Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.504
Filter
1.
BMC Microbiol ; 24(1): 295, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123138

ABSTRACT

BACKGROUND: Multi-drug resistant Staphylococcus aureus is one of the most common causes of nosocomial and community-acquired infections, with high morbidity and mortality. Treatment of such infections is particularly problematic; hence, it is complicated by antibiotic resistance, and there is currently no reliable vaccine. Furthermore, it is well known that S. aureus produces an exceptionally large number of virulence factors that worsen infection. Consequently, the urgent need for anti-virulent agents that inhibit biofilm formation and virulence factors has gained momentum. Therefore, we focused our attention on an already-approved antibiotic and explored whether changing the dosage would still result in the intended anti-virulence effect. METHODS: In the present study, we determined the antibiotic resistance patterns and the MICs of oxacillin against 70 MDR S. aureus isolates. We also investigated the effect of sub-MICs of oxacillin (at 1/4 and 1/8 MICs) on biofilm formation using the crystal violet assay, the phenol-sulphuric acid method, and confocal laser scanning microscopy (CLSM). We examined the effect of sub-MICs on virulence factors and bacterial morphology using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and electron microscopy, respectively. Moreover, we studied the effect of sub-MICs of oxacillin (OX) in-vivo using a wound infection model. RESULTS: Oxacillin at 1/2 MIC showed a significant decrease in bacterial viability, while 1/4 and 1/8 MICs had negligible effects on treated bacterial isolates. Treatment of MDR isolates with 1/4 or 1/8 MICs of oxacillin significantly reduced biofilm formation (64% and 40%, respectively). The treated MDR S. aureus with sub-MICs of OX exhibited a dramatic reduction in several virulence factors, including protease, hemolysin, coagulase, and toxic shock syndrome toxin-1 (TSST-1) production. The sub-MICs of OX significantly decreased (P < 0.05) the gene expression of biofilm and virulence-associated genes such as agrA, icaA, coa, and tst. Furthermore, oxacillin at sub-MICs dramatically accelerated wound healing, according to the recorded scoring of histological parameters. CONCLUSION: The treatment of MDR S. aureus with sub-MICs of oxacillin can help in combating the bacterial resistance and may be considered a promising approach to attenuating the severity of S. aureus infections due to the unique anti-biofilm and anti-virulence activities.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Oxacillin , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Oxacillin/pharmacology , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Staphylococcal Infections/microbiology , Virulence Factors/genetics , Animals , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Virulence/drug effects , Mice , Disease Models, Animal
2.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125072

ABSTRACT

Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to ß-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Celecoxib , Drug Synergism , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Staphylococcus aureus , Oxacillin/pharmacology , Celecoxib/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Anti-Inflammatory Agents/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
3.
mBio ; 15(6): e0033924, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38988221

ABSTRACT

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , DNA-Directed RNA Polymerases , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/enzymology , Oxacillin/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation, Missense , Cell Wall/drug effects , Cell Wall/metabolism , Cell Wall/genetics , Humans , Mutation , Metabolomics
4.
Medicine (Baltimore) ; 103(24): e38562, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875387

ABSTRACT

In Algeria, the issue of antibiotic resistance is on the rise, being the Staphylococcus aureus infection as a significant concern of hospital-acquired infections. The emergence of antibiotic resistance in this bacterium poses a worldwide challenge. The aim of this study aims to establish the incidence of S aureus strains in Algeria as well as identify phenotypic and genotypic resistance based on the "mecA" and "nuc" genes. From 2014 to 2017, a total of 185 S aureus strains were isolated from patients at a hospital in the city of Rouïba, Algiers the number of isolates was slightly higher in males at 58.06% compared to females at 41.94%, resulting in a sex ratio of 1.38. the Oxacillin and Cefoxitin DD test (1 µg oxacillin disk and 30 µg cefoxitin disk) identified 42 strains as resistant. The results indicated high resistance to lactam antibiotics, with penicillin having a 100% resistance rate. There was also significant resistance to oxacillin (51.25%) and cefoxitin (50%). This resistance was frequently associated with resistance to other antibiotic classes, such as aminoglycosides (50%) and Macrolides (28.29%). To confirm methicillin-resistant characteristics, a polymerase chain reaction (PCR) multiplex was conducted on 10 isolates (6 SARM; 4 MSSA) on a phenotypic level. Three isolates tested positive for "mecA," while 7 were negative. All strains carry the nuc gene, which is specific to S aureus. In Algeria, the incidence of S aureus resistance is slightly lower compared to other countries, but it is increasing over time. It is now more crucial than ever to restrict the proliferation of multidrug-resistant strains and reduce undue antibiotic prescriptions. To achieve this, it is vital to keep updated on the epidemiology of this bacterium and its antibiotic susceptibility. This will enable the formulation of appropriate preventive control measures to manage its progression.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Female , Male , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Algeria/epidemiology , Prevalence , Bacterial Proteins/genetics , Oxacillin/pharmacology , Adult , Penicillin-Binding Proteins/genetics , Cefoxitin/pharmacology , Middle Aged , Micrococcal Nuclease/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification
5.
Future Microbiol ; 19(8): 667-679, 2024.
Article in English | MEDLINE | ID: mdl-38864708

ABSTRACT

Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.


[Box: see text].


Subject(s)
Anti-Bacterial Agents , Arginine , Biofilms , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Surface-Active Agents , Biofilms/drug effects , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/drug effects , Arginine/pharmacology , Arginine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Glycolipids/pharmacology , Glycolipids/chemistry , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcal Infections/drug therapy , Oxacillin/pharmacology , Drug Synergism
6.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38837393

ABSTRACT

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Subject(s)
Anti-Bacterial Agents , Cefazolin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefazolin/pharmacology , Cefazolin/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Oxacillin/pharmacology , Bacteremia/drug therapy , Bacteremia/microbiology , Phenotype , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Male , Sodium Bicarbonate/pharmacology , Female , Middle Aged
7.
Mol Biol Rep ; 51(1): 761, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874884

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) poses a great health threat to humans. Looking for compounds that could reduce the resistance of S. aureus towards methicillin is an effective way to alleviate the antimicrobial resistance crisis. METHODS AND RESULTS: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), Time-killing growth curve, staphyloxanthin and penicillin-binding protein 2a (PBP2a) were detected. A quantitative polymerase chain reaction was used to measure the effect of BBH on the gene transcription profiles of MRSA. The MIC of MRSA-ST59-t437 towards oxacillin was 8 µg/ml, and MBC was 128 µg/ml. After adding a sub-inhibitory concentration of BBH, the MIC and MBC of MRSA-ST59-t478 towards oxacillin went down to 0.125 and 32 µg/ml respectively. The amount of PBP2a and staphyloxanthin were reduced after treatment with BBH. Moreover, the transcription levels of sarA, mecA and fni genes were downregulated. CONCLUSIONS: It is for the first time reported that BBH could inhibit staphyloxanthin synthesis by inhibiting fni gene. Moreover, fni might be the target gene of sarA, and there might be another regulatory pathway to inhibit staphyloxanthin biosynthesis. BBH could effectively reduce the methicillin resistance of MRSA-ST59-t437 by downregulating fni, sarA and mecA genes.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Berberine , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Xanthophylls , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Xanthophylls/pharmacology , Berberine/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Oxacillin/pharmacology
8.
Microbiol Spectr ; 12(8): e0097624, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916355

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a serious clinical challenge with high mortality rates. Antibiotic combination therapy is currently used in cases of persistent infection; however, the limited development of new antibiotics will likely increase the need for combination therapy, and better methods are needed for identifying effective combinations for treating persistent bacteremia. To identify pairwise combinations with the most consistent potential for benefit compared to monotherapy with a primary anti-MRSA agent, we conducted a systematic study with an in vitro high-throughput methodology. We tested daptomycin and vancomycin each in combination with gentamicin, rifampicin, cefazolin, and oxacillin, and ceftaroline with daptomycin, gentamicin, and rifampicin. Combining cefazolin with daptomycin lowered the daptomycin concentration required to reach 95% growth inhibition (IC95) for all isolates tested and lowered daptomycin IC95 below the sensitivity breakpoint for five out of six isolates that had daptomycin minimum inhibitory concentrations at or above the sensitivity breakpoint. Similarly, vancomycin IC95s were decreased when vancomycin was combined with cefazolin for 86.7% of the isolates tested. This was a higher percentage than was achieved by adding any other secondary antibiotic to vancomycin. Adding rifampicin to daptomycin or vancomycin did not always reduce IC95s and failed to produce synergistic interaction in any of the isolates tested; the addition of rifampicin to ceftaroline was frequently synergistic and always lowered the amount of ceftaroline required to reach the IC95. These analyses rationalize further in vivo evaluation of three drug pairs for MRSA bacteremia: daptomycin+cefazolin, vancomycin+cefazolin, and ceftaroline+rifampicin.IMPORTANCEBloodstream infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have a high mortality rate despite the availability of vancomycin, daptomycin, and newer antibiotics including ceftaroline. With the slow output of the antibiotic pipeline and the serious clinical challenge posed by persistent MRSA infections, better strategies for utilizing combination therapy are becoming increasingly necessary. We demonstrated the value of a systematic high-throughput approach, adapted from prior work testing antibiotic combinations against tuberculosis and other mycobacteria, by using this approach to test antibiotic pairs against a panel of MRSA isolates with diverse patterns of antibiotic susceptibility. We identified three antibiotic pairs-daptomycin+cefazolin, vancomycin+cefazolin, and ceftaroline+rifampicin-where the addition of the second antibiotic improved the potency of the first antibiotic across all or most isolates tested. Our results indicate that these pairs warrant further evaluation in the clinical setting.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Rifampin , Staphylococcal Infections , Vancomycin , beta-Lactams , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Bacteremia/drug therapy , Bacteremia/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Daptomycin/pharmacology , Daptomycin/therapeutic use , Vancomycin/pharmacology , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Rifampin/pharmacology , Rifampin/therapeutic use , Ceftaroline , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Cefazolin/pharmacology , Cefazolin/therapeutic use , Drug Therapy, Combination , Drug Synergism , Oxacillin/pharmacology , Gentamicins/pharmacology , Gentamicins/therapeutic use
9.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611807

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) has evolved into a dangerous pathogen resistant to beta-lactam antibiotics (BLAs) and has become a worrisome superbug. In this study, a strategy in which shikimic acid (SA), which has anti-inflammatory and antibacterial activity, is combined with BLAs to restart BLA activity was proposed for MRSA treatment. The synergistic effects of oxacillin combined with SA against oxacillin resistance in vitro and in vivo were investigated. The excellent synergistic effect of the oxacillin and SA combination was confirmed by performing the checkerboard assay, time-killing assay, live/dead bacterial cell viability assay, and assessing protein leakage. SEM showed that the cells in the control group had a regular, smooth, and intact surface. In contrast, oxacillin and SA or the combination treatment group exhibited different degrees of surface collapse. q-PCR indicated that the combination treatment group significantly inhibited the expression of the mecA gene. In vivo, we showed that the combination treatment increased the survival rate and decreased the bacterial load in mice. These results suggest that the combination of oxacillin with SA is considered an effective treatment option for MRSA, and the combination of SA with oxacillin in the treatment of MRSA is a novel strategy.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Shikimic Acid/pharmacology , Monobactams , beta Lactam Antibiotics , Oxacillin/pharmacology
10.
Malays J Pathol ; 46(1): 95-102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682849

ABSTRACT

Borderline oxacillin-resistant Staphylococcus aureus (BORSA) are mecA-negative strains with oxacillin minimum inhibitor concentration (MIC) close to the resistance breakpoint of ≥ 4µg/mL. Instead of producing penicillin-binding protein with low affinity to methicillin (oxacillin) mediated by mecA gene as in methicillin-resistant S. aureus (MRSA), BORSA strains are characterised by the hyperproduction of ß-lactamase enzymes, thus able to break down methicillin. Common laboratory methods to detect MRSA such as cefoxitin disk diffusion alone may fail to detect methicillin resistance due to BORSA. We report five cases of BORSA blood-stream infections in a university teaching hospital. All isolates were found to be susceptible to cefoxitin using disk diffusion, resistant to oxacillin using automated MIC method, and did not harbour mecA gene. All patients were suscessfully treated with anti-MRSA antibiotics, and removal of primary sources were done if identified. A more cost-effective method for screening and diagnosis of BORSA is needed in addition to cefoxitin disk diffusion test, in order to monitor the spread, and to enable routine detection and treatment of this pathogen.


Subject(s)
Anti-Bacterial Agents , Oxacillin , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefoxitin/pharmacology , Cefoxitin/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Oxacillin/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification
11.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503568

ABSTRACT

AIMS: The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS: Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS: Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Polymers/pharmacology , Pyrroles/pharmacology , Molecular Docking Simulation , Oxacillin/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Microbial Sensitivity Tests
12.
Antimicrob Agents Chemother ; 68(3): e0134023, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38364015

ABSTRACT

We evaluated the role of Staphylococcus aureus AbcA transporter in bacterial persistence and survival following exposure to the bactericidal agents nafcillin and oxacillin at both the population and single-cell levels. We show that AbcA overexpression resulted in resistance to nafcillin but not oxacillin. Using distinct fluorescent reporters of cell viability and AbcA expression, we found that over 6-14 hours of persistence formation, the proportion of AbcA reporter-expressing cells assessed by confocal microscopy increased sixfold as cell viability reporters decreased. Similarly, single-cell analysis in a high-throughput microfluidic system found a strong correspondence between antibiotic exposure and AbcA reporter expression. Persister cells grown in the absence of antibiotics showed neither an increase in nafcillin MIC nor in abcA transcript levels, indicating that survival was not associated with stable mutational resistance or abcA overexpression. Furthermore, persister cell levels on exposure to 1×MIC and 25×MIC of nafcillin decreased in an abcA knockout mutant. Survivors of nafcillin and oxacillin treatment overexpressed transporter AbcA, contributing to an enrichment of the number of persisters during treatment with pump-substrate nafcillin but not with pump-non-substrate oxacillin, indicating that efflux pump expression can contribute selectively to the survival of a persister population.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Nafcillin , beta-Lactams/metabolism , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Oxacillin/pharmacology , Oxacillin/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
13.
Ann Clin Microbiol Antimicrob ; 23(1): 7, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245727

ABSTRACT

The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Nisin , Staphylococcal Infections , Humans , Staphylococcus aureus , Oxacillin/pharmacology , Nisin/pharmacology , Nisin/therapeutic use , Staphylococcus epidermidis , Methicillin-Resistant Staphylococcus aureus/genetics , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Anti-Infective Agents/pharmacology , Staphylococcus , Biofilms , Microbial Sensitivity Tests
14.
Nat Prod Res ; 38(4): 589-593, 2024.
Article in English | MEDLINE | ID: mdl-36855235

ABSTRACT

Synergistic bioassay-guided isolation of the extracts of Artemisia rupestris L, which belongs to the family Asteraceae, afforded two acetylenic spiroketal enol ethers, namely rupesdiynes A (1) and B (2). Their structures were determined based on spectroscopic analysis and experimental and calculated ECD investigations. The two compounds exhibited synergistic activity and were able to reduce the minimum inhibitory concentration (MIC) of oxacillin four-fold, with a fractional inhibitory concentration index (FICI) of 0.5 in combination with oxacillin against the oxacillin-resistant EMRSA-16. Biofilm formation inhibitory and Ethidium bromide (EtBr) efflux assay were further employed to verify the possible mechanism of the synergistic antibacterial effect. Additionally, molecular docking studies were conducted to investigate the binding affinities of the two compounds with penicillin-binding protein 2a (PBP2a) of EMRSA-16. Taken together, rupesdiynes A (1) and rupesdiyne B (2) showed moderate synergistic activity against EMRSA-16 with oxacillin via inhibiting biofilm formation and efflux pump activity, respectively.


Subject(s)
Artemisia , Furans , Methicillin-Resistant Staphylococcus aureus , Spiro Compounds , Molecular Docking Simulation , Acetylene/metabolism , Acetylene/pharmacology , Alkynes/pharmacology , Ethers/metabolism , Ethers/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents , Oxacillin/pharmacology , Oxacillin/metabolism , Microbial Sensitivity Tests , Drug Synergism
15.
ACS Infect Dis ; 9(12): 2436-2447, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38009640

ABSTRACT

The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with ß-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Anti-Bacterial Agents/pharmacology , Oxacillin/pharmacology , Biofilms , Peptides/pharmacology , Melanocyte-Stimulating Hormones
16.
Eur J Med Chem ; 261: 115823, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37839345

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 µg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Drug Synergism , Anti-Bacterial Agents/pharmacology , Oxacillin/pharmacology , Microbial Sensitivity Tests
17.
J Microorg Control ; 28(3): 101-107, 2023.
Article in English | MEDLINE | ID: mdl-37866891

ABSTRACT

Considering the lack of detailed research on the antibacterial mechanism of polyoxometalates, we examined the synergistic effect of novel bulky mixed Ti/W hetero-polyoxometalates (K9.5H2.5 ï¼»α-Ge2Ti4W20O78]・ 29H2O; αTi4, K9H5 ï¼»α-Ge2Ti6W18O77]・16H2O; αTi6, K23H5ï¼»α-Ge4Ti12W36O154]・39H2O; αTi12, K9H5 ï¼»ß-Ge2Ti6W18O77]・ 45H2O; ßTi6) with the antibiotic oxacillin against vancomycin intermediate-resistant Staphylococcus aureus (VISA) using fractional inhibitory concentration (FIC) index and growth curve in this study. All polyoxometalates used in this study showed remarkable synergistic effects with oxacillin. Its synergistic antibacterial mechanism was examined using reverse transcription PCR (RT-PCR) and penicillin binding protein-2' (PBP2') latex agglutination test. The results suggested that these polyoxometalates did not inhibit mecA gene transcription but resulted in PBP2' protein malfunction. From these results, we concluded that the substances producing resistance in VISA were affected by polyoxometalates depending on their molecular size, facilitating a synergistic antibacterial effect with oxacillin.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Oxacillin , Oxacillin/pharmacology , Vancomycin/pharmacology , Drug Synergism , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus
18.
J Med Microbiol ; 72(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-37707372

ABSTRACT

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Oxacillin , Oxacillin/pharmacology , Vitamin K 3/pharmacology , Methicillin , Staphylococcus aureus , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms
19.
Antimicrob Agents Chemother ; 67(10): e0071623, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37655923

ABSTRACT

Acquisition of PBP2a (encoded by the mec gene) is the key resistance mechanism to ß-lactams in Staphylococcus aureus. The mec gene can be easily detected by PCR assays; however, these tools will miss mec-independent oxacillin resistance. This phenotype is mediated by mutations in cell wall metabolism genes that can be acquired during persistent infections under prolonged antibiotic exposure. The complex case presented by Hess et al. (Antimicrob Agents Chemother 67:e00437-23, 2023, https://doi.org/10.1128/aac.00437-23) highlights the diagnostic and therapeutic challenges in the management of mec-independent oxacillin resistance.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Oxacillin/pharmacology , Oxacillin/therapeutic use , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism
20.
Eur J Clin Microbiol Infect Dis ; 42(9): 1125-1133, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37515660

ABSTRACT

The aim of this study is to describe the phenotypic and genetic properties of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) isolates and their beta-lactam resistant derivatives obtained after selection with oxacillin. A collection of hospital- (HA-) and community-acquired (CA-) MRSA was screened for oxacillin susceptibility. Antibiotic susceptibility testing, population analysis profile (PAP), mecA expression analysis, and whole genome sequencing (WGS) were performed for 60 mecA-positive OS-MRSA isolates. Twelve high-level beta-lactam resistant derivatives selected during PAP were also subjected to WGS. OS-MRSA were more prevalent among CA-MRSA (49/205, 24%) than among HA-MRSA (11/575, 2%). OS-MRSA isolates belonged to twelve sequence types (ST), with a predominance of ST22-t223-SCCmec IVc and ST59-t1950-SCCmec V lineages. OS-MRSA were characterized by mecA promoter mutations at - 33 (C→T) or - 7 (G→T/A) along with PBP2a substitutions (S225R or E246G). The basal and oxacillin-induced levels of mecA expression in OS-MRSA isolates were significantly lower than those in control ST8-HA-MRSA isolates. Most of the OS-MRSA isolates were heteroresistant to oxacillin. High-level beta-lactam resistant OS-MRSA derivatives selected with oxacillin carried mutations in mecA auxiliary factors: relA (metabolism of purines), tyrS, cysS (metabolism of tRNAs), aroK, cysE (metabolism of amino acids and glycolysis). Cefoxitin-based tests demonstrated high specificity for OS-MRSA detection. The highest positive predictive values (PPV > 0.95) were observed for broth microdilution, the VITEK® 2 automatic system, and chromogenic media. Susceptibility testing of CA-MRSA requires special attention due to the high prevalence of difficult-to-detect OS-MRSA among them. Mis-prescription of beta-lactams for the treatment of OS-MRSA may lead to selection of high-level resistance and treatment failures.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Oxacillin/pharmacology , Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Bacterial Proteins/genetics , Staphylococcal Infections/microbiology , Methicillin , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL