Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.435
Filter
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970508

ABSTRACT

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Subject(s)
Early Growth Response Protein 3 , Obesity , Podocytes , Protein-Arginine N-Methyltransferases , Repressor Proteins , STAT3 Transcription Factor , Podocytes/metabolism , Podocytes/pathology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Humans , Mice , STAT3 Transcription Factor/metabolism , Obesity/complications , Obesity/metabolism , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Palmitic Acid/pharmacology , Diet, High-Fat/adverse effects , Inflammation/metabolism , Mice, Obese , Male , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Kidney Cortex/metabolism , Kidney Cortex/pathology
2.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928089

ABSTRACT

SARS-CoV-2 S-protein-mediated fusion is thought to involve the interaction of the membrane-distal or N-terminal heptad repeat (NHR) ("HR1") of the cleaved S2 segment of the protein and the membrane-proximal or C-terminal heptad repeat (CHR) ("HR2") regions of the protein. We examined the fusion inhibitory activity of a PEGylated HR2-derived peptide and its palmitoylated derivative using a pseudovirus infection assay. The latter peptide caused a 76% reduction in fusion activity at 10 µM. Our results suggest that small variations in peptide derivatization and differences in the membrane composition of pseudovirus preparations may affect the inhibitory potency of HR2-derived peptides. We suggest that future studies on the inhibition of infectivity of SARS-CoV-2 in both in vitro and in vivo systems consider the need for higher concentrations of peptide inhibitors.


Subject(s)
Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Humans , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Peptides/pharmacology , Peptides/chemistry , Palmitic Acid/pharmacology , Palmitic Acid/chemistry , Virus Internalization/drug effects , COVID-19/virology , COVID-19/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
Sci Rep ; 14(1): 13116, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849435

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is an attractive target for cancer therapy. However, the clinical efficacy of SCD1 inhibitor monotherapy is limited. There is thus a need to elucidate the mechanisms of resistance to SCD1 inhibition and develop new therapeutic strategies for combination therapy. In this study, we investigated the molecular mechanisms by which cancer cells acquire resistance to endoplasmic reticulum (ER) stress-dependent cancer cell death induced by SCD1 inhibition. SCD1 inhibitor-sensitive and -resistant cancer cells were treated with SCD1 inhibitors in vitro, and SCD1 inhibitor-sensitive cancer cells accumulated palmitic acid and underwent ER stress response-induced cell death. Conversely, SCD1-resistant cancer cells did not undergo ER stress response-induced cell death because fatty acid desaturase 2 (FADS2) eliminated the accumulation of palmitic acid. Furthermore, genetic depletion using siRNA showed that FADS2 is a key determinant of sensitivity/resistance of cancer cells to SCD1 inhibitor. A549 cells, an SCD1 inhibitor-resistant cancer cell line, underwent ER stress-dependent cancer cell death upon dual inhibition of SCD1 and FADS2. Thus, combination therapy with SCD1 inhibition and FADS2 inhibition is potentially a new cancer therapeutic strategy targeting fatty acid metabolism.


Subject(s)
Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Fatty Acid Desaturases , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/antagonists & inhibitors , Humans , Endoplasmic Reticulum Stress/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Cell Line, Tumor , A549 Cells , Palmitic Acid/pharmacology , Cell Death/drug effects , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy
4.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38906602

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Subject(s)
DNA Methyltransferase 3A , Forkhead Box Protein O1 , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Palmitic Acid , MicroRNAs/genetics , MicroRNAs/metabolism , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Humans , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Animals , Mice , Palmitic Acid/pharmacology , Cell Line, Tumor , DNA Methylation/drug effects , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Promoter Regions, Genetic/drug effects , Mice, Nude , Male , Gene Expression Regulation, Neoplastic/drug effects , Female , Apoptosis/drug effects , Autophagy/drug effects , Mice, Inbred BALB C
5.
Front Biosci (Landmark Ed) ; 29(6): 209, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38940024

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by hepatic fat accumulation, often progressing to severe liver injury, for which approved treatments are currently lacking. This study explores the potential therapeutic impact of alpha-lipoic acid (ALA), a natural compound crucial in lipid metabolism, on NAFLD using an in vitro model. METHODS: HepG2 cells were treated with a palmitic acid:oleic acid (PA:OA) mixture, representing a cellular model of steatosis. Subsequent treatment with ALA at concentrations of 1 µM and 5 µM aimed to evaluate its effects on lipid content and metabolism. Real-time polymerase chain reaction (PCR), BODIPY staining, cytofluorimetric analysis, and lipidomics were used to assess gene expression, lipid droplet accumulation, and fatty acid profiles. RESULTS: Our results showed that ALA significantly reduced lipid droplets in PA:OA-treated HepG2 cells, with a concentration-dependent effect. Analysis of fatty acid profiles demonstrated a decrease in palmitic acid levels with ALA treatment, while oleic acid reduction was observed only at the higher concentration. Moreover, ALA modulated the expression of genes involved in cholesterol biosynthesis and low-density lipoprotein (LDL) metabolism, indicating a potential role in lipid homeostasis. Further insights into molecular mechanisms revealed that ALA modulated peroxisome proliferator activated receptors (PPARs), specifically PPAR-alpha and PPAR-gamma, involved in fatty acid metabolism and insulin sensitivity. Finally, ALA counteracted the overexpression of thermogenic genes induced by exogenous fatty acids, suggesting a regulatory role in energy dissipation pathways. CONCLUSION: In conclusion, this study highlights ALA as a therapeutic agent in mitigating lipid accumulation and dysregulation in NAFLD.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Oleic Acid , Palmitic Acid , Thioctic Acid , Humans , Thioctic Acid/pharmacology , Hep G2 Cells , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Oleic Acid/pharmacology , Oleic Acid/metabolism , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Gene Expression Regulation/drug effects , Fatty Acids/metabolism , PPAR gamma/metabolism , Lipid Droplets/metabolism , Lipid Droplets/drug effects , PPAR alpha/metabolism , PPAR alpha/genetics , Uncoupling Protein 2/metabolism , Uncoupling Protein 2/genetics
6.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928494

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC)'s resistance to therapies is mainly attributed to pancreatic cancer stem cells (PCSCs). Mitochondria-impairing agents can be used to hamper PCSC propagation and reduce PDAC progression. Therefore, to develop an efficient vector for delivering drugs to the mitochondria, we synthesized tris(3,5-dimethylphenyl)phosphonium-conjugated palmitic acid. Triphenylphosphonium (TPP) is a lipophilic cationic moiety that promotes the accumulation of conjugated agents in the mitochondrion. Palmitic acid (PA), the most common saturated fatty acid, has pro-apoptotic activity in different types of cancer cells. TPP-PA was prepared by the reaction of 16-bromopalmitic acid with TPP, and its structure was characterized by 1H and 13C NMR and HRMS. We compared the proteomes of TPP-PA-treated and untreated PDAC cells and PCSCs, identifying dysregulated proteins and pathways. Furthermore, assessments of mitochondrial membrane potential, intracellular ROS, cardiolipin content and lipid peroxidation, ER stress, and autophagy markers provided information on the mechanism of action of TPP-PA. The findings showed that TPP-PA reduces PDAC cell proliferation through mitochondrial disruption that leads to increased ROS, activation of ER stress, and autophagy. Hence, TPP-PA might offer a new approach for eliminating both the primary population of cancer cells and PCSCs, which highlights the promise of TPP-derived compounds as anticancer agents for PDAC.


Subject(s)
Mitochondria , Organophosphorus Compounds , Palmitic Acid , Pancreatic Neoplasms , Proteomics , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Palmitic Acid/pharmacology , Palmitic Acid/chemistry , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/chemistry , Proteomics/methods , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Proteome/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Autophagy/drug effects
7.
Nutrients ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931156

ABSTRACT

Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3ß and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.


Subject(s)
Forkhead Box Protein O1 , Insulin Receptor Substrate Proteins , Insulin Resistance , Palmitic Acid , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Hep G2 Cells , Palmitic Acid/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Forkhead Box Protein O1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Nucleotides/metabolism , Nucleotides/pharmacology , Glucose/metabolism , Oxidative Stress/drug effects , Glycogen/metabolism , Insulin/metabolism
8.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786033

ABSTRACT

Research on retinoid-based cancer prevention, spurred by the effects of vitamin A deficiency on gastric cancer and subsequent clinical studies on digestive tract cancer, unveils novel avenues for chemoprevention. Acyclic retinoids like 4,5-didehydrogeranylgeranoic acid (4,5-didehydroGGA) have emerged as potent agents against hepatocellular carcinoma (HCC), distinct from natural retinoids such as all-trans retinoic acid (ATRA). Mechanistic studies reveal GGA's unique induction of pyroptosis, a rapid cell death pathway, in HCC cells. GGA triggers mitochondrial superoxide hyperproduction and ER stress responses through Toll-like receptor 4 (TLR4) signaling and modulates autophagy, ultimately activating pyroptotic cell death in HCC cells. Unlike ATRA-induced apoptosis, GGA and palmitic acid (PA) induce pyroptosis, underscoring their distinct mechanisms. While all three fatty acids evoke mitochondrial dysfunction and ER stress responses, GGA and PA inhibit autophagy, leading to incomplete autophagic responses and pyroptosis, whereas ATRA promotes autophagic flux. In vivo experiments demonstrate GGA's potential as an anti-oncometabolite, inducing cell death selectively in tumor cells and thus suppressing liver cancer development. This review provides a comprehensive overview of the molecular mechanisms underlying GGA's anti-HCC effects and underscores its promising role in cancer prevention, highlighting its importance in HCC prevention.


Subject(s)
Carcinoma, Hepatocellular , Diterpenes , Liver Neoplasms , Palmitic Acid , Pyroptosis , Tretinoin , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/drug therapy , Diterpenes/pharmacology , Palmitic Acid/pharmacology , Pyroptosis/drug effects , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Tretinoin/pharmacology , Animals , Autophagy/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects
9.
J Agric Food Chem ; 72(23): 13039-13053, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809522

ABSTRACT

Deregulation of mitochondrial functions in hepatocytes contributes to many liver diseases, such as nonalcoholic fatty liver disease (NAFLD). Lately, it was referred to as MAFLD (metabolism-associated fatty liver disease). Hesperetin (Hst), a bioactive flavonoid constituent of citrus fruit, has been proven to attenuate NAFLD. However, a potential connection between its preventive activities and the modulation of mitochondrial functions remains unclear. Here, our results showed that Hst alleviates palmitic acid (PA)-triggered NLRP3 inflammasome activation and cell death by inhibition of mitochondrial impairment in HepG2 cells. Hst reinstates fatty acid oxidation (FAO) rates measured by seahorse extracellular flux analyzer and intracellular acetyl-CoA levels as well as intracellular tricarboxylic acid cycle metabolites levels including NADH and FADH2 reduced by PA exposure. In addition, Hst protects HepG2 cells against PA-induced abnormal energetic profile, ATP generation reduction, overproduction of mitochondrial reactive oxygen species, and collapsed mitochondrial membrane potential. Furthermore, Hst improves the protein expression involved in PINK1/Parkin-mediated mitophagy. Our results demonstrate that it restores PA-impaired mitochondrial function and sustains cellular homeostasis due to the elevation of PINK1/Parkin-mediated mitophagy and the subsequent disposal of dysfunctional mitochondria. These results provide therapeutic potential for Hst utilization as an effective intervention against fatty liver disease.


Subject(s)
Hesperidin , Mitochondria , Mitophagy , Palmitic Acid , Protein Kinases , Ubiquitin-Protein Ligases , Humans , Hep G2 Cells , Palmitic Acid/pharmacology , Hesperidin/pharmacology , Mitophagy/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Protein Kinases/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Membrane Potential, Mitochondrial/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Protective Agents/pharmacology
10.
Commun Biol ; 7(1): 539, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714886

ABSTRACT

Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Intervertebral Disc Degeneration , Lipid Droplets , Nucleus Pulposus , Palmitic Acid , Nucleus Pulposus/metabolism , Nucleus Pulposus/drug effects , Nucleus Pulposus/pathology , Nucleus Pulposus/cytology , Endoplasmic Reticulum Stress/drug effects , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Humans , Lipid Droplets/metabolism , Male , Female , Adult , Middle Aged
11.
Pak J Pharm Sci ; 37(1(Special)): 223-229, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747273

ABSTRACT

In this study, the anti-osteogenic properties of the volatile oil extracted from Homalomena gigantea rhizome using ethyl acetate (EtOAc) and methanol (MeOH) were examined. Gas chromatography-mass spectrometry (GC-MS) was employed for the identification of volatile components. Following this, bioassays were performed to evaluate their effects on osteogenesis, encompassing parameters like cell viability, osteoblast differentiation, collagen synthesis and mineralization. The GC-MS analysis revealed 19 compounds in the EtOAc extract and 36 compounds in the MeOH extract. In the MeOH extract, major constituents included bis(2-ethylhexyl) terephthalate (13.83%), linalool (9.58%), palmitic acid (6.55%) and stearic acid (4.29%). The EtOAc extract contained bis(2-ethylhexyl) terephthalate (16.64%), palmitic acid (5.60%) and stearic acid (3.11%) as the predominant components. Both the EtOAc and MeOH extracts of H. gigantea exhibited promising potential for further investigation in anti-osteoporosis research. These findings contribute to the exploration of natural compounds with potential anti-osteoporotic properties, expanding our understanding of their therapeutic potential.


Subject(s)
Gas Chromatography-Mass Spectrometry , Oils, Volatile , Osteogenesis , Plant Extracts , Rhizome , Osteogenesis/drug effects , Rhizome/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Animals , Cell Survival/drug effects , Osteoblasts/drug effects , Cell Differentiation/drug effects , Mice , Palmitic Acid/pharmacology , Acyclic Monoterpenes/pharmacology
12.
Biomolecules ; 14(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786008

ABSTRACT

Epidemiological and clinical evidence have extensively documented the role of obesity in the development of endometrial cancer. However, the effect of fatty acids on cell growth in endometrial cancer has not been widely studied. Here, we reported that palmitic acid significantly inhibited cell proliferation of endometrial cancer cells and primary cultures of endometrial cancer and reduced tumor growth in a transgenic mouse model of endometrial cancer, in parallel with increased cellular stress and apoptosis and decreased cellular adhesion and invasion. Inhibition of cellular stress by N-acetyl-L-cysteine effectively reversed the effects of palmitic acid on cell proliferation, apoptosis, and invasive capacity in endometrial cancer cells. Palmitic acid increased the intracellular formation of lipid droplets in a time- and dose-dependent manner. Depletion of lipid droplets by blocking DGAT1 and DGAT2 effectively increased the ability of palmitic acid to inhibit cell proliferation and induce cleaved caspase 3 activity. Collectively, this study provides new insight into the effect of palmitic acid on cell proliferation and invasion and the formation of lipid droplets that may have potential clinical relevance in the treatment of obesity-driven endometrial cancer.


Subject(s)
Apoptosis , Cell Proliferation , Endometrial Neoplasms , Lipid Droplets , Palmitic Acid , Female , Palmitic Acid/pharmacology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Humans , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Animals , Cell Proliferation/drug effects , Mice , Apoptosis/drug effects , Cell Line, Tumor , Diacylglycerol O-Acyltransferase/metabolism , Mice, Transgenic
13.
Int Heart J ; 65(3): 537-547, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38749744

ABSTRACT

Cardiomyocyte lipotoxicity and ferroptosis are the key to the development of diabetic cardiomyopathy (DCM). Perilipin 5 (PLIN5) is perceived as a significant target of DCM. This study aimed to focus on the role and mechanism of PLIN5 on lipotoxicity and ferroptosis in DCM.Following transfection, mouse cardiomyocytes HL-1 were induced by 0.1 mM palmitic acid (PA) to set up lipotoxic cardiomyocyte models. The cell viability and lipid accumulation were evaluated by cell counting kit-8 assay and Oil red O staining, respectively. Ferrous ion (Fe2+), glutathione (GSH), malondialdehyde (MDA), and reactive oxygen species (ROS) levels were determined to verify the effects of PLIN5 or Pirin (PIR) on ferroptosis. Quantitative real-time reverse transcription polymerase chain reaction or Western blot was performed for quantitative analysis.PLIN5 overexpression promoted the viability, GSH level, and expression of GPX4/PIR/intracellular P65, yet suppressed lipid accumulation, level of Fe2+/MDA/ROS, and expression of interleukin (IL)-1ß/IL-18/intranuclear P65 in PA-stimulated HL-1 cells. PIR silencing counteracted the roles of PLIN5 overexpression in PA-stimulated HL-1 cells.PLIN5 suppresses lipotoxicity and ferroptosis in cardiomyocyte via modulating PIR/NF-κB axis, hinting its potential as a therapeutic target in DCM.


Subject(s)
Diabetic Cardiomyopathies , Ferroptosis , Myocytes, Cardiac , NF-kappa B , Perilipin-5 , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Perilipin-5/metabolism , Diabetic Cardiomyopathies/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Cell Survival , Palmitic Acid/pharmacology , Signal Transduction
14.
Endocrinol Metab (Seoul) ; 39(3): 511-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752267

ABSTRACT

BACKGRUOUND: This study investigates the impact of fluctuating lipid levels on endothelial dysfunction. METHODS: Human aortic and umbilical vein endothelial cells were cultured under varying palmitic acid (PA) concentrations: 0, 50, and 100 µM, and in a variability group alternating between 0 and 100 µM PA every 8 hours for 48 hours. In the lipid variability group, cells were exposed to 100 µM PA during the final 8 hours before analysis. We assessed inflammation using real-time polymerase chain reaction, Western blot, and cytokine enzyme-linked immunosorbent assay (ELISA); reactive oxygen species (ROS) levels with dichlorofluorescin diacetate assay; mitochondrial function through oxygen consumption rates via XF24 flux analyzer; and endothelial cell functionality via wound healing and cell adhesion assays. Cell viability was evaluated using the MTT assay. RESULTS: Variable PA levels significantly upregulated inflammatory genes and adhesion molecules (Il6, Mcp1, Icam, Vcam, E-selectin, iNos) at both transcriptomic and protein levels in human endothelial cells. Oscillating lipid levels reduced basal respiration, adenosine triphosphate synthesis, and maximal respiration, indicating mitochondrial dysfunction. This lipid variability also elevated ROS levels, contributing to a chronic inflammatory state. Functionally, these changes impaired cell migration and increased monocyte adhesion, and induced endothelial apoptosis, evidenced by reduced cell viability, increased BAX, and decreased BCL2 expression. CONCLUSION: Lipid variability induce endothelial dysfunction by elevating inflammation and oxidative stress, providing mechanistic insights into how lipid variability increases cardiovascular risk.


Subject(s)
Endothelium, Vascular , Human Umbilical Vein Endothelial Cells , Inflammation , Oxidative Stress , Palmitic Acid , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Inflammation/metabolism , Palmitic Acid/pharmacology , Reactive Oxygen Species/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Apoptosis , Cell Survival/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Movement/drug effects , Aorta/drug effects , Cell Adhesion/drug effects
15.
J Neurosci Res ; 102(5): e25339, 2024 May.
Article in English | MEDLINE | ID: mdl-38741550

ABSTRACT

Diets rich in saturated fats are more detrimental to health than those containing mono- or unsaturated fats. Fatty acids are an important source of energy, but they also relay information regarding nutritional status to hypothalamic metabolic circuits and when in excess can be detrimental to these circuits. Astrocytes are the main site of central fatty acid ß-oxidation, and hypothalamic astrocytes participate in energy homeostasis, in part by modulating hormonal and nutritional signals reaching metabolic neurons, as well as in the inflammatory response to high-fat diets. Thus, we hypothesized that how hypothalamic astrocytes process-specific fatty acids participates in determining the differential metabolic response and that this is sex dependent as males and females respond differently to high-fat diets. Male and female primary hypothalamic astrocyte cultures were treated with oleic acid (OA) or palmitic acid (PA) for 24 h, and an untargeted metabolomics study was performed. A clear predictive model for PA exposure was obtained, while the metabolome after OA exposure was not different from controls. The observed modifications in metabolites, as well as the expression levels of key metabolic enzymes, indicate a reduction in the activity of the Krebs and glutamate/glutamine cycles in response to PA. In addition, there were specific differences between the response of astrocytes from male and female mice, as well as between hypothalamic and cerebral cortical astrocytes. Thus, the response of hypothalamic astrocytes to specific fatty acids could result in differential impacts on surrounding metabolic neurons and resulting in varied systemic metabolic outcomes.


Subject(s)
Astrocytes , Hypothalamus , Oleic Acid , Palmitic Acid , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Oleic Acid/pharmacology , Female , Palmitic Acid/pharmacology , Hypothalamus/metabolism , Hypothalamus/drug effects , Male , Mice , Mice, Inbred C57BL , Sex Characteristics , Cells, Cultured
16.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Article in English | MEDLINE | ID: mdl-38705401

ABSTRACT

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Subject(s)
Brain-Derived Neurotrophic Factor , Flavones , Membrane Potential, Mitochondrial , Myocytes, Cardiac , Palmitic Acid , Proto-Oncogene Proteins c-akt , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Palmitic Acid/toxicity , Palmitic Acid/pharmacology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Cell Line , Membrane Potential, Mitochondrial/drug effects , Flavones/pharmacology , Cell Survival/drug effects , Signal Transduction/drug effects , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Reactive Oxygen Species/metabolism
17.
J Pharm Sci ; 113(7): 1769-1778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663499

ABSTRACT

Our study focuses on creating hybrid compounds and assessing their suitability for use in skincare products. The synergistic combination of Kojic acid, NSAIDs, and Palmitic acid proved to be an effective approach in inhibiting melanin production, making it a promising solution for individuals with hyperpigmentation concerns with Kojic acid (KA) Ibuprofen monoester (IBUM) and Ibuprofen-Kojic acid-Palmitic acid diester (IBUD) exhibiting a potential tyrosinase (38 % and 49 % inhibition at 200 µM) and anti-melanogenesis activity (77 % and 79 % inhibition at 100 µM). Furthermore, these compounds exhibited potent anti-inflammatory effects, Kojic acid-Diclofenac monoester (DICM) and Diclofenac-Kojic acid-Palmitic acid diester (DICD) offering potential benefits for inflammation by lowering the paw volume. A stability study under chemical conditions and enzymatic conditions was also performed, wherein DICM and DICD showed a better half-life of 515, 593 h under chemical stability and 6.3, 7.5 h under enzymatic stability studies respectively. The diester hybrids IBUD, DICD, Naproxen-Kojic acid-Palmitic acid diester (NAPD) showed a better permeation and penetration profiles compared to their parent drugs. In-vitro cell line studies were conducted to assess the safety and efficacy of these hybrid esters, with promising results. The dual inhibitor demonstrated minimal cytotoxicity and remarkable anti-melanogenic and anti-inflammatory activities, showing its potential as a versatile agent in addressing both melanogenesis and inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Melanins , Palmitic Acid , Pyrones , Palmitic Acid/pharmacology , Melanins/metabolism , Pyrones/pharmacology , Pyrones/chemistry , Pyrones/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Animals , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Mice , Inflammation/drug therapy , Inflammation/metabolism , Esters/chemistry , Esters/pharmacology , Male , Rats , Humans , Ibuprofen/pharmacology , Ibuprofen/chemistry , Diclofenac/pharmacology , Diclofenac/administration & dosage , Melanogenesis
18.
Gene ; 917: 148441, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38608795

ABSTRACT

Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic ß-cell function and mass. In ß-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in ß-cell dysfunction and mass. However, there is a lack of human relevant in vitro model to identify the underlying mechanism through which palmitate induces ß-cell failure. In this frame, we have previously developed a cutting-edge 3D spheroid model of ß-like cells derived from human induced pluripotent stem cells. In the present work, we investigated the signaling pathways modified by palmitate in ß-like cells derived spheroids. When compared to the 2D monolayer cultures, the transcriptome analysis (FDR set at  0.1) revealed that the 3D spheroids upregulated the pancreatic markers (such as GCG, IAPP genes), lipids metabolism and transporters (CD36, HMGSC2 genes), glucose transporter (SLC2A6). Then, the 3D spheroids are exposed to PA 0.5 mM for 72 h. The differential analysis demonstrated that 32 transcription factors and 135 target genes were mainly modulated (FDR set at  0.1) including the upregulation of lipid and carbohydrates metabolism (HMGSC2, LDHA, GLUT3), fibrin metabolism (FGG, FGB), apoptosis (CASP7). The pathway analysis using the 135 selected targets extracted the fibrin related biological process and wound healing in 3D PA treated conditions. An overall pathway gene set enrichment analysis, performed on the overall gene set (with pathway significance cutoff at 0.2), highlighted that PA perturbs the citrate cycle, FOXO signaling and Hippo signaling as observed in human islets studies. Additional RT-PCR confirmed induction of inflammatory (IGFBP1, IGFBP3) and cell growth (CCND1, Ki67) pathways by PA. All these changes were associated with unaffected glucose-stimulated insulin secretion (GSIS), suggesting that they precede the defect of insulin secretion and death induced by PA. Overall, we believe that our data demonstrate the potential of our spheroid 3D islet-like cells to investigate the pancreatic-like response to diabetogenic environment.


Subject(s)
Gene Expression Profiling , Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Palmitic Acid , Spheroids, Cellular , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Palmitic Acid/pharmacology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Gene Expression Profiling/methods , Transcriptome/drug effects , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics
19.
BMC Mol Cell Biol ; 25(1): 14, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689222

ABSTRACT

BACKGROUND: Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS: Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS: By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.


Subject(s)
Cell Proliferation , Diet, High-Fat , Intestinal Mucosa , Organoids , Palmitic Acid , Permeability , Animals , Dogs , Diet, High-Fat/adverse effects , Organoids/metabolism , Organoids/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Intestines/cytology , Intestines/physiology , Intestinal Barrier Function
20.
Eur J Pharmacol ; 974: 176609, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677536

ABSTRACT

PURPOSE: Diabetic cardiomyopathy is a prevalent cardiovascular complication of diabetes mellitus. This study aimed to investigate the effects of ginsenoside Rb1 (GRb1) on the diabetic myocardium. METHODS: Leptin receptor-deficient db/db mice and palmitic acid (PA)-treated cardiomyocyte models were utilized. Cardiac systolic and diastolic function, mitochondrial morphology, and respiratory chain function were determined. The expression of mitochondrial dynamics proteins was measured. Mitofusin 2 (Mfn2) overexpression and inhibition were achieved by lentiviral infection and small interfering RNA (siRNA) transfection. RESULTS: In comparison to non-diabetic mice, db/db mice exhibited significant increases in body weight, blood glucose, blood lipids, and cardiac free fatty acid levels. This was accompanied by myocardial hypertrophy and left ventricular diastolic dysfunction, which were significantly ameliorated by GRb1 intervention. Stimulation with PA increased oxidative stress and apoptosis, and decreased viability in H9c2 cardiomyocytes. PA also reduced sarcomere contractility and relaxation in adult mice ventricular myocytes. PA-induced cellular and mitochondrial damage were reversed with GRb1 treatment. The cardiac tissue of db/db mice and PA-treated cardiomyocytes exhibited a decrease in Mfn2 expression, which was markedly improved by GRb1. Mfn2 overexpression reversed PA-induced mitochondrial fragmentation and functional damage in cardiomyocytes, while inhibition of Mfn2 expression by siRNA transfection blocked the protective effects of GRb1. CONCLUSION: GRb1 alleviated myocardial lipid accumulation and mitochondrial injury, and attenuated ventricular diastolic dysfunction in diabetic mice. The regulation of Mfn2 was involved in the protective effects of GRb1 against lipotoxic myocardial injury.


Subject(s)
Diabetic Cardiomyopathies , GTP Phosphohydrolases , Ginsenosides , Myocytes, Cardiac , Animals , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Male , Palmitic Acid/pharmacology , Apoptosis/drug effects , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Rats , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Receptors, Leptin/deficiency , Cell Line , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...