Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.084
1.
J Vis Exp ; (207)2024 May 17.
Article En | MEDLINE | ID: mdl-38829135

The blood-brain (BBB) is a crucial system that regulates selective brain circulation with the periphery, as an example, allowing necessary nutrients to enter and expel excessive amino acids or toxins from the brain. To model how the BBB can be compromised in diseases like vascular dementia (VaD) or Alzheimer's disease (AD), researchers developed novel methods to model vessel dilatation. A compromised BBB in these disease states can be detrimental and result in the dysregulation of the BBB leading to untoward and pathological consequences impacting brain function. We were able to modify an existing technique that enabled us to inject directly into the Cisterna magna (CM) to induce dilatation of blood vessels using elastase, and disrupt the tight junctions (TJ) of the BBB. With this method, we were able to see various metrics of success over previous techniques, including consistent blood vessel dilatation, reduced mortality or improved recovery, and improving the fill/opacifying agent, a silicone rubber compound, delivery for labeling blood vessels for dilatation analysis. This modified minimally invasive method has had promising results, with a 19%-32% increase in sustained dilatation of large blood vessels in mice from 2 weeks to 3 months post-injection. This improvement contrasts with previous studies, which showed increased dilatation only at the 2 week mark. Additional data suggests sustained expansion even after 9.5 months. This increase was confirmed by comparing the diameter of blood vessels of the elastase and the vehicle-injected group. Overall, this technique is valuable for studying pathological disorders that affect the central nervous system (CNS) using animal models.


Blood-Brain Barrier , Disease Models, Animal , Animals , Mice , Blood-Brain Barrier/metabolism , Pancreatic Elastase , Cerebrovascular Disorders , Cisterna Magna , Male , Dementia, Vascular
2.
Sci Rep ; 14(1): 10361, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710754

Chronic obstructive pulmonary disease (COPD) is a progressive disease that is characterized by chronic airway inflammation. A Japanese herbal medicine, hochuekkito (TJ-41), is prominently used for chronic inflammatory diseases in Japan. This study aimed to analyze the anti-inflammatory effect of TJ-41 in vivo and its underlying mechanisms. We created a COPD mouse model using intratracheal administration of porcine pancreatic elastase and lipopolysaccharide (LPS) and analyzed them with and without TJ-41 administration. A TJ-41-containing diet reduced inflammatory cell infiltration of the lungs in the acute and chronic phases and body weight loss in the acute phase. In vitro experiments revealed that TJ-41 treatment suppressed the LPS-induced inflammatory cytokines in BEAS-2B cells. Furthermore, TJ-41 administration activated the AMP-activated protein kinase (AMPK) pathway and inhibited the mechanistic target of the rapamycin (mTOR) pathway, both in cellular and mouse experiments. We concluded that TJ-41 administration reduced airway inflammation in the COPD mouse model, which might be regulated by the activated AMPK pathway, and inhibited the mTOR pathway.


Anti-Inflammatory Agents , Disease Models, Animal , Drugs, Chinese Herbal , Medicine, Kampo , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Drugs, Chinese Herbal/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Humans , Lipopolysaccharides , Male , Cytokines/metabolism , Signal Transduction/drug effects , Cell Line , Lung/pathology , Lung/drug effects , Lung/metabolism , Pancreatic Elastase/metabolism , East Asian People
3.
Acta Biomater ; 181: 282-296, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705223

Irreversible alveolar airspace enlargement is the main characteristic of pulmonary emphysema, which has been extensively studied using animal models. While the alterations in lung mechanics associated with these morphological changes have been documented in the literature, the study of the mechanical behavior of parenchymal tissue from emphysematous lungs has been poorly investigated. In this work, we characterize the mechanical and morphological properties of lung tissue in elastase-induced emphysema rat models under varying severity conditions. We analyze the non-linear tissue behavior using suitable hyperelastic constitutive models that enable to compare different non-linear responses in terms of hyperelastic material parameters. We further analyze the effect of the elastase dose on alveolar morphology and tissue material parameters and study their connection with respiratory-system mechanical parameters. Our results show that while the lung mechanical function is not significantly influenced by the elastase treatment, the tissue mechanical behavior and alveolar morphology are markedly affected by it. We further show a strong association between alveolar enlargement and tissue softening, not evidenced by respiratory-system compliance. Our findings highlight the importance of understanding tissue mechanics in emphysematous lungs, as changes in tissue properties could detect the early stages of emphysema remodeling. STATEMENT OF SIGNIFICANCE: Gas exchange is vital for life and strongly relies on the mechanical function of the lungs. Pulmonary emphysema is a prevalent respiratory disease where alveolar walls are damaged, causing alveolar enlargement that induces harmful changes in the mechanical response of the lungs. In this work, we study how the mechanical properties of lung tissue change during emphysema. Our results from animal models show that tissue properties are more sensitive to alveolar enlargement due to emphysema than other mechanical properties that describe the function of the whole respiratory system.


Pancreatic Elastase , Pulmonary Emphysema , Animals , Pulmonary Emphysema/pathology , Pulmonary Emphysema/physiopathology , Lung/pathology , Rats , Male , Pulmonary Alveoli/pathology , Biomechanical Phenomena
4.
Sci Rep ; 14(1): 9134, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644380

Prolonged exposure to iron powder and other mineral dusts can threaten the health of individuals, especially those with COPD. The goal of this study was to determine how environmental exposure to metal dust from two different mining centers in Brazil affects lung mechanics, inflammation, remodeling and oxidative stress responses in healthy and elastase-exposed mice. This study divided 72 male C57Bl/6 mice into two groups, the summer group and the winter group. These groups were further divided into six groups: control, nonexposed (SAL); nonexposed, given elastase (ELA); exposed to metal powder at a mining company (SAL-L1 and ELA-L1); and exposed to a location three miles away from the mining company (SAL-L2 and ELA-L2) for four weeks. On the 29th day of the protocol, the researchers assessed lung mechanics, bronchoalveolar lavage fluid (BALF), inflammation, remodeling, oxidative stress, macrophage iron and alveolar wall alterations (mean linear intercept-Lm). The Lm was increased in the ELA, ELA-L1 and ELA-L2 groups compared to the SAL group (p < 0.05). There was an increase in the total number of cells and macrophages in the ELA-L1 and ELA-L2 groups compared to the other groups (p < 0.05). Compared to the ELA and SAL groups, the exposed groups (ELA-L1, ELA-L2, SAL-L1, and SAL-L2) exhibited increased expression of IL-1ß, IL-6, IL-10, IL-17, TNF-α, neutrophil elastase, TIMP-1, MMP-9, MMP-12, TGF-ß, collagen fibers, MUC5AC, iNOS, Gp91phox, NFkB and iron positive macrophages (p < 0.05). Although we did not find differences in lung mechanics across all groups, there were low to moderate correlations between inflammation remodeling, oxidative stress and NFkB with elastance, resistance of lung tissue and iron positive macrophages (p < 0.05). Environmental exposure to iron, confirmed by evaluation of iron in alveolar macrophages and in air, exacerbated inflammation, initiated remodeling, and induced oxidative stress responses in exposed mice with and without emphysema. Activation of the iNOS, Gp91phox and NFkB pathways play a role in these changes.


Environmental Exposure , Iron , Pancreatic Elastase , Animals , Male , Mice , Bronchoalveolar Lavage Fluid/chemistry , Environmental Exposure/adverse effects , Inflammation/metabolism , Inflammation/chemically induced , Iron/toxicity , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Oxidative Stress/drug effects , Pancreatic Elastase/metabolism , Pancreatic Elastase/pharmacology , Powders/toxicity
5.
J Immunotoxicol ; 21(1): 2345152, 2024 Dec.
Article En | MEDLINE | ID: mdl-38659406

The recent global resurgence of severe infections caused by the Group A streptococcus (GAS) pathogen, Streptococcus pyogenes, has focused attention on this microbial pathogen, which produces an array of virulence factors, such as the pore-forming toxin, streptolysin O (SOT). Importantly, the interactions of SOT with human neutrophils (PMN), are not well understood. The current study was designed to investigate the effects of pretreatment of isolated human PMN with purified SOT on several pro-inflammatory activities, including generation of reactive oxygen species (ROS), degranulation (elastase release), influx of extracellular calcium (Ca2+) and release of extracellular DNA (NETosis), using chemiluminescence, spectrophotometric and fluorimetric procedures, respectively. Exposure of PMN to SOT alone caused modest production of ROS and elastase release, while pretreatment with the toxin caused significant augmentation of chemoattractant (fMLP)-activated ROS generation and release of elastase by activated PMN. These effects of treatment of PMN with SOT were associated with both a marked and sustained elevation of cytosolic Ca2+concentrations and significant increases in the concentrations of extracellular DNA, indicative of NETosis. The current study has identified a potential role for SOT in augmenting the Ca2+-dependent pro-inflammatory interactions of PMN, which, if operative in a clinical setting, may contribute to hyper-activation of PMN and GAS-mediated tissue injury.


Extracellular Traps , Neutrophils , Streptococcus pyogenes , Streptolysins , Humans , Bacterial Proteins/metabolism , Calcium/metabolism , Cell Degranulation/drug effects , Cells, Cultured , Extracellular Traps/immunology , Extracellular Traps/metabolism , Inflammation/immunology , Neutrophil Activation/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/drug effects , Pancreatic Elastase/metabolism , Reactive Oxygen Species/metabolism , Streptococcal Infections/immunology , Streptococcus pyogenes/immunology , Streptolysins/metabolism
6.
Eur J Pharmacol ; 974: 176612, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38677537

One of the main pathological features of chronic obstructive pulmonary disease (COPD) is the loss of functional alveolar tissue as a consequence of impaired regenerative capacities (emphysema). Recent research suggests that the secretome from mesenchymal cells, particularly extracellular vesicles (EVs), may possess regenerative properties beneficial for lung repair. However, the regenerative potential of the soluble factors (SFs) within the secretome remains largely unexplored in COPD. To this extent, we purified EVs and SFs secreted by lung fibroblasts to generate EV-enriched and SF-enriched fractions, and evaluated their effects on elastase-induced lung injury in both precision-cut lung slices (PCLS) and a mouse model. EV- and SF-enriched fractions were concentrated and purified from the conditioned medium of cultured MRC-5 lung fibroblasts using a combination of ultrafiltration and size exclusion chromatography, and were subsequently characterized according to the MISEV guidelines. Treatment with EV- or SF-enriched concentrates prevented and improved elastase-induced emphysema in PCLS, leading to reduced lung injury and upregulated markers of alveolar epithelial cells (aquaporin 5 and surfactant protein C), indicating potential parenchymal regeneration. Accordingly, prophylactic intratracheal treatment with lung fibroblast-derived EV- and SF-enriched concentrates in vivo attenuated elastase-induced lung tissue destruction, improved lung function, and enhanced gene expression of alveolar epithelial cell markers. Here, alveolar repair not only serves the purpose of facilitating gas exchange, but also by reinstating the essential parenchymal tethering required for optimal airway mechanics. In conclusion, this study highlights the therapeutic potential of both lung fibroblast-derived EV- and SF-enriched concentrates for the treatment of lung injury and emphysema.


Extracellular Vesicles , Fibroblasts , Lung , Pancreatic Elastase , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Fibroblasts/drug effects , Fibroblasts/metabolism , Lung/pathology , Lung/drug effects , Mice , Humans , Lung Injury/pathology , Lung Injury/chemically induced , Lung Injury/metabolism , Cell Line , Male , Mice, Inbred C57BL , Disease Models, Animal , Solubility
7.
Cells ; 13(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38534377

The chronic inflammatory component of asthma is propagated by granulocytes, including neutrophils and eosinophils, in the peripheral circulation and airway. Previous studies have suggested that these cells have an altered expression of adhesion-related molecules and a propensity for the release of granule contents that may contribute to tissue damage and enhance inflammatory complications in patients with status asthmaticus. The goal of this prospective cohort study at a tertiary care pediatric hospital with a large population of asthma patients was to assess the role of granulocyte-based inflammation in the development of asthma exacerbation. Subjects were enrolled from two patient populations: those with mild-to-moderate asthma exacerbations seen in the emergency department and those with severe asthma admitted to the intensive care unit (PICU). Clinical data were collected, and blood was drawn. Granulocytes were immediately purified, and the phenotype was assessed, including the expression of cell surface markers, elastase release, and cytokine production. Severe asthmatics admitted to the PICU displayed a significantly higher total neutrophil count when compared with healthy donors. Moreover, little to no eosinophils were found in granulocyte preparations from severe asthmatics. Circulating neutrophils from severe asthmatics admitted to the PICU displayed significantly increased elastase release ex vivo when compared with the PMN from healthy donors. These data suggest that the neutrophil-based activation and release of inflammatory products displayed by severe asthmatics may contribute to the propagation of asthma exacerbations.


Asthma , Neutrophils , Humans , Child , Pancreatic Elastase , Prospective Studies , Eosinophils , Inflammation
8.
mSystems ; 9(4): e0116523, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38530056

To establish infections in human hosts, Pseudomonas aeruginosa must overcome innate immune-generated oxidative stress, such as the hypochlorous acid (HOCl) produced by neutrophils. We set out to find specific biomarkers of oxidative stress through the development of a protocol for the metabolic profiling of P. aeruginosa cultures grown in the presence of different oxidants using a novel ionization technique for mass spectrometry, laser desorption rapid evaporative ionization mass spectrometry (LD-REIMS). We demonstrated the ability of LD-REIMS to classify samples as untreated or treated with a specific oxidant with 100% accuracy and identified a panel of 54 metabolites with significantly altered concentrations after exposure to one or more of the oxidants. Key metabolic changes were conserved in P. aeruginosa clinical strains isolated from patients with cystic fibrosis lung infections. These data demonstrated that HOCl stress impacted the Pseudomonas quinolone signal (PQS) quorum sensing system. Ten 2-alkyl-4-quinolones (AHQs) associated with the PQS system were significantly lower in concentration in HOCl-stressed P. aeruginosa cultures, including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), the most active signal molecule of the PQS system. The PQS system regulates the production of virulence factors, including pyocyanin and elastase, and their levels were markedly affected by HOCl stress. No pyocyanin was detectable and elastase concentrations were reduced by more than 75% in cultures grown with sub-lethal concentrations of HOCl, suggesting that this neutrophil-derived oxidant may disrupt the ability of P. aeruginosa to establish infections through interference with production of PQS-associated virulence factors. IMPORTANCE: This work demonstrates that a high-throughput ambient ionization mass spectrometry method can be used successfully to study a bacterial stress response. Its application to the opportunistic pathogen Pseudomonas aeruginosa led to the identification of specific oxidative stress biomarkers, and demonstrated that hypochlorous acid, an oxidant specifically produced by human neutrophils during infection, affects quorum sensing and reduces production of the virulence factors pyocyanin and elastase. No pyocyanin was detectable and elastase levels were reduced by more than 75% in bacteria grown in the presence of hypochlorous acid. This approach has the potential to be widely applicable to the characterization of the stress responses of bacteria.


Quinolones , Quorum Sensing , Humans , Pseudomonas aeruginosa , Hypochlorous Acid/metabolism , Pyocyanine/metabolism , Quinolones/analysis , Virulence Factors/metabolism , Mass Spectrometry , Oxidants/metabolism , Pancreatic Elastase/metabolism , Biomarkers/metabolism , Lasers
9.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Article En | MEDLINE | ID: mdl-38450923

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Cell Proliferation , Collagenases , Hyaluronoglucosaminidase , Melanins , Paeonia , Pancreatic Elastase , Plant Oils , Seeds , Paeonia/chemistry , Seeds/chemistry , Animals , Mice , Melanins/analysis , Pancreatic Elastase/metabolism , Plant Oils/pharmacology , Cell Proliferation/drug effects , Collagenases/metabolism , Linoleic Acid/pharmacology , Linoleic Acid/analysis , Cosmetics/chemistry , Cosmetics/pharmacology , Melanoma, Experimental/drug therapy , alpha-Linolenic Acid/pharmacology , alpha-Linolenic Acid/analysis , Chorioallantoic Membrane/drug effects , Cell Line, Tumor , Chickens
10.
J Ethnopharmacol ; 328: 118021, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38492793

ETHNOPHARMACOLOGICAL RELEVANCE: Prinsepia utilis Royle, also known as the Anas fruit, is a unique perennial woody oil plant from Yunnan Province, China. In the ancient texts of Dongba sutras and Yunnan Southern Materia Medica, it has been documented that the local Naxi, Tibetan, and Mosuo communities extensively utilize the root and leaf fruits of green thorns for various purposes. These include treating mild-to-moderate specific dermatitis, moisturising the skin, providing protection against UV damage, aiding childbirth in pregnant women, safeguarding stomach health, reducing the risk of arteriosclerosis, and delaying aging. AIM OF THE STUDY: In this study, leftover residues from oil extraction were efficiently reused, and flavonoids were identified during subsequent extraction and separation processes. The anti-senescent effects of flavonoids in P. utilis Royle have not been systematically studied. Therefore, the objective of this study was to explore the anti-senescent properties of the flavonoids obtained from P. utilis Royle. METHODS: First, HPLC and other analytical techniques were used to identify the components of the P. utilis Royle flavonoid (PURF). Next, DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase were initially detected using in vitro biochemical assays. To examine its antioxidant properties, a zebrafish model was used, and to confirm its anti-senescent effects, a d-galactose-induced mouse aging model was employed. The anti-senescent mechanism of PURF was examined using a natural senescence HFF model. Furthermore, the anti-senescent target was confirmed using a 3D full T-Skin™ model. RESULTS: In vitro biochemical assays demonstrated that flavones exhibited potent antioxidant activity and anti-senescent potential by inhibiting DPPH, hydroxyl radicals, superoxide anion O2-, collagenase, and elastase. It significantly enhanced the antioxidant effect on zebrafish while suppressing ROS and inflammatory injury, up-regulating COL1A1, COL3A1, AMPK, and mTOR gene expression and down-regulating MMP-9, TGF-ß, p21, and p16 gene expression suggesting its potential anti-senescent ability. Findings from the D-galactose-induced aging mouse model showed that PURF greatly increased SOD levels, while simultaneously decreasing HYP and MDA levels. In addition, when PURF was given to the HFF cell and 3D full T-Skin™ model, consistent trends were observed in gene and protein expression, with up-regulation of COL1A1, COL3A1, AMPK, and mTOR genes and down-regulation of TGF-ß, MMP-1, MMP-9, p21, and p16 genes. Therefore, these preliminary findings indicate that flavones can modulate AMPK/mTOR/TGF-ß signalling pathways to exert its influence. CONCLUSION: The kernel residue of natural P. utilis Royle oil extracted from Yunnan province was previously considered agricultural waste, but we successfully extracted and isolated its flavonoid components. Our preliminary studies demonstrated its potential as an environmentally friendly anti-senescent raw material.


Flavones , Pregnancy , Animals , Mice , Humans , Female , Flavones/pharmacology , Matrix Metalloproteinase 9 , Zebrafish , Superoxides , Galactose , AMP-Activated Protein Kinases , China , Antioxidants/pharmacology , Flavonoids/pharmacology , Seeds , Pancreatic Elastase , Transforming Growth Factor beta , TOR Serine-Threonine Kinases
11.
Neuroradiology ; 66(5): 825-834, 2024 May.
Article En | MEDLINE | ID: mdl-38438630

PURPOSE: The elastase-induced aneurysm (EIA) model in rabbits has been proposed for translational research; however, the adjustment of aneurysm neck size remains challenging. In this study, the technical feasibility and safety of balloon neck-plasty to create a wide-necked aneurysm in rabbit EIA model were investigated. METHODS: Male New Zealand White rabbits (N = 15) were randomly assigned to three groups: group A, EIA creation without neck-plasty; group B, neck-plasty immediately after EIA creation; group C, neck-plasty 4 weeks after EIA creation. The diameter of balloon used for neck-plasty was determined 1 mm larger than origin carotid artery diameter. All rabbits were euthanized 4 weeks after their final surgery. Aneurysm neck, height, dome-to-neck (D/N) ratio, and histologic parameters were compared among the groups. RESULTS: Aneurysm creation was technically successful in 14 out of 15 rabbits (93.3%), with one rabbit experiencing mortality due to an adverse anesthetic event during the surgery. Saccular and wide-necked aneurysms were successfully created in all rabbits. Aneurysm neck was significantly greater in groups B and C compared to group A (all P < .05). D/N ratio was significantly lower in groups B and C compared to group A (all P < .05). Additionally, tunica media thickness, vessel area, and luminal area were significantly greater in groups B and C compared to group A (all P < .05). These variables were found to be significantly greater in group B compared to group C (all P < .05). CONCLUSION: The creation of a wide-necked aneurysm using balloon neck-plasty after elastase induction in rabbits has been determined to be technically feasible and safe.


Intracranial Aneurysm , Male , Rabbits , Animals , Intracranial Aneurysm/pathology , Pancreatic Elastase/adverse effects , Disease Models, Animal , Carotid Artery, Common
12.
Chem Biodivers ; 21(5): e202400139, 2024 May.
Article En | MEDLINE | ID: mdl-38494875

Species of Onobrychis have been used to treat skin disorders such as wounds and cuts in folk medicine and Onobrychis argyrea subsp. argyrea (OA) commonly known as 'silvery sainfoin', is a member of this genus. In this study, it was aimed to investigate the skin-related biological activities and phytochemical characterization of OA. Moreover, an emulgel formulation was developed from the main methanolic extract of the plant (OAM). Initially, to identifiy of the active fractions, aerial parts of the plant material was extracted with methanol and fractionated by n-hexane, chloroform, ethyl acetate and n-butanol, respectively. Antioxidant activity was determined by CUPRAC, TOAC, FRAP and DPPH assays. Thereafter, the inhibition potential of OAM, novel formulation and all fractions was measured against elastase, collagenase, tyrosinase and hyaluronidase enzymes. OAM was analyzed and characterized by LC/MS-MS. The major bioactive flavonoids which are rutin and isoquercetin were measured and compared as qualitative and quantitative via high performance thin layer chromatography (HPTLC) analysis in OAM and fractions. The results showed that extracts of OA can be a potential cosmeceutical agent for skin related problems.


Antioxidants , Enzyme Inhibitors , Monophenol Monooxygenase , Phytochemicals , Plant Extracts , Skin , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Skin/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Collagenases/metabolism , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Gels/chemistry , Humans
13.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542124

Inflammation and mucus production are prevalent characteristics of chronic respiratory conditions, such as asthma and chronic chronic obstructive pulmonary disease (COPD). Biological co-factors, including bacteria, viruses, and fungi, may exacerbate these diseases by activating various pathways associated with airway diseases. An example is the fungus Pneumocystis, which is linked to severe COPD in human patients. Recent evidence has demonstrated that Pneumocystis significantly enhanced inflammation and mucus hypersecretion in a rat model of elastase-induced COPD. The present study specifically aims to investigate two additional aspects associated with the pathology induced by Pneumocystis infection: inflammation and collagen deposition around airways. To this end, the focus was to investigate the role of the IL-1ß pro-inflammatory pathway during Pneumocystis infection in COPD rats. Several airway pathology-related features, such as inflammation, mucus hypersecretion, and fibrosis, were evaluated using histological and molecular techniques. COPD animals infected with Pneumocystis exhibited elevated inflammation levels, including a synergistic increase in IL-1ß and Cox-2. Furthermore, protein levels of the IL-1ß-dependent transcription factor cAMP response element-binding (CREB) showed a synergistic elevation of their phosphorylated version in the lungs of COPD animals infected with Pneumocystis, while mucus levels were notably higher in the airways of COPD-infected animals. Interestingly, a CREB responsive element (CRE) was identified in the Muc5b promoter. The presence of CREB in the Muc5b promoter was synergistically increased in COPD animals infected with Pneumocystis compared to other experimental groups. Finally, an increment of deposited collagen was identified surrounding the airways of COPD animals infected with Pneumocystis compared with the other experimental animal groups and correlated with the increase of Tgfß1 mRNA levels. These findings emphasize the role of Pneumocystis as a potential biological co-factor in chronic respiratory diseases like COPD or asthma, warranting new perspectives in the treatment of chronic respiratory diseases.


Asthma , Pneumocystis , Pneumonia, Pneumocystis , Pulmonary Disease, Chronic Obstructive , Humans , Rats , Animals , Pancreatic Elastase/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Lung/pathology , Asthma/metabolism , Mucus/metabolism , Inflammation/metabolism , Collagen/metabolism
15.
J Pediatr Surg ; 59(5): 839-846, 2024 May.
Article En | MEDLINE | ID: mdl-38365473

BACKGROUND: Pulmonary vascular disease (PVD) complicated with pulmonary hypertension (PH) is a leading cause of mortality in congenital diaphragmatic hernia (CDH). Unfortunately, CDH patients are often resistant to PH therapy. Using the nitrogen CDH rat model, we previously demonstrated that CDH-associated PVD involves an induction of elastase and matrix metalloproteinase (MMP) activities, increased osteopontin and epidermal growth factor (EGF) levels, and enhanced smooth muscle cell (SMC) proliferation. Here, we aimed to determine whether the levels of the key members of this proteinase-induced pathway are also elevated in the pulmonary arteries (PAs) of CDH patients. METHODS: Neutrophil elastase (NE), matrix metalloproteinase-2 (MMP-2), epidermal growth factor (EGF), tenascin-C, and osteopontin levels were assessed by immunohistochemistry in the PAs from the lungs of 11 CDH patients and 5 normal age-matched controls. Markers of proliferation (proliferating cell nuclear antigen (PCNA)) and apoptosis (cleaved (active) caspase-3) were also used. RESULTS: While expressed by both control and CDH lungs, the levels of NE, MMP-2, EGF, as well as tenascin-C and osteopontin were significantly increased in the PAs from CDH patients. The percentage of PCNA-positive PA SMCs were also enhanced, while those positive for caspase-3 were slightly decreased. CONCLUSIONS: These results suggest that increased elastase and MMPs, together with elevated tenascin-C and osteopontin levels in an EGF-rich environment may contribute to the PVD in CDH infants. The next step of this study is to expand our analysis to a larger cohort, and determine the potential of targeting this pathway for the treatment of CDH-associated PVD and PH. TYPE OF STUDY: Therapeutic. LEVEL OF EVIDENCE: LEVEL III.


Hernias, Diaphragmatic, Congenital , Hypertension, Pulmonary , Vascular Diseases , Humans , Rats , Animals , Hernias, Diaphragmatic, Congenital/complications , Matrix Metalloproteinase 2/analysis , Matrix Metalloproteinase 2/metabolism , Pulmonary Artery , Osteopontin/metabolism , Caspase 3/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pancreatic Elastase/metabolism , Epidermal Growth Factor , Tenascin/metabolism , Lung/metabolism , Hypertension, Pulmonary/complications , Matrix Metalloproteinases , Vascular Diseases/complications , Phenyl Ethers/metabolism
16.
Int J Biol Macromol ; 263(Pt 1): 130231, 2024 Apr.
Article En | MEDLINE | ID: mdl-38368975

Three newly synthesized amantadine thiourea conjugates namely MS-1 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)benzamide, MS-2 N-(((3 s,5 s,7 s)-adamantan-1-yl)carbamothioyl)-4-methylbenzamide and MS-3 N-((3 s,5 s,7 s)-adamantan-1-ylcarbamothioyl)-4-chlorobenzamide were investigated for their structures, bindings (DNA/ elastase), and for their impact on healthy and cancerous cells. Theoretical (DFT/docking) and experimental {UV-visible (UV-), fluorescence (Flu-), and cyclic voltammetry (CV)} studies indicated binding interactions of each conjugate with DNA and elastase enzyme. Theoretically and experimentally calculated binding parameters for conjugate - DNA interaction revealed MS-3 - DNA to have most significant binding with comparatively greater values of binding parameters {(Kb/M-1: docking, 3.8 × 105; UV-, 5.95 × 103; Flu-,1.55 × 105; CV, 1.52 × 104), (∆G/ kJmol-1: docking, -32.09; UV-, -22.40; Flu-,-30.81; CV, -24.82)}. The docked structures, greater bindings site size values (n), and the trend in DNA viscosity changes in the presence of each conjugate concentration confirmed a mixed binding mode of interaction among them. Conjugate - elastase binding by docking agreed with the experimental anti-elastase findings. Cytotoxicity studies of each tested conjugate demonstrated greater cytotoxicity for cancerous (MG-U87) cells in comparison to control, while for the normal (HEK-293) cells the cytotoxicity was found comparatively low. Overall exploration suggested that MS-3 is the most effective candidate for DNA binding, anti-elastase, and for anti-glioma activities.


Amantadine , Thiourea , Humans , Thiourea/pharmacology , Thiourea/chemistry , HEK293 Cells , Molecular Docking Simulation , Amantadine/pharmacology , DNA/chemistry , Pancreatic Elastase
17.
J Vis Exp ; (203)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38314916

Leukocytospermia can lead to decreased spermatozoa motility, increased spermatozoa morphological abnormalities, elevated spermatozoa DNA fragmentation index, impairment of the spermatozoa acrosome function, and even affected embryonic development. It is a common andrological disease in clinical practice and one of the important causes of male infertility. When determining whether male reproductive tract inflammation exists, andrologists often choose to examine round cells or seminal plasma elastase in the semen as a clinical diagnostic basis. However, the examination of round cells is easily influenced by sloughed spermatogenic cells and reproductive tract epithelial cells, which do not contribute to reducing the indiscriminate and unnecessary use of antibiotics. At the same time, the detection process of elastase is relatively complicated, time-consuming, and slow in reporting results, which is not beneficial for early diagnosis and treatment of diseases such as male genital tract infections (MGTIs). We have innovatively applied the examination of peroxidase-positive leukocytes in semen assisted by a computer-assisted semen analysis (CASA) system as a diagnostic criterion for leukocytospermia, successfully solving these problems. This examination only requires the addition of the operating fluid consisting of four reagents into the specimen, and the total reaction time at room temperature can be controlled within 20-30 min. With the subsequent smear and microscopic examination, the concentration of peroxidase-positive leukocytes in semen can be obtained within a total of 60 min, which can be used to diagnose whether the inflammation of the male reproductive tract existed.


Peroxidase , Semen , Pregnancy , Female , Male , Humans , Spermatozoa , Leukocytes , Pancreatic Elastase , Inflammation/diagnosis
18.
Chem Biodivers ; 21(5): e202302096, 2024 May.
Article En | MEDLINE | ID: mdl-38412297

Pistacia khinjuk is a species of flowering plants belonging to family Anacardiaceae, with promising pharmacological activities like antioxidants, anti-inflammatory, antiviral, and antimicrobial. This study aimed to investigate the GC-MS chemical composition of essential oil isolated from Pistacia khinjuk leaves and its inhibitory properties against aging-relevant enzymes such a collagenase and elastase. The isolated oil showed predominance of ß-cadinene (15.34 %), γ-amorphene (8.50 %), α-cadinol (8.14 %), τ-cadinol (7.57 %), (E)-ß-caryophyllene (5.77 %), α-pinene (4.70 %), phytol (4.57 %), α-muurolene (3.30 %), (+)-epi-bicyclosesquiphellandrene (3.21 %), and cubenene (3.16 %). Further, it showed remarkable inhibitory activities against collagenase and elastase with IC50 values of 15.61±0.69 and 41.12±2.09 µg/mL, respectively compared to epigallocatechin gallate (IC50=29.52±1.3 µg/mL and 26.86±1.37 µg/mL). as a conclusion, the leaf oil is recommended for topical cosmetic preparations to retard skin aging symptoms such as wrinkles. However, the bioavailability assessment and toxicological profile should be considered in the future studies.


Collagenases , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Pancreatic Elastase , Pistacia , Plant Leaves , Skin Aging , Plant Leaves/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Pancreatic Elastase/antagonists & inhibitors , Pancreatic Elastase/metabolism , Pistacia/chemistry , Skin Aging/drug effects , Collagenases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans
19.
J Oleo Sci ; 73(2): 187-199, 2024.
Article En | MEDLINE | ID: mdl-38311409

One of the main goals of medicinal chemistry in recent years has been the development of new enzyme inhibitors and anti-cancer medicines. The isokaempferide' ability to inhibit the enzymes urease, elastase, and collagenase were also studied. The results showed that isokaempferide was the most effective compound against the assigned enzymes, with IC 50 values of 23.05 µM for elastase, 12.83 µM for urease, and 33.62 µM for collagenase respectively. It should be emphasized that natural compound was more effective at inhibiting some enzymes. Additionally, the compound was tested for their anti-cancer properties using colon, lung, breast cancer cell lines. The chemical activities of isokaempferide against urease, collagenase, and elastase were investigated utilizing the molecular docking study. The anti-cancer activities of the compound were evaluated against lung cancer cells such as SPC-A-1, SK-LU-1, 95D, breast cancer cells like MCF7, Hs 578Bst, Hs 319.T, and UACC-3133 cell lines, and colon cancer cell lines like CL40, SW1417, LS1034, and SW480. The chemical activities of isokaempferide against some of the expressed surface receptor proteins (EGFR, estrogen receptor, CD47, progesterone receptor, folate receptor, CD44, HER2, CD155, CXCR4, CD97, and endothelin receptor) in the mentioned cell lines were assessed using the molecular docking calculations. The results showed the probable interactions and their characteristics at an atomic level. The docking scores revealed that isokaempferide has a strong binding affinity to the enzymes and proteins. In addition, the compound formed powerful contact with the enzymes and receptors. Thus, isokaempferide could be potential inhibitor for enzymes and cancer cells.


Breast Neoplasms , Flavonoids , Urease , Humans , Female , Urease/metabolism , Molecular Docking Simulation , MCF-7 Cells , Pancreatic Elastase/metabolism , Collagenases/metabolism , Breast Neoplasms/drug therapy , Structure-Activity Relationship
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338954

The identification of natural remedies for the management of the skin aging process is an increasingly growing issue. In this context, ursolic acid (UA), a ubiquitous molecule, mainly contained in Annurca apple (AA) fruit, has demonstrated valuable cosmetic potential. To this end, in the current study, the AA oleolite (AAO, extract in sunflower oil containing 784.40 ± 7.579 µg/mL of UA) was evaluated to inhibit porcine elastase enzymatic reactions through a validated spectrophotometric method. AAO has shown a valuable capacity to contrast the elastase enzyme with a calculated IC50 of 212.76 mg/mL, in comparison to UA (IC50 of 135.24 µg/mL) pure molecules and quercetin (IC50 of 72.47 µg/mL) which are used as positive controls. In this context and in view of the valuable antioxidant potential of AAO, its topical formulation with 2.5% (w/w) AAO was tested in a placebo-controlled, double-blind, two-arm clinical study on 40 volunteers. Our results indicated that after 28 days of treatment, a significant reduction of the nasolabial fold (-7.2 vs. baseline T0, p < 0.001) and forehead wrinkles (-5.3 vs. baseline T0, p < 0.001) were registered in combination with a valuable improvement of the viscoelastic skin parameters, where skin pliability/firmness (R0) and gross elasticity (R2) were significantly ameliorated (-13% vs. baseline T0, p < 0.001 for R0 and +12% vs. baseline T0, p < 0.001 for R2). Finally, considering the positive correlation between skin elasticity and hydration, the skin moisture was evaluated through the estimation of Trans epidermal water loss (TEWL) and skin conductance.


Cosmetics , Malus , Skin Aging , Humans , Animals , Swine , Skin , Cosmetics/pharmacology , Antioxidants/pharmacology , Pharmaceutical Vehicles , Pancreatic Elastase
...