression. This was consistent with higher levels of elastin mRNA in CS hiPSC-VSMCs and suggesting that the hyperelastic component of CS vasculopathy is a cell-autonomous consequence of vascular KATP GoF. The results show that hiPSC-VSMCs reiterate expression of the same major ion currents as primary VSMCs, validating the use of these cells to study vascular disease. Results in hiPSC-VSMCs derived from CS patient cells suggest that both the hypomyotonic and hyperelastic components of CS vasculopathy are cell-autonomous phenomena driven by KATP overactivity within VSMCs .


Subject(s)
Hypertrichosis , Induced Pluripotent Stem Cells , KATP Channels , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Humans , Induced Pluripotent Stem Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Hypertrichosis/genetics , Hypertrichosis/metabolism , Hypertrichosis/physiopathology , Hypertrichosis/pathology , Animals , Mice , Myocytes, Smooth Muscle/metabolism , KATP Channels/genetics , KATP Channels/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteochondrodysplasias/physiopathology , Mutation , Cell Differentiation/genetics , Patch-Clamp Techniques , Cardiomegaly , Sulfonylurea Receptors
6.
Clin Genet ; 106(4): 476-482, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38837402

ABSTRACT

Microcephalic osteodysplastic primordial dwarfism type I (MOPDI) is a very rare and severe autosomal recessive disorder characterized by marked intrauterine growth retardation, skeletal dysplasia, microcephaly and brain malformations. MOPDI is caused by biallelic mutations in RNU4ATAC, a non-coding gene involved in U12-type splicing of 1% of the introns in the genome, which are recognized by their specific splicing consensus sequences. Here, we describe a unique observation of immunodeficiency in twin sisters with mild MOPDI, who harbor a novel n.108_126del mutation, encompassing part of the U4atac snRNA 3' stem-loop and Sm protein binding site, and the previously reported n.111G>A mutation. Interestingly, both twin sisters show mild B-cell anomalies, including low naive B-cell counts and increased memory B-cell and plasmablasts counts, suggesting partial and transitory blockage of B-cell maturation and/or excessive activation of naive B-cells. Hence, the localization of a mutation in stem II of U4atac snRNA, as observed in another RNU4ATAC-opathy with immunodeficiency, that is, Roifman syndrome (RFMN), is not required for the occurrence of an immune deficiency. Finally, we emphasize the importance of considering immunodeficiency in MOPDI management to reduce the risk of serious infectious episodes.


Subject(s)
B-Lymphocytes , Dwarfism , Fetal Growth Retardation , Microcephaly , Mutation , Osteochondrodysplasias , Phenotype , RNA, Small Nuclear , Humans , Female , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Microcephaly/genetics , Microcephaly/pathology , RNA, Small Nuclear/genetics , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Dwarfism/genetics , Dwarfism/pathology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Siblings , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/pathology
7.
Mol Genet Genomic Med ; 12(6): e2476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888203

ABSTRACT

BACKGROUND: The Triggering Receptor Expressed on Myeloid Cells 2 protein (TREM2) plays a crucial role in various biological processes, including osteoclast differentiation, and disease-associated microglia (DAM) activation to regulate neuroinflammation, and phagocytosis in the brain. Genetic variations in TREM2 are implicated in neurodegenerative disorders, such as Nasu-hakola disease (NHD), characterized by bone lesions, neuropsychiatric disorders, and early-onset dementia. METHODS: We studied 3 siblings with suspected NHD. Whole-exome sequencing was conducted on the proband to identify the possible genetic cause(s) and by Sanger sequencing to validate the identified variants in the two other affected siblings, a healthy sister, and the parents. RESULTS: We identified a novel homozygous deletion (c.549del; p.(Leu184Serfs*5)) in TREM2. Our literature review reveals 16 TREM2 mutations causing early-onset dementia and bone lesions. CONCLUSION: These findings, alongside previous research, elucidate the clinical spectrum of TREM2-related diseases, aiding accurate diagnosis and patient care. This knowledge is vital for understanding TREM2-dependent DAM and its involvement in the pathogenesis of neurodevelopmental disorders which can help to develop targeted therapies and improve outcomes for TREM2-affected individuals.


Subject(s)
Homozygote , Lipodystrophy , Membrane Glycoproteins , Osteochondrodysplasias , Receptors, Immunologic , Siblings , Subacute Sclerosing Panencephalitis , Female , Humans , Consanguinity , Lipodystrophy/genetics , Lipodystrophy/pathology , Membrane Glycoproteins/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Pedigree , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology
8.
Clin Genet ; 106(3): 360-366, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801004

ABSTRACT

Biallelic variants in PISD cause a phenotypic spectrum ranging from short stature with spondyloepimetaphyseal dysplasia (SEMD) to a multisystem disorder affecting eyes, ears, bones, and brain. PISD encodes the mitochondrial-localized enzyme phosphatidylserine decarboxylase. The PISD precursor is self-cleaved to generate a heteromeric mature enzyme that converts phosphatidylserine to the phospholipid phosphatidylethanolamine. We describe a 17-year-old male patient, born to unrelated healthy parents, with disproportionate short stature and SEMD, featuring platyspondyly, prominent epiphyses, and metaphyseal dysplasia. Trio genome sequencing revealed compound heterozygous PISD variants c.569C>T; p.(Ser190Leu) and c.799C>T; p.(His267Tyr) in the patient. Investigation of fibroblasts showed similar levels of the PISD precursor protein in both patient and control cells. However, patient cells had a significantly higher proportion of fragmented mitochondria compared to control cells cultured under basal condition and after treatment with 2-deoxyglucose that represses glycolysis and stimulates respiration. Structural data from the PISD orthologue in Escherichia coli suggest that the amino acid substitutions Ser190Leu and His267Tyr likely impair PISD's autoprocessing activity and/or phosphatidylethanolamine biosynthesis. Based on the data, we propose that the novel PISD p.(Ser190Leu) and p.(His267Tyr) variants likely act as hypomorphs and underlie the pure skeletal phenotype in the patient.


Subject(s)
Carboxy-Lyases , Mitochondria , Mutation, Missense , Osteochondrodysplasias , Humans , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Male , Mutation, Missense/genetics , Adolescent , Mitochondria/genetics , Mitochondria/pathology , Carboxy-Lyases/genetics , Alleles , Phenotype , Dwarfism/genetics , Dwarfism/pathology
9.
Eur J Med Genet ; 69: 104940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705458

ABSTRACT

Larsen of La Réunion Island syndrome (LRS) is an autosomal recessive condition associated with multiple large joint dislocations, clubfeet, severe dwarfism, and distinctive facial features. LRS is caused by a recurrent homozygous variant in B4GALT7 gene with a founder effect in La Réunion population. Proteoglycans (PG) that are a major component of the extracellular matrix, are composed of a core protein connected to a glycosaminoglycans side chain via a tetrasaccharide linker region. B4GALT7 encodes galactosyltransferase I, one of the enzymes involved in the biosynthesis of the linker region. Conditions caused by pathogenic biallelic variants in genes implicated in the synthesis of the tetrasaccharide linker of PG are known as linkeropathies. Prenatal features are rarely described in this group of chondrodysplasias. We present a series of 12 unpublished patients having LRS and describe the perinatal phenotype. All the patients had a prenatal growth restriction with brevity of limbs. The other features revealed by ultrasounds were increased nuchal translucency at 10-12 weeks of gestation (50 %), feet abnormalities (clubfeet or metatarsus varus) (25 %), dislocation affecting at least one large joint (elbow, knee, wrist) (25 %). Bilateral bowing of femora was noted for two fetuses. Fibular hypertrophy was noted for one fetus. Prenatal helical computed tomography (CT) performed in three pregnancies showed additional data such as bowing of the forearm bones, proximal radio-ulnar synostosis, or dislocation of large joints. Prenatal sonographic and helical CT findings led to the prenatal diagnosis of LRS in four patients. We confirm that the neonatal clinical picture of LRS has an important overlap with that reported in patients with B4GALT7 deficiency outside La Réunion Island and other linkeropathies. The core of the phenotypic spectrum combines low birth height, micromelia, hypermobility, dislocation of at least one large joint, facial features with prominent eyes, microstomia, depressed nasal bridge, and midface hypoplasia. Other clinical features include clubfeet (33%), bifid thumb in one patient, and cardiac abnormalities in two patients. Radiological findings include radio-ulnar synostosis (75%), metaphyseal flaring, precocious carpal ossification, and a Swedish key appearance of the proximal femora. Finally, we also report radiological features rarely described in B4GALT7-linkeropathies, including bowing of the femora and fibular hypertrophy. Our results confirm the phenotypic continuum of LRS within linkeropathies with some additional findings, including a high frequency of clubfeet usually described in B3GALT6-linkeropathies, the presence of congenital heart diseases usually described in B3GAT3-linkeropathies, and a high frequency of metaphyseal flaring usually reported in B3GALT6 or XITLT1-linkeropathies. This is the first study that describes the perinatal phenotype in a cohort of patients with LRS. This study can help improve the prenatal diagnosis of the linkeropathies and add this group of conditions to the differential diagnosis of chondrodysplasias with multiple dislocations. In view of the founder effect for LRS in La Réunion Island, this disease should be suspected in fetuses with growth restriction and micromelia. Thus in case of LOH which include B4GALT7 identified in SNP-array, we recommend performing a targeted Sanger sequencing for the recurrent mutation c.808C > T; p. (Arg270Cys).


Subject(s)
Galactosyltransferases , Osteochondrodysplasias , Phenotype , Humans , Female , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Male , Galactosyltransferases/genetics , Galactosyltransferases/metabolism , Infant, Newborn , Pregnancy
10.
Ther Adv Respir Dis ; 18: 17534666241253694, 2024.
Article in English | MEDLINE | ID: mdl-38803144

ABSTRACT

BACKGROUND: Given the rarity of tracheobronchopathia osteochondroplastica (TO), many young doctors in primary hospitals are unable to identify TO based on bronchoscopy findings. OBJECTIVES: To build an artificial intelligence (AI) model for differentiating TO from other multinodular airway diseases by using bronchoscopic images. DESIGN: We designed the study by comparing the imaging data of patients undergoing bronchoscopy from January 2010 to October 2022 by using EfficientNet. Bronchoscopic images of 21 patients with TO at Anhui Chest Hospital from October 2019 to October 2022 were collected for external validation. METHODS: Bronchoscopic images of patients with multinodular airway lesions (including TO, amyloidosis, tumors, and inflammation) and without airway lesions in the First Affiliated Hospital of Guangzhou Medical University were collected. The images were randomized (4:1) into training and validation groups based on different diseases and utilized for deep learning by convolutional neural networks (CNNs). RESULTS: We enrolled 201 patients with multinodular airway disease (38, 15, 75, and 73 patients with TO, amyloidosis, tumors, and inflammation, respectively) and 213 without any airway lesions. To find multinodular lesion images for deep learning, we utilized 2183 bronchoscopic images of multinodular lesions (including TO, amyloidosis, tumor, and inflammation) and compared them with images without any airway lesions (1733). The accuracy of multinodular lesion identification was 98.9%. Further, the accuracy of TO detection based on the bronchoscopic images of multinodular lesions was 89.2%. Regarding external validation (using images from 21 patients with TO), all patients could be diagnosed with TO; the accuracy was 89.8%. CONCLUSION: We built an AI model that could differentiate TO from other multinodular airway diseases (mainly amyloidosis, tumors, and inflammation) by using bronchoscopic images. The model could help young physicians identify this rare airway disease.


Subject(s)
Bronchoscopy , Osteochondrodysplasias , Predictive Value of Tests , Tracheal Diseases , Humans , Tracheal Diseases/diagnostic imaging , Tracheal Diseases/pathology , Tracheal Diseases/diagnosis , Middle Aged , Male , Female , Adult , Diagnosis, Differential , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Reproducibility of Results , Deep Learning , Aged , China , Image Interpretation, Computer-Assisted , Neural Networks, Computer , Artificial Intelligence
11.
Am J Med Genet A ; 194(8): e63601, 2024 08.
Article in English | MEDLINE | ID: mdl-38562122

ABSTRACT

Biallelic variants in RSPRY1 have been found to result in spondyloepimetaphyseal dysplasia. Two siblings presenting with short stature, facial dysmorphism, progressive vertebral defects, small epiphysis, cupping and fraying of metaphyses, brachydactyly, and short metatarsals harbored a homozygous missense variant c.1652G>A;p.(Cys551Tyr) in the RSPRY1 gene. The phenotype in our patients resembles spondyloepimetaphyseal dysplasia, Faden-Alkuraya type. Thus, our study provides further evidence to support the association of RSPRY1 variants with spondyloepimetaphyseal dysplasia. We observed joint dislocation as a novel clinical feature of this condition.


Subject(s)
Osteochondrodysplasias , Phenotype , Siblings , Child , Female , Humans , Homozygote , Mutation/genetics , Mutation, Missense/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteochondrodysplasias/diagnosis , Pedigree , DNA-Binding Proteins/genetics
12.
Am J Med Genet A ; 194(8): e63635, 2024 08.
Article in English | MEDLINE | ID: mdl-38634625

ABSTRACT

Mucopolysaccharidosis type 10 is caused by biallelic variants in ARSK, which encodes for a lysosomal sulfatase. To date, seven patients with a mild phenotype resembling spondyloepiphyseal dysplasia or multiple epiphyseal dysplasia have been described. In this report, we present two novel ARSK variants and report clinical and radiological findings of three patients. The patients' initial complaints were hip or knee pain and a waddling gait. All patients showed normal intelligence, normal hearing and eye examinations, and none had organomegaly. While typical dysostosis multiplex findings were not observed, mild platyspondyly with anterior beaking of some vertebral bodies, irregular vertebral endplates, wide ribs, inferior tapering of the ilea with a poorly developed acetabulum, irregularity of the central part of the femoral head, delayed ossification of the carpals were noted. Remarkably, all patients showed metaphyseal striation of the long bones, a crucial diagnostic clue to identify ARSK-related MPS type 10. Interestingly, vertebral involvement regressed during follow-up. On the other hand, hip dysplasia progressed in all patients. In conclusion, this study provides valuable long-term results on a recently discovered form of MPS.


Subject(s)
Phenotype , Adolescent , Child , Child, Preschool , Female , Humans , Male , Mutation/genetics , N-Acetylgalactosamine-4-Sulfatase/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/diagnostic imaging , Radiography
13.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Article in English | MEDLINE | ID: mdl-38685209

ABSTRACT

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Subject(s)
Cell Proliferation , Chickens , Chondrocytes , RNA, Long Noncoding , Thiram , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Thiram/toxicity , Cell Proliferation/drug effects , Membrane Proteins/genetics , Membrane Proteins/metabolism , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/genetics , Osteochondrodysplasias/veterinary , Osteochondrodysplasias/pathology , Apoptosis/drug effects
14.
Medwave ; 24(3): e2792, 2024 04 08.
Article in English, Spanish | MEDLINE | ID: mdl-38588532

ABSTRACT

Introduction: Osteochondroplastic tracheobronchopathy is a rare benign chronic disease of unknown etiology. Bronchoscopy remains the gold standard for diagnosing osteochondroplastic tracheobronchopathy. Its typical findings are described as a cobblestone, rock garden, mountainscape, or stalactite cave appearance. The present work aims to show the main clinical features of this rare pathology. Clinical cases: The clinical data of four middle-aged patients, three men and one woman, were analyzed. The main clinical symptoms were chronic cough, dyspnea, and dysphonia. The patient's preliminary diagnosis was made by computed axial tomography of the chest, confirmed by bronchoscopy and histopathological examination. Treatment included medication for symptoms and, in one case, cryosurgery and argon plasma coagulation. Discussion: Diagnosing osteochondroplastic tracheobronchopathy was not easy, given its uncommon nature and non-specific symptoms often found in other pathologies. No case series articles on this pathology have been published in Peru. Therefore, we used the original articles published in other countries to reference our findings. Conclusion: Osteochondroplastic tracheopathy is a benign disease that typically affects adults. Men are more likely to be affected. Its clinical manifestations are non-specific and frequently of pharyngeal origin, and the cause is not yet defined. Chest computed axial tomography combined with bronchoscopy are the main diagnostic procedures. There is no standard treatment with consistent therapeutic effects.


Introducción: La traqueobroncopatía osteocondroplástica es una rara enfermedad crónica benigna de etiología desconocida. La broncoscopía sigue siendo el estándar de oro para el reconocimiento de traqueopatía osteocondroplástica. Sus hallazgos típicos se describen como un empedrado, un jardín de rocas, una apariencia de paisaje montañoso o de una cueva con estalactitas. El objetivo del presente trabajo es mostrar las principales características clínicas de una patología poco conocida. Casos clínicos: Se analizaron los datos clínicos de cuatro pacientes de mediana edad, tres fueron hombres y una mujer. Los principales síntomas clínicos fueron tos crónica, disnea, disfonía. Los pacientes tuvieron un diagnóstico preliminar mediante tomografía axial computarizada de tórax, confirmado por examen video broncoscópico e histopatológico. El tratamiento incluyó medicamentos para los síntomas y en un solo caso criocirugía y coagulación con argón plasma. Discusión: El diagnóstico de traqueobroncopatía osteocondroplástica no fue sencillo por ser una entidad rara, cuyos síntomas son inespecíficos y muy frecuentes en otras patologías. En Perú no se han publicado artículos de serie de casos sobre esta patología. Por lo tanto, tomamos como referencia artículos originales publicados en otros países para compararlos con nuestros hallazgos. Conclusión: La traqueopatía osteocondroplástica es una enfermedad benigna que predispone a los adultos, los hombres tienen más probabilidades de verse afectados. Sus manifestaciones clínicas son inespecíficas; frecuentemente de origen faríngeo y la causa no está aún definida. La tomografía axial computarizada de tórax combinada con video broncoscopía son los principales procedimientos para el diagnóstico. No existe un estándar de tratamiento con efectos terapéuticos consistentes.


Subject(s)
Bronchial Diseases , Osteochondrodysplasias , Tracheal Diseases , Female , Humans , Male , Middle Aged , Bronchial Diseases/diagnosis , Bronchial Diseases/pathology , Bronchoscopy , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Tomography, X-Ray Computed , Tracheal Diseases/diagnosis , Tracheal Diseases/therapy , Tracheal Diseases/pathology
15.
Am J Med Genet A ; 194(7): e63603, 2024 07.
Article in English | MEDLINE | ID: mdl-38511620

ABSTRACT

There is an emerging body of evidence showing that young patients, post haematopoietic stem cell transplantation (HSCT), can develop skeletal changes that mimic an osteochondrodysplasia process. The key discriminator is that these children have had otherwise normal growth and skeletal development before the therapeutic intervention (HSCT), typically for a haematological malignancy. Herein we present that case of a boy who underwent HSCT for Haemophagocytic Lymphohistiocytosis (HLH) aged 2 years. Following Intervention with HSCT this boy's growth has severely decelerated (stature less than 1st centile matched for age) and he has developed a spondyloepiphyseal dysplasia.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphohistiocytosis, Hemophagocytic , Osteochondrodysplasias , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Child, Preschool , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphohistiocytosis, Hemophagocytic/etiology , Growth Disorders/pathology , Growth Disorders/etiology , Growth Disorders/genetics
16.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38424183

ABSTRACT

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Subject(s)
Haplotypes , Heparan Sulfate Proteoglycans , Osteochondrodysplasias , Female , Humans , Male , Alleles , Bone Diseases, Developmental/genetics , Bone Diseases, Developmental/pathology , Founder Effect , Heparan Sulfate Proteoglycans/genetics , Mutation , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Fetal Diseases
17.
Clin Genet ; 106(1): 47-55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38378010

ABSTRACT

Skeletal dysplasias (SKDs) are a heterogeneous group of more than 750 genetic disorders characterized by abnormal development, growth, and maintenance of bones or cartilage in the human skeleton. SKDs are often caused by variants in early patterning genes and in many cases part of multiple malformation syndromes and occur in combination with non-skeletal phenotypes. The aim of this study was to investigate the underlying genetic cause of congenital SKDs in highly consanguineous Pakistani families, as well as in sporadic and familial SKD cases from India using multigene panel sequencing analysis. Therefore, we performed panel sequencing of 386 bone-related genes in 7 highly consanguineous families from Pakistan and 27 cases from India affected with SKDs. In the highly consanguineous families, we were able to identify the underlying genetic cause in five out of seven families, resulting in a diagnostic yield of 71%. Whereas, in the sporadic and familial SKD cases, we identified 12 causative variants, corresponding to a diagnostic yield of 44%. The genetic heterogeneity in our cohorts was very high and we were able to detect various types of variants, including missense, nonsense, and frameshift variants, across multiple genes known to cause different types of SKDs. In conclusion, panel sequencing proved to be a highly effective way to decipher the genetic basis of SKDs in highly consanguineous families as well as sporadic and or familial cases from South Asia. Furthermore, our findings expand the allelic spectrum of skeletal dysplasias.


Subject(s)
Consanguinity , Pedigree , Humans , Male , Female , Pakistan/epidemiology , India/epidemiology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/pathology , Phenotype , Child , Mutation , Bone Diseases, Developmental/genetics , Genetic Predisposition to Disease , Child, Preschool , High-Throughput Nucleotide Sequencing , Genetic Heterogeneity
18.
Am J Med Genet A ; 194(6): e63562, 2024 06.
Article in English | MEDLINE | ID: mdl-38337186

ABSTRACT

Biallelic pathogenic variants in RMRP, the gene encoding the RNA component of RNase mitochondrial RNA processing enzyme complex, have been reported in individuals with cartilage hair hypoplasia (CHH). CHH is prevalent in Finnish and Amish populations due to a founder pathogenic variant, n.71A > G. Based on the manifestations in the Finnish and Amish individuals, the hallmarks of CHH are prenatal-onset growth failure, metaphyseal dysplasia, hair hypoplasia, immunodeficiency, and other extraskeletal manifestations. Herein, we report six Japanese individuals with CHH from four families. All probands presented with moderate short stature with mild metaphyseal dysplasia or brachydactyly. One of them had hair hypoplasia and the other immunodeficiency. By contrast, the affected siblings of two families showed only mild short stature. We also reviewed all previously reported 13 Japanese individuals. No n.71A > G allele was detected. The proportions of Japanese versus Finnish individuals were 0% versus 70% for birth length < -2.0 SD, 84% versus 100% for metaphyseal dysplasia and 26% versus 88% for hair hypoplasia. Milder manifestations in the Japanese individuals may be related to the difference of genotypes. The mildest form of CHH phenotypes is mild short stature without overt skeletal alteration or extraskeletal manifestation and can be termed "RMRP-related short stature".


Subject(s)
Hair , Osteochondrodysplasias , Adolescent , Child , Child, Preschool , Female , Humans , Male , Alleles , Dwarfism/genetics , Dwarfism/pathology , East Asian People , Genotype , Hair/abnormalities , Hair/pathology , Hirschsprung Disease/genetics , Hirschsprung Disease/pathology , Hirschsprung Disease/diagnosis , Japan/epidemiology , Mutation/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Osteochondrodysplasias/congenital , Pedigree , Phenotype , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/pathology , RNA, Long Noncoding/genetics
19.
Clin Genet ; 104(1): 121-126, 2023 07.
Article in English | MEDLINE | ID: mdl-36896672

ABSTRACT

PKDCC encodes a component of Hedgehog signalling required for normal chondrogenesis and skeletal development. Although biallelic PKDCC variants have been implicated in rhizomelic shortening of limbs with variable dysmorphic features, this association was based on just two patients. In this study, data from the 100 000 Genomes Project was used in conjunction with exome sequencing and panel-testing results accessed via international collaboration to assemble a cohort of eight individuals from seven independent families with biallelic PKDCC variants. The allelic series included six frameshifts, a previously described splice-donor site variant and a likely pathogenic missense variant observed in two families that was supported by in silico structural modelling. Database queries suggested that the prevalence of this condition is between 1 of 127 and 1 of 721 in clinical cohorts with skeletal dysplasia of unknown aetiology. Clinical assessments, combined with data from previously published cases, indicate a predominantly upper limb involvement. Micrognathia, hypertelorism and hearing loss appear to be commonly co-occurring features. In conclusion, this study strengthens the link between biallelic inactivation of PKDCC and rhizomelic limb-shortening and will enable clinical testing laboratories to better interpret variants in this gene.


Subject(s)
Dwarfism , Osteochondrodysplasias , Humans , Hedgehog Proteins , Osteochondrodysplasias/pathology , Prevalence , RNA Splice Sites
20.
Skeletal Radiol ; 52(1): 115-118, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35776137

ABSTRACT

INTRODUCTION: Dominant pathogenic mutations in the TRPV4 gene give rise to a wide spectrum of abnormal phenotypes, including bone dysplasia as well as spinal muscular atrophy and hereditary motor and sensory neuropathy. Spondyloepimetaphyseal dysplasias (SEMDs) are autosomal dominant skeletal dysplasias characterized by mild epiphyseal dysplasia, flared metaphyses, prominent joints, spondyler dysplasia, and brachydactyly with various carpal, metacarpal, and finger malformations. CASE PRESENTATION: We present a boy who has the clinical and radiological signs of SEMD-M with a dominant TRPV4 mutation. He also has some striking findings that have not been seen in these patients before, and they may be able to provide assistance to medical professionals in the process of diagnosis.These include a shorter distance between his lumbar vertebrae, congenital contractures, and an arachnoid cyst.


Subject(s)
Bone Diseases, Developmental , Osteochondrodysplasias , Male , Humans , TRPV Cation Channels/genetics , Phenotype , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Mutation , Bone Diseases, Developmental/pathology
SELECTION OF CITATIONS
SEARCH DETAIL