Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 871
Filter
1.
Sci Rep ; 14(1): 12879, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839896

ABSTRACT

Paneth cells (PCs), a subset of intestinal epithelial cells (IECs) found at the base of small intestinal crypts, play an essential role in maintaining intestinal homeostasis. Altered PCs function is associated with diverse intestinal pathologies, including ileal Crohn's disease (CD). CD patients with ileal involvement have been previously demonstrated to display impairment in PCs and decreased levels of anti-microbial peptides. Although the immunosuppressive drug Azathioprine (AZA) is widely used in CD therapy, the impact of AZA on IEC differentiation remains largely elusive. In the present study, we hypothesized that the orally administered drug AZA also exerts its effect through modulation of the intestinal epithelium and specifically via modulation of PC function. AZA-treated CD patients exhibited an ileal upregulation of AMPs on both mRNA and protein levels compared to non-AZA treated patients. Upon in vitro AZA stimulation, intestinal epithelial cell line MODE-K exhibited heightened expression levels of PC marker in concert with diminished cell proliferation but boosted mitochondrial OXPHOS activity. Moreover, differentiation of IECs, including PCs differentiation, was boosted in AZA-treated murine small intestinal organoids and was associated with decreased D-glucose consumption and decreased growth rates. Of note, AZA treatment strongly decreased Lgr5 mRNA expression as well as Ki67 positive cells. Further, AZA restored dysregulated PCs associated with mitochondrial dysfunction. AZA-dependent inhibition of IEC proliferation is accompanied by boosted mitochondria function and IEC differentiation into PC.


Subject(s)
Azathioprine , Cell Differentiation , Crohn Disease , Intestinal Mucosa , Paneth Cells , Crohn Disease/drug therapy , Crohn Disease/pathology , Crohn Disease/metabolism , Azathioprine/pharmacology , Paneth Cells/metabolism , Paneth Cells/drug effects , Paneth Cells/pathology , Humans , Cell Differentiation/drug effects , Animals , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Female , Male , Ileum/drug effects , Ileum/metabolism , Ileum/pathology , Adult , Organoids/drug effects , Organoids/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Cell Proliferation/drug effects , Middle Aged , Cell Line , Severity of Illness Index
2.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594251

ABSTRACT

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Subject(s)
Inflammatory Bowel Diseases , R-Loop Structures , Animals , Humans , Mice , DEAD-box RNA Helicases/metabolism , Epithelial Cells/metabolism , Homeostasis , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/metabolism , Neoplasm Proteins/metabolism , Paneth Cells/metabolism , Stem Cells/metabolism
3.
Neurogastroenterol Motil ; 36(5): e14780, 2024 May.
Article in English | MEDLINE | ID: mdl-38462652

ABSTRACT

BACKGROUND: Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE: In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.


Subject(s)
Endoplasmic Reticulum Stress , Neurodegenerative Diseases , Endoplasmic Reticulum Stress/physiology , Humans , Neurodegenerative Diseases/metabolism , Animals , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Paneth Cells/metabolism , Inflammation/metabolism
4.
J Vet Med Sci ; 86(3): 277-284, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38267031

ABSTRACT

The mechanism by which the neonicotinoid pesticide clothianidin (CLO) disrupts the intestinal microbiota of experimental animals is unknown. We focused on α-defensins, which are regulators of the intestinal microbiota. Subchronic exposure to CLO induced dysbiosis and reduced short-chain fatty acid-producing bacteria in the intestinal microbiota of mice. Levels of cryptdin-1 (Crp1, a major α-defensin in mice) in feces and cecal contents were lower in the CLO-exposed groups than in control. In Crp1 immunostaining, Paneth cells in the jejunum and ileum of the no-observed-adverse-effect-level CLO-exposed group showed a stronger positive signal than control, likely due to the suppression of Crp1 release. Our results showed that CLO exposure suppresses α-defensin secretion from Paneth cells as part of the mechanism underlying CLO-induced dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Guanidines , Pesticides , Rodent Diseases , Thiazoles , alpha-Defensins , Mice , Animals , Pesticides/toxicity , Dysbiosis/chemically induced , Dysbiosis/microbiology , Dysbiosis/veterinary , Neonicotinoids/toxicity , Paneth Cells/microbiology
5.
Clin Res Hepatol Gastroenterol ; 48(1): 102259, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070827

ABSTRACT

Obesity is a global health crisis, with its prevalence steadily rising over the past few decades. One concerning consequence of obesity is its association with metabolic associated steatohepatitis [MASH], portal hypertension and liver cirrhosis. Cirrhosis is irreversible, but stages of liver disease before the development of cirrhosis are reversible with appropriate interventions. Studies have brought into light new entities that influences the pathophysiology of portal hypertension. This review provides evidence supporting that, Paneth cells[PCs] in the intestinal epithelium, which remained enigmatic for a century, are the maneuverer of pathophysiology of portal hypertension and obesity. PC dysfunction can cause perturbation of the intestinal microbiota and changes in intestinal permeability, which are the potential triggers of systemic inflammation. Thus, it can offer unique opportunities to understand the pathophysiology of portal hypertension for intervention strategies.


Subject(s)
Fatty Liver , Hypertension, Portal , Humans , Paneth Cells/metabolism , Hypertension, Portal/complications , Liver Cirrhosis/complications , Fatty Liver/complications , Obesity/complications , Obesity/metabolism
6.
Nat Commun ; 14(1): 7963, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042840

ABSTRACT

Paneth cell metaplasia (PCM) typically arises in pre-existing gastrointestinal (GI) diseases; however, the mechanistic pathway that induces metaplasia and whether PCM is initiated exclusively by disorders intrinsic to the GI tract is not well known. Here, we describe the development of PCM in a murine model of chronic myelogenous leukemia (CML) that is driven by an inducible bcr-abl oncogene. Mechanistically, CML induces a proinflammatory state within the GI tract that results in the production of epithelial-derived IL-33. The binding of IL-33 to the decoy receptor ST2 leads to IL-9 production by type 2 innate lymphoid cells (ILC2) which is directly responsible for the induction of PCM in the colon and tissue remodeling in the small intestines, characterized by goblet and tuft cell hyperplasia along with expansion of mucosal mast cells. Thus, we demonstrate that an extra-intestinal disease can trigger an ILC2/IL-9 immune circuit, which induces PCM and regulates epithelial cell fate decisions in the GI tract.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Paneth Cells , Animals , Mice , Interleukin-9/genetics , Immunity, Innate , Interleukin-33/genetics , Lymphocytes , Intestine, Small , Metaplasia
7.
Proc Natl Acad Sci U S A ; 120(47): e2312453120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956278

ABSTRACT

To mediate critical host-microbe interactions in the human small intestine, Paneth cells constitutively produce abundant levels of α-defensins and other antimicrobials. We report that the expression profile of these antimicrobials is dramatically askew in human small intestinal organoids (enteroids) as compared to that in paired tissue from which they are derived, with a reduction of α-defensins to nearly undetectable levels. Murine enteroids, however, recapitulate the expression profile of Paneth cell α-defensins seen in tissue. WNT/TCF signaling has been found to be instrumental in the regulation of α-defensins, yet in human enteroids exogenous stimulation of WNT signaling appears insufficient to rescue α-defensin expression. By stark contrast, forkhead box O (FOXO) inhibitor AS1842856 induced the expression of α-defensin mRNA in enteroids by >100,000-fold, restoring DEFA5 and DEFA6 to levels comparable to those found in primary human tissue. These results newly identify FOXO signaling as a pathway of biological and potentially therapeutic relevance for the regulation of human Paneth cell α-defensins in health and disease.


Subject(s)
Anti-Infective Agents , alpha-Defensins , Humans , Animals , Mice , alpha-Defensins/genetics , alpha-Defensins/pharmacology , alpha-Defensins/metabolism , Intestines , Intestine, Small/metabolism , Paneth Cells/metabolism , Anti-Infective Agents/metabolism , Organoids/metabolism
8.
Sci Adv ; 9(47): eadh9673, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000028

ABSTRACT

The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate ß-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.


Subject(s)
Paneth Cells , Wnt Signaling Pathway , Animals , Intestines , Cell Differentiation , Stem Cells/metabolism , Mammals
9.
J Transl Med ; 21(1): 852, 2023 11 25.
Article in English | MEDLINE | ID: mdl-38007452

ABSTRACT

BACKGROUND: Mammalian intestinal epithelium constantly undergoes rapid self-renewal and regeneration sustained by intestinal stem cells (ISCs) within crypts. Inducible nitric oxide synthase (iNOS) is an important regulator in tissue homeostasis and inflammation. However, the functions of iNOS on ISCs have not been clarified. Here, we aimed to investigate the expression pattern of inducible nitric oxide synthase (iNOS) within crypts and explore its function in the homeostatic maintenance of the ISC niche. METHODS: Expression of iNOS was determined by tissue staining and qPCR. iNOS-/- and Lgr5 transgenic mice were used to explore the influence of iNOS ablation on ISC proliferation and differentiation. Enteroids were cultured to study the effect of iNOS on ISCs in vitro. Ileum samples from wild-type and iNOS-/- mice were collected for RNA-Seq to explore the molecular mechanisms by which iNOS regulates ISCs. RESULTS: iNOS was physiologically expressed in Paneth cells. Knockout of iNOS led to apparent morphological changes in the intestine, including a decrease in the small intestine length and in the heights of both villi and crypts. Knockout of iNOS decreased the number of Ki67+ or BrdU+ proliferative cells in crypts. Loss of iNOS increased the number of Olfm4+ ISCs but inhibited the differentiation and migration of Lgr5+ ISCs in vivo. iNOS depletion also inhibited enteroid formation and the budding efficiency of crypts in vitro. Moreover, iNOS deficiency altered gluconeogenesis and the adaptive immune response in the ileum transcriptome. CONCLUSION: Paneth cell-derived iNOS is required to maintain a healthy ISC niche, and Knockout of iNOS hinders ISC function in mice. Therefore, iNOS represents a potential target for the development of new drugs and other therapeutic interventions for intestinal disorders.


Subject(s)
Paneth Cells , Stem Cell Niche , Animals , Mice , Homeostasis , Intestinal Mucosa/metabolism , Intestines , Mammals/metabolism , Mice, Knockout , Mice, Transgenic , Nitric Oxide Synthase Type II/metabolism , Paneth Cells/metabolism , Receptors, G-Protein-Coupled/metabolism
10.
Gut Microbes ; 15(2): 2286674, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010886

ABSTRACT

Classically, Axin1 is considered a regulator of Wnt/ß-catenin signaling. However, Axin1's roles in host-microbial interactions have been unknown. Our recent study has demonstrated that deletion of intestinal epithelial Axin1 in epithelial cells and Paneth cells protects the host against colitis by enhancing Akkermansia muciniphila. Loss of intestinal epithelial or Paneth cell Axin1 results in increased Wnt/ß-catenin signaling, proliferation, and cell migration. This is associated with morphologically altered goblet and Paneth cells, including increased Muc2 and decreased lysozyme. Axin1 deletion specifically enriched Akkermansia muciniphila. Akkermansia muciniphila in Axin1 knockout mice is the driver of protection against DSS-induced inflammation. Here, we feature several significant conceptual changes, such as differences between Axin1 and Axin2, Axin1 in innate immunity and microbial homeostasis, and Axin1 reduction of Akkermansia muciniphila. We discuss an important trend in the field related to Paneth cells and tissue-specific Axin1 manipulation of microbiome in health and inflammation.


Subject(s)
Axin Protein , Colitis , Gastrointestinal Microbiome , Microbiota , Animals , Mice , Axin Protein/genetics , beta Catenin , Colitis/chemically induced , Colitis/genetics , Inflammation , Paneth Cells
11.
Microbiome ; 11(1): 256, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978573

ABSTRACT

BACKGROUND: Intestinal epithelial cell (IEC) mitochondrial dysfunction involvement in inflammatory bowel diseases (IBD), including Crohn's disease affecting the small intestine, is emerging in recent studies. As the interface between the self and the gut microbiota, IECs serve as hubs of bidirectional cross-talk between host and luminal microbiota. However, the role of mitochondrial-microbiota interaction in the ileum is largely unexplored. Prohibitin 1 (PHB1), a chaperone protein of the inner mitochondrial membrane required for optimal electron transport chain function, is decreased during IBD. We previously demonstrated that mice deficient in PHB1 specifically in IECs (Phb1i∆IEC) exhibited mitochondrial impairment, Paneth cell defects, gut microbiota dysbiosis, and spontaneous inflammation in the ileum (ileitis). Mice deficient in PHB1 in Paneth cells (epithelial secretory cells of the small intestine; Phb1∆PC) also exhibited mitochondrial impairment, Paneth cell defects, and spontaneous ileitis. Here, we determined whether this phenotype is driven by Phb1 deficiency-associated ileal microbiota alterations or direct effects of loss of PHB1 in host IECs. RESULTS: Depletion of gut microbiota by broad-spectrum antibiotic treatment in Phb1∆PC or Phb1i∆IEC mice revealed a necessary role of microbiota to cause ileitis. Using germ-free mice colonized with ileal microbiota from Phb1-deficient mice, we show that this microbiota could not independently induce ileitis without host mitochondrial dysfunction. The luminal microbiota phenotype of Phb1i∆IEC mice included a loss of the short-chain fatty acid butyrate. Supplementation of butyrate in Phb1-deficient mice ameliorated Paneth cell abnormalities and ileitis. Phb1-deficient ileal enteroid models suggest deleterious epithelial-intrinsic responses to ileal microbiota that were protected by butyrate. CONCLUSIONS: These results suggest a mutual and essential reinforcing interplay of gut microbiota and host IEC, including Paneth cell, mitochondrial health in influencing ileitis. Restoration of butyrate is a potential therapeutic option in Crohn's disease patients harboring epithelial cell mitochondrial dysfunction. Video Abstract.


Subject(s)
Crohn Disease , Gastrointestinal Microbiome , Ileitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Ileitis/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Paneth Cells , Butyrates/metabolism , Mitochondria/metabolism , Intestinal Mucosa/metabolism
12.
J Biol Chem ; 299(12): 105356, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863265

ABSTRACT

Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.


Subject(s)
Biophysical Phenomena , Protein Domains , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Mammals/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Enterochromaffin Cells/metabolism , Paneth Cells/metabolism , Crystallography, X-Ray , Biophysical Phenomena/physiology , Models, Molecular , Protein Structure, Tertiary , Protein Folding , Sequence Alignment , Amino Acid Sequence , HEK293 Cells , Humans
13.
Proc Natl Acad Sci U S A ; 120(37): e2221405120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669386

ABSTRACT

DNA methylation functions as a repressive epigenetic mark that can be reversed by the Ten-eleven translocation (TET) family of DNA dioxygenases that sequentially oxidize 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised by DNA base-excision repair factors leading to unmodified cytosines. TET enzymes were recently implicated as potential risk factors for inflammatory bowel disease (IBD), but the contribution of TET-mediated DNA oxidation to intestinal homeostasis and response to environmental stressors are unknown. Here, we show prominent roles of TET3 in regulating mouse intestinal epithelial differentiation and response to luminal stressors. Compared with wild-type littermates, mice with intestinal epithelial cell-specific ablation of Tet3 (Tet3ΔIEC) demonstrated a decreased transcriptome involved in innate immune response, Paneth cell differentiation, and epithelial regeneration. Tet3IEC mice exhibited an elevated susceptibility to enteric pathogen infection that is correlated with a decreased epithelial 5hmC abundance. Infection of human enterocytes or mice with the pathogenic bacteria acutely increased 5hmC abundance. Genome-wide 5hmC profiling revealed a shift of genomic enrichment of 5hmC toward genes involved in activating Notch, Wnt, and autophagy pathways. Furthermore, chemical stressor dextran sulfate sodium (DSS) represses epithelial 5hmC abundance in a temporal fashion, and Tet3IEC mice exhibited increased susceptibility to DSS experimental colitis with reduced regenerative capacity. TET3 is a critical regulator of gut epithelial DNA methylome and transcriptome, especially in response to luminal stressors, for the maintenance of tissue homeostasis.


Subject(s)
Colitis , Dioxygenases , Animals , Humans , Mice , DNA , Enterocytes , Oxidation-Reduction , Paneth Cells
14.
Ecotoxicol Environ Saf ; 264: 115457, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37688865

ABSTRACT

Deoxynivalenol (DON) is a common toxin in grains and feeds, and DON exposure triggers severe small intestinal injury and inflammation, which harms the health of humans and livestock. DON treatment leads to a decrease in Paneth cells, whereas the role of Paneth cells in DON-induced intestinal injury is poorly understood. We utilized dithizone (40 mg/kg) to keep murine Paneth cell number at a low level. The results showed that dithizone-mediated long-term disruption of Paneth cells aggravated intestinal injury, intestinal stem cell (ISC) loss, and microbiota disorder in DON (2 mg/kg)-treated mice. Unexpectedly, the number of goblet cells and proliferative cells was boosted in mice treated with dithizone and DON. After dithizone and DON treatments, the Firmicutes/Bacteroidetes (F/B) ratio was reduced, and the increased abundance of Dubosiella and the decreased abundance of Lactobacillus were observed in mice. The functional recovery of Paneth cells by lysozyme (200 U/day) supplementation improved intestinal injury and ISC loss in mice after DON challenge. In addition, lysozyme also promoted the growth and ISC activity of intestinal organoids. Taken together, these results demonstrate the protective role of Paneth cells in DON-induced intestinal injury. Our study raises a novel target, Paneth cell, for the treatment of DON exposure.


Subject(s)
Muramidase , Paneth Cells , Humans , Animals , Mice , Dithizone , Stem Cell Niche , Firmicutes
15.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37696579

ABSTRACT

Rapid self-renewal of the intestinal epithelium requires the activity of intestinal stem cells (ISCs) that are intermingled with Paneth cells (PCs) at the crypt base. PCs provide multiple secreted and surface-bound niche signals and play an important role in the regulation of ISC proliferation. Here, we show that control of PC function by RNA-binding protein HuR via mitochondria affects intestinal mucosal growth by altering ISC activity. Targeted deletion of HuR in mice disrupted PC gene expression profiles, reduced PC-derived niche factors, and impaired ISC function, leading to inhibited renewal of the intestinal epithelium. Human intestinal mucosa from patients with critical surgical disorders exhibited decreased levels of tissue HuR and PC/ISC niche dysfunction, along with disrupted mucosal growth. HuR deletion led to mitochondrial impairment by decreasing the levels of several mitochondrial-associated proteins including prohibitin 1 (PHB1) in the intestinal epithelium, whereas HuR enhanced PHB1 expression by preventing microRNA-195 binding to the Phb1 mRNA. These results indicate that HuR is essential for maintaining the integrity of the PC/ISC niche and highlight a novel role for a defective PC/ISC niche in the pathogenesis of intestinal mucosa atrophy.


Subject(s)
ELAV-Like Protein 1 , MicroRNAs , Mucous Membrane , Paneth Cells , Animals , Humans , Mice , Biological Transport , Cell Physiological Phenomena , Intestinal Mucosa , MicroRNAs/genetics , Mitochondrial Proteins , Stem Cells , ELAV-Like Protein 1/genetics
16.
Cell Rep ; 42(9): 113118, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37703178

ABSTRACT

Lipolysis-stimulated lipoprotein receptor (LSR) is a multi-functional protein that is best known for its roles in assembly of epithelial tricellular tight junctions and hepatic clearance of lipoproteins. Here, we investigated whether LSR contributes to intestinal epithelium homeostasis and pathogenesis of intestinal disease. By using multiple conditional deletion mouse models and ex vivo cultured organoids, we find that LSR elimination in intestinal stem cells results in the disappearance of Paneth cells without affecting the differentiation of other cell lineages. Mechanistic studies reveal that LSR deficiency increases abundance of YAP by modulating its phosphorylation and proteasomal degradation. Using gain- and loss-of-function studies, we show that LSR protects against necrotizing enterocolitis through enhancement of Paneth cell differentiation in small-intestinal epithelium. Thus, this study identifies LSR as an upstream negative regulator of YAP activity, an essential factor for Paneth cell differentiation, and a potential therapeutic target for necrotizing enterocolitis.


Subject(s)
Enterocolitis, Necrotizing , Receptors, Lipoprotein , Mice , Animals , Paneth Cells/metabolism , Receptors, Lipoprotein/metabolism , Cell Differentiation , Intestines , Intestinal Mucosa/metabolism
17.
EMBO J ; 42(21): e113975, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37718683

ABSTRACT

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level. Infection expands the pool of CD74+ PCs, whose number correlates with auto or allogeneic inflammatory disease progressions in mice. Similar correlation was found in human inflammatory disease tissues. Infection-stimulated cytokines increase production of reactive oxygen species (ROS) and expression of a PC-specific mucosal pentraxin (Mptx2) in activated PCs. A PC-specific ablation of MyD88 reduced CD74+ PC population, thus ameliorating pathogen-induced systemic disease. A similar phenotype was also observed in mice lacking Mptx2. Thus, infection stimulates expansion of a PC subset that influences disease progression.


Subject(s)
Microbiota , Paneth Cells , Humans , Animals , Mice , Paneth Cells/metabolism , Paneth Cells/pathology , Intestine, Small , Inflammation/pathology , Cytokines/metabolism
18.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G493-G500, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37697924

ABSTRACT

Deep crypt secretory (DCS) cells are a population of epithelial cells located at the colonic crypt base that share some similarities to Paneth and goblet cells. They were initially defined as c-Kit expressing cells, though subsequent work showed that they are more specifically marked by Reg4 in the murine colon. The best-understood function of DCS cells at present is supporting the stem cell niche by generating Notch and EGF ligands. However, as these cells also express immunoregulatory (e.g., Ccl6) and host defense (e.g., Retnlb) genes, it is likely they have additional functions in maintaining colonic health outside of maintenance of the stem niche. Recent advances in single-cell transcriptomic profiling hint at additional epithelial and immune roles that may exist for these cells and have aided in elucidating their developmental lineage. This review highlights the emerging evidence supporting a crucial role for DCS cells in intestinal physiology, the current understanding of how these cells are regulated, and their potential role(s) in colonic disease.


Subject(s)
Intestinal Mucosa , Paneth Cells , Mice , Animals , Intestines , Colon , Goblet Cells , Cell Differentiation/physiology
19.
Front Immunol ; 14: 1174140, 2023.
Article in English | MEDLINE | ID: mdl-37638013

ABSTRACT

Introduction: The mechanism underlying radiation-induced gut microbiota dysbiosis is undefined. This study examined the effect of radiation on the intestinal Paneth cell α-defensin expression and its impact on microbiota composition and mucosal tissue injury and evaluated the radio-mitigative effect of human α-defensin 5 (HD5). Methods: Adult mice were subjected to total body irradiation, and Paneth cell α-defensin expression was evaluated by measuring α-defensin mRNA by RT-PCR and α-defensin peptide levels by mass spectrometry. Vascular-to-luminal flux of FITC-inulin was measured to evaluate intestinal mucosal permeability and endotoxemia by measuring plasma lipopolysaccharide. HD5 was administered in a liquid diet 24 hours before or after irradiation. Gut microbiota was analyzed by 16S rRNA sequencing. Intestinal epithelial junctions were analyzed by immunofluorescence confocal microscopy and mucosal inflammatory response by cytokine expression. Systemic inflammation was evaluated by measuring plasma cytokine levels. Results: Ionizing radiation reduced the Paneth cell α-defensin expression and depleted α-defensin peptides in the intestinal lumen. α-Defensin down-regulation was associated with the time-dependent alteration of gut microbiota composition, increased gut permeability, and endotoxemia. Administration of human α-defensin 5 (HD5) in the diet 24 hours before irradiation (prophylactic) significantly blocked radiation-induced gut microbiota dysbiosis, disruption of intestinal epithelial tight junction and adherens junction, mucosal barrier dysfunction, and mucosal inflammatory response. HD5, administered 24 hours after irradiation (treatment), reversed radiation-induced microbiota dysbiosis, tight junction and adherens junction disruption, and barrier dysfunction. Furthermore, HD5 treatment also prevents and reverses radiation-induced endotoxemia and systemic inflammation. Conclusion: These data demonstrate that radiation induces Paneth cell dysfunction in the intestine, and HD5 feeding prevents and mitigates radiation-induced intestinal mucosal injury, endotoxemia, and systemic inflammation.


Subject(s)
Endotoxemia , Radiation Injuries , alpha-Defensins , Humans , Adult , Animals , Mice , Paneth Cells , Dysbiosis , Endotoxemia/etiology , RNA, Ribosomal, 16S , Radiation Injuries/etiology , Cytokines , Inflammation
20.
Science ; 381(6657): 483-484, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37535732

ABSTRACT

Specialized epithelium secretes an antifungal peptide.


Subject(s)
Antifungal Agents , Paneth Cells , Peptide YY , Antifungal Agents/metabolism , Paneth Cells/metabolism , Peptide YY/metabolism , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...