Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.935
1.
Gut Microbes ; 16(1): 2359501, 2024.
Article En | MEDLINE | ID: mdl-38841895

Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.


Autism Spectrum Disorder , Disease Models, Animal , Probiotics , Social Behavior , Animals , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/microbiology , Mice , Probiotics/administration & dosage , Female , Male , Valproic Acid , Gastrointestinal Microbiome , Behavior, Animal/drug effects , Mice, Inbred C57BL , Hippocampus/metabolism , Pregnancy , Oxytocin/metabolism , Prefrontal Cortex/metabolism , Lactobacillus plantarum/physiology , Humans
2.
BMC Pregnancy Childbirth ; 24(1): 403, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824569

BACKGROUND: The practice of intrapartum use of oxytocin for induction and augmentation of labour is increasing worldwide with documented wide variations in clinical use, especially dose administrations. There is also evidence of intrapartum use by unauthorized cadre of staff. AIM: This study assessed the patterns - frequency of intrapartum use of oxytocin, the doses and routes of administration for induction and augmentation of labour, and identified the predictors of oxytocin use for induction and augmentation of labour by healthcare providers in Nigeria. METHODS: This was a cross-sectional study conducted among healthcare providers - doctors, nurses/midwives and community health workers (CHWs) in public and private healthcare facilities across the country's six geopolitical zones. A multistage sampling technique was used to select 6,299 eligible healthcare providers who use oxytocin for pregnant women during labour and delivery. A self-administered questionnaire was used to collect relevant data and analysed using STATA 17 statistical software. Summary and inferential statistics were done and further analyses using multivariable regression models were performed to ascertain independent predictor variables of correct patterns of intrapartum oxytocin usage. The p-value was set at < 0.05. RESULTS: Of the 6299 respondents who participated in the study, 1179 (18.7%), 3362 (53.4%), and 1758 (27.9%) were doctors, nurses/midwives and CHWs, respectively. Among the respondents, 4200 (66.7%) use oxytocin for augmentation of labour while 3314 (52.6%) use it for induction of labour. Of the 1758 CHWs, 37.8% and 49% use oxytocin for induction and augmentation of labour, respectively. About 10% of the respondents who use oxytocin for the induction or augmentation of labour incorrectly use the intramuscular route of administration and about 8% incorrectly use intravenous push. Being a doctor, and a healthcare provider from government health facilities were independent positive predictors of the administration of correct dose oxytocin for induction and augmentation of labour. The CHWs were most likely to use the wrong route and dose administration of oxytocin for the induction and augmentation of labour. CONCLUSION: Our study unveiled a concerning clinical practice of intrapartum oxytocin use by healthcare providers in Nigeria - prevalence of intrapartum use of oxytocin, inappropriate routes of administration for induction and augmentation of labour, varied and inappropriately high start dose of administration including unauthorized and high intrapartum use of oxytocin among CHWs.


Health Personnel , Labor, Induced , Oxytocics , Oxytocin , Humans , Oxytocin/administration & dosage , Nigeria , Female , Pregnancy , Cross-Sectional Studies , Labor, Induced/methods , Labor, Induced/statistics & numerical data , Oxytocics/administration & dosage , Adult , Health Personnel/statistics & numerical data , Practice Patterns, Physicians'/statistics & numerical data , Surveys and Questionnaires , Labor, Obstetric , Male , Young Adult
3.
J Med Life ; 17(2): 210-216, 2024 Feb.
Article En | MEDLINE | ID: mdl-38813356

Lactation relies on the secretion of two key hormones, prolactin and oxytocin. Studies have shown that yoga in the postpartum period can stimulate feelings of comfort and relaxation, which increases oxytocin production. The aim of this study was to evaluate the effect of yoga training on postpartum prolactin and oxytocin levels in a group of primipara women. This quasi-experimental study included 60 healthy primigravida, primipara women in their third trimester who attended antepartum and postpartum care at four primary healthcare centers in Kediri Regency. The participants were randomly allocated to an intervention group (n = 30) and a control (n = 30) group. The intervention group received health education and participated at eight yoga sessions with a duration of 60 min, from week 32 of gestation until the postpartum period. The control group received standard antepartum and postpartum care. Prolactin and oxytocin levels were measured in weeks 1 and 6 postpartum. Mean prolactin increment was significantly higher in the intervention group (176.8 ± 66.6 ng/ml) than the control group (24.8 ± 39.5 ng/ml). Similarly, mean oxytocin increment was significantly higher in the intervention group (58.6 ± 31.59 pg/ml) than the control group (14.6 ± 36.06 pg/ml). Our results suggest that yoga training in the third trimester until the postpartum period increases prolactin and oxytocin levels among primipara postpartum women.


Oxytocin , Postpartum Period , Prolactin , Yoga , Humans , Female , Prolactin/blood , Oxytocin/blood , Oxytocin/metabolism , Adult , Pregnancy , Young Adult
4.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Article En | MEDLINE | ID: mdl-38742193

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Diet, High-Fat , Drugs, Chinese Herbal , Inflammation , Mice, Inbred C57BL , Obesity , Animals , Obesity/metabolism , Obesity/drug therapy , Male , Mice , Diet, High-Fat/adverse effects , Inflammation/metabolism , Female , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Sucrose/administration & dosage , Food Preferences/drug effects , Body Weight/drug effects , Oxytocin/pharmacology , Medicine, Kampo , East Asian People
5.
Article En | MEDLINE | ID: mdl-38780268

Oxytocin (OXT), a neuropeptide originating from the hypothalamus and traditionally associated with peripheral functions in parturition and lactation, has emerged as a pivotal player in the central regulation of the autonomic nervous system (ANS). This comprehensive ANS, comprising sympathetic, parasympathetic, and enteric components, intricately combines sympathetic and parasympathetic influences to provide unified control. The central oversight of sympathetic and parasympathetic outputs involves a network of interconnected regions spanning the neuroaxis, playing a pivotal role in the real-time regulation of visceral function, homeostasis, and adaptation to challenges. This review unveils the significant involvement of the central OXT system in modulating autonomic functions, shedding light on diverse subpopulations of OXT neurons within the paraventricular nucleus of the hypothalamus and their intricate projections. The narrative progresses from the basics of central ANS regulation to a detailed discussion of the central controls of sympathetic and parasympathetic outflows. The subsequent segment focuses specifically on the central OXT system, providing a foundation for exploring the central role of OXT in ANS regulation. This review synthesizes current knowledge, paving the way for future research endeavors to unravel the full scope of autonomic control and understand multifaceted impact of OXT on physiological outcomes.


Autonomic Nervous System , Oxytocin , Oxytocin/metabolism , Oxytocin/physiology , Humans , Autonomic Nervous System/physiology , Animals
7.
NEJM Evid ; 3(5): EVIDoa2300349, 2024 May.
Article En | MEDLINE | ID: mdl-38815173

BACKGROUND: Accumulating preclinical and preliminary translational evidence shows that the hypothalamic peptide oxytocin reduces food intake, increases energy expenditure, and promotes weight loss. It is currently unknown whether oxytocin administration is effective in treating human obesity. METHODS: In this randomized, double-blind, placebo-controlled trial, we randomly assigned adults with obesity 1:1 (stratified by sex and obesity class) to receive intranasal oxytocin (24 IU) or placebo four times daily for 8 weeks. The primary end point was change in body weight (kg) from baseline to week 8. Key secondary end points included change in body composition (total fat mass [g], abdominal visceral adipose tissue [cm2], and liver fat fraction [proportion; range, 0 to 1; higher values indicate a higher proportion of fat]), and resting energy expenditure (kcal/day; adjusted for lean mass) from baseline to week 8 and caloric intake (kcal) at an experimental test meal from baseline to week 6. RESULTS: Sixty-one participants (54% women; mean age ± standard deviation, 33.6 ± 6.2 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 36.9 ± 4.9) were randomly assigned. There was no difference in body weight change from baseline to week 8 between oxytocin and placebo groups (0.20 vs. 0.26 kg; P=0.934). Oxytocin (vs. placebo) was not associated with beneficial effects on body composition or resting energy expenditure from baseline to week 8 (total fat: difference [95% confidence interval], 196.0 g [-1036 to 1428]; visceral fat: 3.1 cm2 [-11.0 to 17.2]; liver fat: -0.01 [-0.03 to 0.01]; resting energy expenditure: -64.0 kcal/day [-129.3 to 1.4]). Oxytocin compared with placebo was associated with reduced caloric intake at the test meal (-31.4 vs. 120.6 kcal; difference [95% confidence interval], -152.0 kcal [-302.3 to -1.7]). There were no serious adverse events. Incidence and severity of adverse events did not differ between groups. CONCLUSIONS: In this randomized, placebo-controlled trial in adults with obesity, intranasal oxytocin administered four times daily for 8 weeks did not reduce body weight. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; ClinicalTrials.gov number, NCT03043053.).


Administration, Intranasal , Obesity , Oxytocin , Humans , Oxytocin/administration & dosage , Oxytocin/pharmacology , Oxytocin/adverse effects , Female , Male , Adult , Obesity/drug therapy , Double-Blind Method , Energy Metabolism/drug effects , Body Composition/drug effects , Energy Intake/drug effects , Weight Loss/drug effects
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732124

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Neurons , Oxytocin , Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Oxytocin/pharmacology , Oxytocin/metabolism , Neurons/metabolism , Neurons/drug effects , Animals , Humans , Medicine, Kampo , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice
9.
PLoS One ; 19(5): e0303824, 2024.
Article En | MEDLINE | ID: mdl-38820421

OBJECTIVES: The current study aimed to investigate the impact of oxytocin on emotion recognition, trust, body image, affect, and anxiety and whether eating disorder (ED) symptoms moderated any of these relationships. METHOD: Participants (n = 149) were female university students, who were randomly allocated to receive in a double-blind nature, a single dose of oxytocin intranasal spray (n = 76) or a placebo (saline) intranasal spray (n = 73). Participants were asked to complete an experimental measure of emotion recognition and an investor task aimed to assess trust. RESULTS: The oxytocin group exhibited better overall performance on the emotion recognition task (especially with recognising positive emotions), and a decline in state positive affect than the control group at post-intervention. However, these effects were not moderated by ED symptom severity, nor were effects found for state anxiety, negative affect, body image and recognising negative emotions in the emotion recognition task. CONCLUSION: The current findings contribute to the growing literature on oxytocin, emotion recognition and positive affect and suggest that ED pathology does not moderate these relationships. Future research would benefit from examining the efficacy of an oxytocin intervention using a within-subjects, cross-over design, in those with sub-clinical and clinical EDs, as well as healthy controls.


Administration, Intranasal , Emotions , Feeding and Eating Disorders , Oxytocin , Trust , Humans , Oxytocin/administration & dosage , Oxytocin/pharmacology , Oxytocin/therapeutic use , Female , Emotions/drug effects , Young Adult , Trust/psychology , Adult , Double-Blind Method , Feeding and Eating Disorders/psychology , Feeding and Eating Disorders/drug therapy , Adolescent , Anxiety/drug therapy , Anxiety/psychology , Body Image/psychology , Recognition, Psychology/drug effects
10.
Transl Psychiatry ; 14(1): 208, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796566

In clinical settings, tumor compression, trauma, surgical injury, and other types of injury can cause hypothalamic damage, resulting in various types of hypothalamic dysfunction. Impaired release of oxytocin can lead to cognitive impairment and affect prognosis and long-term quality of life after hypothalamic injury. Hypothalamic injury-induced cognitive dysfunction was detected in male animals. Behavioral parameters were measured to assess the characteristics of cognitive dysfunction induced by hypothalamic-pituitary stalk lesions. Brains were collected for high-throughput RNA sequencing and immunostaining to identify pathophysiological changes in hippocampal regions highly associated with cognitive function after injury to corresponding hypothalamic areas. Through transcriptomic analysis, we confirmed the loss of oxytocin neurons after hypothalamic injury and the reversal of hypothalamic-induced cognitive dysfunction after oxytocin supplementation. Furthermore, overactivation of the ERK signaling pathway and ß-amyloid deposition in the hippocampal region after hypothalamic injury were observed, and cognitive function was restored after inhibition of ERK signaling pathway overactivation. Our findings suggest that cognitive dysfunction after hypothalamic injury may be caused by ERK hyperphosphorylation in the hippocampal region resulting from a decrease in the number of oxytocin neurons, which in turn causes ß-amyloid deposition.


Amyloid beta-Peptides , Cognitive Dysfunction , Hippocampus , Hypothalamus , MAP Kinase Signaling System , Oxytocin , Oxytocin/metabolism , Oxytocin/pharmacology , Animals , Hippocampus/metabolism , Hippocampus/drug effects , Male , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , MAP Kinase Signaling System/drug effects , Amyloid beta-Peptides/metabolism , Neurons/drug effects , Neurons/metabolism , Disease Models, Animal , Mice , Phosphorylation
11.
Front Endocrinol (Lausanne) ; 15: 1272270, 2024.
Article En | MEDLINE | ID: mdl-38689729

During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.


Hypothalamo-Hypophyseal System , Oxytocin , Pituitary-Adrenal System , Animals , Female , Humans , Pregnancy , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stress, Physiological/physiology , Stress, Psychological/metabolism , Yin-Yang
12.
Behav Brain Res ; 469: 115052, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38782096

Autism spectrum disorder (ASD) is a pervasive developmental disorder with gender differences. Oxytocin (OXT) is currently an important candidate drug for autism, but the lack of data on female autism is a big issue. It has been reported that the effect of OXT is likely to be different between male and female ASD patients. In the study, we specifically explored the role of the OXT signaling pathway in a VPA-induced female rat's model of autism. The data showed that there was an increase of either oxytocin or its receptor expressions in both the hippocampus and the prefrontal cortex of VPA-induced female offspring. To determine if the excess of OXT signaling contributed to autism symptoms in female rats, exogenous oxytocin and oxytocin receptor antagonists Atosiban were used in the experiment. It was found that exogenous oxytocin triggered autism-like behaviors in wild-type female rats by intranasal administration. More interestingly, several autism-like deficits including social interaction, anxiety, and repeat stereotypical sexual behavior in the VPA female offspring were significantly attenuated by oxytocin receptor antagonists Atosiban. Moreover, Atosiban also effectively improved the synaptic plasticity impairment induced by VPA in female offspring. Our results suggest that oxytocin receptor antagonists significantly improve autistic-like behaviors in a female rat model of valproic acid-induced autism.


Autistic Disorder , Disease Models, Animal , Oxytocin , Receptors, Oxytocin , Valproic Acid , Vasotocin , Animals , Valproic Acid/pharmacology , Female , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Oxytocin/metabolism , Oxytocin/pharmacology , Oxytocin/metabolism , Oxytocin/administration & dosage , Rats , Vasotocin/analogs & derivatives , Vasotocin/pharmacology , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Behavior, Animal/drug effects , Rats, Sprague-Dawley , Neuronal Plasticity/drug effects , Social Interaction/drug effects , Sexual Behavior, Animal/drug effects , Anxiety/drug therapy , Anxiety/chemically induced , Pregnancy
13.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Article En | MEDLINE | ID: mdl-38816029

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Empathy , Fear , Mice, Inbred C57BL , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Oxytocin/metabolism , Male , Paraventricular Hypothalamic Nucleus/metabolism , Fear/physiology , Empathy/physiology , Neurons/metabolism , Mice , Receptors, Oxytocin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pain/physiopathology , Pain/psychology , Mice, Transgenic
14.
Neuropharmacology ; 253: 109971, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38705568

The impact of environmental enrichment (EE) on natural rewards, including social and appetitive rewards, was investigated in male Swiss mice. EE, known for providing animals with various stimuli, was assessed for its effects on conditioned place preference (CPP) associated with ethanol and social stimuli. We previously demonstrated that EE increased the levels of the prosocial neuropeptide oxytocin (OT) in the hypothalamus and enhanced ethanol rewarding effects via an oxytocinergic mechanism. This study also investigated the impact of EE on social dominance and motivation for rewards, measured OT-mediated phospholipase C (PLC) activity in striatal membranes, and assessed OT expression in the hypothalamus. The role of dopamine in motivating rewards was considered, along with the interaction between OT and D1 receptors (DR) in the nucleus accumbens (NAc). Results showed that EE mice exhibited a preference for ethanol reward over social reward, a pattern replicated by the OT analogue Carbetocin. EE mice demonstrated increased social dominance and reduced motivation for appetitive taste stimuli. Higher OT mRNA levels in the hypothalamus were followed by diminished OT receptor (OTR) signaling activity in the striatum of EE mice. Additionally, EE mice displayed elevated D1R expression, which was attenuated by the OTR antagonist (L-368-889). The findings underscore the reinforcing effect of EE on ethanol and social rewards through an oxytocinergic mechanism. Nonetheless, they suggest that mechanisms other than the prosocial effect of EE may contribute to the ethanol pro-rewarding effect of EE and Carbetocin. They also point towards an OT-dopamine interaction potentially underlying some of these effects.


Dopamine , Ethanol , Nucleus Accumbens , Oxytocin , Receptors, Dopamine D1 , Receptors, Oxytocin , Reward , Animals , Oxytocin/metabolism , Oxytocin/analogs & derivatives , Male , Ethanol/pharmacology , Ethanol/administration & dosage , Mice , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine/metabolism , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Environment , Hypothalamus/metabolism , Hypothalamus/drug effects , Central Nervous System Depressants/pharmacology , Social Dominance , Social Behavior , Motivation/physiology , Motivation/drug effects
15.
Psychother Psychosom ; 93(3): 169-180, 2024.
Article En | MEDLINE | ID: mdl-38754399

INTRODUCTION: Loneliness poses a significant health problem and existing psychological interventions have shown only limited positive effects on loneliness. Based on preliminary evidence for impaired oxytocin signaling in trait-like loneliness, the current proof-of-concept study used a randomized, double-blind, placebo-controlled design to probe intranasal oxytocin (OT) as an adjunct to a short-term modular-based group intervention for individuals suffering from high trait-like loneliness (HL, UCLA Loneliness Scale ≥55). METHODS: Seventy-eight healthy HL adults (56 women) received five weekly group psychotherapy sessions. HL participants received OT or placebo before the intervention sessions. Primary outcomes were trait-like loneliness measured at baseline, after the intervention, and again at two follow-up time points (3 weeks and 3 months), and, assessed at each session, state loneliness (visual analog scale), perceived stress (Perceived Stress Scale, PSS-10), quality of life (World Health Organization Five Well-Being Index, WHO-5), and the therapeutic relationship (Group Questionnaire, GQ-D). RESULTS: The psychological intervention was associated with significantly reduced perceived stress and improved trait-like loneliness across treatment groups, which was still evident at the 3-month follow-up. OT had no significant effect on trait-like loneliness, quality of life, or perceived stress. However, compared to placebo, OT significantly facilitated the decrease in state loneliness within sessions and significantly improved positive bonding between the group members. CONCLUSION: Despite significantly improved trait-like loneliness after the intervention, OT did not significantly augment this effect. Further studies are needed to determine optimal intervention designs to translate the observed acute effects of OT into long-term benefits.


Administration, Intranasal , Loneliness , Oxytocin , Proof of Concept Study , Psychotherapy, Group , Humans , Loneliness/psychology , Oxytocin/administration & dosage , Female , Male , Double-Blind Method , Adult , Psychotherapy, Group/methods , Quality of Life , Stress, Psychological/therapy , Middle Aged , Treatment Outcome
16.
Commun Biol ; 7(1): 642, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802535

Alterations in the experience-dependent and autonomous elaboration of neural circuits are assumed to underlie autism spectrum disorder (ASD), though it is unclear what synaptic traits are responsible. Here, utilizing a valproic acid-induced ASD marmoset model, which shares common molecular features with idiopathic ASD, we investigate changes in the structural dynamics of tuft dendrites of upper-layer pyramidal neurons and adjacent axons in the dorsomedial prefrontal cortex through two-photon microscopy. In model marmosets, dendritic spine turnover is upregulated, and spines are generated in clusters and survived more often than in control marmosets. Presynaptic boutons in local axons, but not in commissural long-range axons, demonstrate hyperdynamic turnover in model marmosets, suggesting alterations in projection-specific plasticity. Intriguingly, nasal oxytocin administration attenuates clustered spine emergence in model marmosets. Enhanced clustered spine generation, possibly unique to certain presynaptic partners, may be associated with ASD and be a potential therapeutic target.


Callithrix , Disease Models, Animal , Neuronal Plasticity , Oxytocin , Animals , Oxytocin/metabolism , Male , Synapses/metabolism , Dendritic Spines/metabolism , Dendritic Spines/pathology , Dendritic Spines/drug effects , Autism Spectrum Disorder/metabolism , Autistic Disorder/metabolism , Autistic Disorder/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Valproic Acid/pharmacology , Presynaptic Terminals/metabolism , Female , Axons/metabolism
17.
Front Endocrinol (Lausanne) ; 15: 1390203, 2024.
Article En | MEDLINE | ID: mdl-38803478

Vasopressin and oxytocin are well known and evolutionarily ancient modulators of social behavior. The distribution and relative densities of vasopressin and oxytocin receptors are known to modulate the sensitivity to these signaling molecules. Comparative work is needed to determine which neural networks have been conserved and modified over evolutionary time, and which social behaviors are commonly modulated by nonapeptide signaling. To this end, we used receptor autoradiography to determine the distribution of vasopressin 1a and oxytocin receptors in the Southern giant pouched rat (Cricetomys ansorgei) brain, and to assess the relative densities of these receptors in specific brain regions. We then compared the relative receptor pattern to 23 other species of rodents using a multivariate ANOVA. Pouched rat receptor patterns were strikingly similar to hamsters and voles overall, despite the variation in social organization among species. Uniquely, the pouched rat had dense vasopressin 1a receptor binding in the caudate-putamen (i.e., striatum), an area that might impact affiliative behavior in this species. In contrast, the pouched rat had relatively little oxytocin receptor binding in much of the anterior forebrain. Notably, however, oxytocin receptor binding demonstrated extremely dense binding in the bed nucleus of the stria terminalis, which is associated with the modulation of several social behaviors and a central hub of the social decision-making network. Examination of the nonapeptide system has the potential to reveal insights into species-specific behaviors and general themes in the modulation of social behavior.


Brain , Receptors, Oxytocin , Receptors, Vasopressin , Animals , Receptors, Oxytocin/metabolism , Receptors, Vasopressin/metabolism , Male , Brain/metabolism , Rodentia/metabolism , Rats , Species Specificity , Autoradiography , Arvicolinae/metabolism , Oxytocin/metabolism , Cricetinae , Social Behavior , Female
18.
J Neurodev Disord ; 16(1): 26, 2024 May 26.
Article En | MEDLINE | ID: mdl-38796448

BACKGROUND: Synthetic oxytocin (sOT) is frequently administered during parturition. Studies have raised concerns that fetal exposure to sOT may be associated with altered brain development and risk of neurodevelopmental disorders. In a large and diverse sample of children with data about intrapartum sOT exposure and subsequent diagnoses of two prevalent neurodevelopmental disorders, i.e., attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), we tested the following hypotheses: (1) Intrapartum sOT exposure is associated with increased odds of child ADHD or ASD; (2) associations differ across sex; (3) associations between intrapartum sOT exposure and ADHD or ASD are accentuated in offspring of mothers with pre-pregnancy obesity. METHODS: The study sample comprised 12,503 participants from 44 cohort sites included in the Environmental Influences on Child Health Outcomes (ECHO) consortium. Mixed-effects logistic regression analyses were used to estimate the association between intrapartum sOT exposure and offspring ADHD or ASD (in separate models). Maternal obesity (pre-pregnancy BMI ≥ 30 kg/m2) and child sex were evaluated for effect modification. RESULTS: Intrapartum sOT exposure was present in 48% of participants. sOT exposure was not associated with increased odds of ASD (adjusted odds ratio [aOR] 0.86; 95% confidence interval [CI], 0.71-1.03) or ADHD (aOR 0.89; 95% CI, 0.76-1.04). Associations did not differ by child sex. Among mothers with pre-pregnancy obesity, sOT exposure was associated with lower odds of offspring ADHD (aOR 0.72; 95% CI, 0.55-0.96). No association was found among mothers without obesity (aOR 0.97; 95% CI, 0.80-1.18). CONCLUSIONS: In a large, diverse sample, we found no evidence of an association between intrapartum exposure to sOT and odds of ADHD or ASD in either male or female offspring. Contrary to our hypothesis, among mothers with pre-pregnancy obesity, sOT exposure was associated with lower odds of child ADHD diagnosis.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Body Mass Index , Oxytocin , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Male , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/etiology , Child , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/etiology , Adult , Obesity, Maternal/epidemiology , Child, Preschool , Cohort Studies , Obesity/epidemiology
19.
BMC Pregnancy Childbirth ; 24(1): 291, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641779

BACKGROUND: Current guidelines regarding oxytocin stimulation are not tailored to individuals as they are based on randomised controlled trials. The objective of the study was to develop an artificial intelligence (AI) model for individual prediction of the risk of caesarean delivery (CD) in women with a cervical dilatation of 6 cm after oxytocin stimulation for induced labour. The model included not only variables known when labour induction was initiated but also variables describing the course of the labour induction. METHODS: Secondary analysis of data from the CONDISOX randomised controlled trial of discontinued vs. continued oxytocin infusion in the active phase of induced labour. Extreme gradient boosting (XGBoost) software was used to build the prediction model. To explain the impact of the predictors, we calculated Shapley additive explanation (SHAP) values and present a summary SHAP plot. A force plot was used to explain specifics about an individual's predictors that result in a change of the individual's risk output value from the population-based risk. RESULTS: Among 1060 included women, 160 (15.1%) were delivered by CD. The XGBoost model found women who delivered vaginally were more likely to be parous, taller, to have a lower estimated birth weight, and to be stimulated with a lower amount of oxytocin. In 108 women (10% of 1060) the model favoured either continuation or discontinuation of oxytocin. For the remaining 90% of the women, the model found that continuation or discontinuation of oxytocin stimulation affected the risk difference of CD by less than 5% points. CONCLUSION: In women undergoing labour induction, this AI model based on a secondary analysis of data from the CONDISOX trial may help predict the risk of CD and assist the mother and clinician in individual tailored management of oxytocin stimulation after reaching 6 cm of cervical dilation.


Labor, Obstetric , Oxytocics , Pregnancy , Female , Humans , Oxytocin , Artificial Intelligence , Labor, Induced
20.
Commun Biol ; 7(1): 471, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632466

Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.


Oxytocin , Receptors, Oxytocin , Animals , Humans , Aged , Oxytocin/metabolism , Receptors, Oxytocin/genetics , Signal Transduction , Brain/metabolism
...