Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.232
Filter
1.
Food Chem ; 462: 140964, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213972

ABSTRACT

The objective of this study was to develop and validate a novel microfluidic paper-based analytical device (µPADpH) for determining the pH levels in foods. Anthocyanins from red cabbage aqueous extract (RCAE) were used as its analytical sensor. Whatman No. 1 filter paper was the most suitable for the device due to its porosity and fiber organization, which allows for maximum color intensity and minimal color heterogeneity of the RCAE in the detection zone of the µPADpH. To ensure the color stability of the RCAE for commercial use of the µPADpH, gum arabic was added. The geometric design of the µPADpH, including the channel length and separation zone diameter, was systematically optimized using colored food. The validation showed that the µPADpH did not differ from the pH meter when analyzing natural foods. However, certain additives in processed foods were found to increase the pH values.


Subject(s)
Anthocyanins , Brassica , Gum Arabic , Anthocyanins/chemistry , Anthocyanins/analysis , Brassica/chemistry , Hydrogen-Ion Concentration , Gum Arabic/chemistry , Paper , Microfluidic Analytical Techniques/instrumentation
2.
PLoS One ; 19(10): e0311343, 2024.
Article in English | MEDLINE | ID: mdl-39365798

ABSTRACT

Color correction is an important methodology where a digital image's colors undergo a transformation to more accurately represent their appearance using a predefined set of illumination conditions. Colorimetric measurements in diagnostics are sensitive to very small changes in colors and therefore require consistent, reproducible illumination conditions to produce accurate results, making color correction a necessity. This paper presents an image color correction pipeline developed by HueDx, Inc., using transfer algorithms that improve upon existing methodologies and demonstrates real-world applications of this pipeline in colorimetric clinical chemistry using a smartphone enabled, paper-based total protein diagnostic assay. Our pipeline is able to compensate for a variety of illumination conditions to provide consistent imaging for quantitative colorimetric measurements using white-balancing, multivariate gaussian distributions and histogram regression via dynamic, non-linear interpolating lookup tables. We empirically demonstrate that each point in the color correction pipeline provides a theoretical basis for achieving consistent and precise color correction. To show this, we measure color difference with deltaE (ΔE00), alongside quantifying performance of the HueDx color correction system, including the phone hardware, color sticker manufacturing quality and software correction capabilities. The results show that the HueDx color correction system is capable of restoring images to near-imperceptible levels of difference independent of their original illumination conditions including brightness and color temperature. Comparisons drawn from the paper-based total protein assay calibrated and quantified with and without using the HueDx color correction pipeline show that the coefficient of variation in precision testing is almost twice as high without color-correcting. Limits of blank, detection and quantitation were also higher without color-correction. Overall, we were able to demonstrate the HueDx platform improves reading and outcome of the total protein diagnostic assay and is useful for the development of smartphone-based quantitative colorimetric diagnostic assays for point-of-care testing.


Subject(s)
Algorithms , Color , Colorimetry , Paper , Smartphone , Colorimetry/instrumentation , Colorimetry/methods , Humans , Software
3.
Mikrochim Acta ; 191(11): 652, 2024 10 07.
Article in English | MEDLINE | ID: mdl-39373744

ABSTRACT

A flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO2/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO2 nanomaterials (f-TiO2). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method. Despite its straightforward fabrication process via a solvent immersion method, the intrinsic smart surface properties of the TiO2 bridging material - both hydrophilic and hydrophobic - enable the uniform and dense self-assembly of hydrophilic Ag nanoparticles (NPs) on the cellulose fiber paper substrate. This innovative design provides superior sensing efficiency for TCZ molecules with a detection limit reaching 2.1 × 10-9 M, a remarkable improvement compared to Paper/Ag substrates lacking f-TiO2 nanomaterials, which register at 10-5 M. This flexible SERS substrate also exhibits very high reliability as indicated by its excellent reproducibility and repeatability with relative standard deviations (RSD) of only 5.93% and 4.73%, respectively. Characterized by flexibility and a water-attractive yet non-soluble surface, the flexible Paper/f-TiO2/Ag chips offer the convenience of direct immersion into the analytical sample, facilitating seamless target molecule collection while circumventing interference signals. Termed the "dip and dry" technique, its advantages in field analysis are indisputable, boasting in situ deployment, simplicity, and high efficiency, while minimizing interference signals to negligible levels. Through the application of this advanced technique, we have successfully detected TCZ in two high-value crops, ST25 rice and dragon fruit, achieving excellent recovery values ranging from 90 to 128%. This underscores its immense potential in ensuring food quality and safety. As a proof of concept, flexible Paper/f-TiO2/Ag SERS chips, with a simple fabrication process, advanced analytical technique, and superior sensing efficiency, bring SERS one step closer to field applications beyond the laboratory.


Subject(s)
Limit of Detection , Metal Nanoparticles , Paper , Silver , Spectrum Analysis, Raman , Thiazoles , Titanium , Silver/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Titanium/chemistry , Thiazoles/chemistry , Pesticides/analysis , Crops, Agricultural/chemistry , Reproducibility of Results
4.
Sci Rep ; 14(1): 23434, 2024 10 08.
Article in English | MEDLINE | ID: mdl-39379675

ABSTRACT

Electrochemical analysis of glucose monitoring without painful blood collection provides a new noninvasive route for monitoring glucose levels. Thus, in this study, biobased cellulosic papers (methylated and phosphorylated one) based glucose monitoring sensor is developed. To achieve high hydrophilicity, microfibrillated cellulose (MFC) were functionalized using hexokinase mediated phosphorylation (-OH to -[Formula: see text]). The instinctive increased surface charge density from 36.2 ± 3.4 to 118.4 ± 1.2 µmol/g and decrease contact angle (45°-22°) confirms the increased hydrophilicity of paper. Furthermore, functionalized phos-MFC paper increase the capillary flow of sweat, required low quantity (1 µl) of sweat for accurate analysis of glucose level. Additionally, chemically induced methyl groups (-CH3) make the sensor more barrier to other chemicals. In addition, a multilayer patch design combined with sensor miniaturization was used to lead to an increase in the efficiency of the sweat collection and sensing processes. Besides, this paper sensor integrated with artificial transdermal drug delivery unit (agarose gel as skin) for monitoring glucose levels in sweat. The patch monitoring system increase the accuracy of sensing with fluctuation in sweat vol. (1-4 µl), temperature (20-70 °C), and pH (4.0-7.0). In addition, temperature dependency artificial transdermal delivery (within agarose gel) of drug metformin agrees the measurement accuracy of sensor, called "switch system" without any error. As a result, the reported MFC paper based multi-patch disposable sensing system provides a novel closed-loop solution for the noninvasive sweat-based management of diabetes mellitus.


Subject(s)
Biosensing Techniques , Cellulose , Glucose , Paper , Sweat , Sweat/chemistry , Cellulose/chemistry , Humans , Glucose/analysis , Glucose/metabolism , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Hydrophobic and Hydrophilic Interactions , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods
5.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338610

ABSTRACT

Nanorod structures exhibit a high surface-to-volume ratio, enhancing the accessibility of electrolyte ions to the electrode surface and providing an abundance of active sites for improved electrochemical sensing performance. In this study, tetragonal α-MnO2 with a large K+-embedded tunnel structure, directly grown on microfibrous carbon paper to form densely packed nanorod arrays, is investigated as an electrocatalytic material for non-enzymatic glucose sensing. The MnO2 nanorods electrode demonstrates outstanding catalytic activity for glucose oxidation, showcasing a high sensitivity of 143.82 µA cm-2 mM-1 within the linear range from 0.01 to 15 mM, with a limit of detection (LOD) of 0.282 mM specifically for glucose molecules. Importantly, the MnO2 nanorods electrode exhibits excellent selectivity towards glucose over ascorbic acid and uric acid, which is crucial for accurate glucose detection in complex samples. For comparison, a gold electrode shows a lower sensitivity of 52.48 µA cm-2 mM-1 within a linear range from 1 to 10 mM. These findings underscore the superior performance of the MnO2 nanorods electrode in both sensitivity and selectivity, offering significant potential for advancing electrochemical sensors and bioanalytical techniques for glucose monitoring in physiological and clinical settings.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Glucose , Manganese Compounds , Nanotubes , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Nanotubes/chemistry , Glucose/analysis , Glucose/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Limit of Detection , Carbon/chemistry , Oxidation-Reduction , Paper , Uric Acid/analysis , Uric Acid/chemistry , Catalysis , Ascorbic Acid/chemistry , Ascorbic Acid/analysis
6.
Carbohydr Polym ; 344: 122529, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39218551

ABSTRACT

The mechanical pulp industry is diversifying through the manufacture of high-value paper products, such as microfibrillated cellulose. However, the development of fibre quality is still energy-intensive. Enzymatic hydrolysis is hypothesized to promote fibre cutting, greater fibrillation, and reduce refining energy costs. Despite potential benefits, there is little understanding of the mechanisms behind fibre development during enzymatic hydrolysis of mechanical pulp. This work investigates how incubation pH and temperature during enzymatic hydrolysis impact the refining of mechanical pulp short fibres. Incubation with endoglucanase at pH 5 and 60 °C increased fibre cutting by approximately 20 %. Fibrillation was negatively affected at this condition, resulting in increased slim fines formation with refining. Incubation at pH 8 and 80 °C promoted >15 % reduction in fibre length, despite such conditions being associated with low enzyme activity. The pH variation modified the sedimentation height of the fibres and the conductivity of suspensions, indicating a change in fibre surface charge. Fibre morphology changes were induced by enzyme hydrolysis conducted at conditions representative of the full range of pH and temperature observed in mechanical pulp mills.


Subject(s)
Cellulase , Cellulose , Temperature , Hydrolysis , Cellulase/metabolism , Hydrogen-Ion Concentration , Cellulose/chemistry , Cellulose/metabolism , Paper
7.
PLoS One ; 19(9): e0308424, 2024.
Article in English | MEDLINE | ID: mdl-39240952

ABSTRACT

Hardness is one of the basic parameters of water, and a high-level hardness of drinking water may be harmful to human health. Thus, it is very important to monitor drinking water hardness. In this work, a portable lateral flow distance-based paper sensor for the semi-quantitative detection of drinking water hardness is demonstrated. In the presence of Ca2+/Mg2+, the hydrogel can be formed via the chelation between sodium alginate and Ca2+/Mg2+, inducing a phase separation process. The viscosity change of the sodium alginate solution is directly related to the Ca2+/Mg2+ concentration and can be determined by the water lateral flow distance on test strips. The sensor successfully realizes the quantification of Ca2+ and Mg2+ in the range of 0-10 mmol L-1 and 4-20 mmol L-1, respectively. The recoveries are found varied from 95% to 108.9%. The water hardness is acceptable for drinking if the Cr values lies in the range of 0.259 to 0.419, and it is high with the Cr value above 0.595. Remarkably, the performance of the sensor is comparable with the commercial kit for real water samples, which avoids the subjective judgment. Overall, this method provides a portable approach for semi-quantitative detection of drinking water hardness with the merits of convenience and low cost, which shows great potential for the potential application.


Subject(s)
Calcium , Drinking Water , Magnesium , Paper , Drinking Water/analysis , Drinking Water/chemistry , Magnesium/analysis , Calcium/analysis , Alginates/chemistry , Alginates/analysis , Viscosity , Hardness , Humans
8.
Water Environ Res ; 96(9): e11133, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39276016

ABSTRACT

This study explored using ultrafiltration (UF) membranes to treat pulp and paper mill wastewater, implementing a novel Taguchi experimental design to optimize operating conditions for pollutant removal and minimal membrane fouling. Researchers examined four factors: pH, temperature, transmembrane pressure, and volume reduction factor (VRF), each at three levels. Optimal conditions (pH 10, 25°C, 6 bar, VRF 3) led to a 35% reduction in flux due to fouling and high pollutant rejections: total hardness (83%), sulfate (97%), spectral absorption coefficient (SAC254) (95%), and chemical oxygen demand (COD) (89%). Conductivity had a lower rejection rate of 50%. Advanced imaging techniques like atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed reduced membrane fouling under these conditions. The Taguchi method effectively identified optimal conditions, significantly improving wastewater treatment efficiency and promoting environmental sustainability in the pulp and paper industry. PRACTITIONER POINTS: This study optimized UF membrane conditions for pulp and paper mill wastewater, reducing fouling and enhancing pollutant removal, offering practical strategies for industrial treatment. AFM and SEM provided key insights into membrane fouling and mitigation, promoting real-time diagnosis and optimization for enhanced treatment efficiency. Prioritizing anaerobic fixed-bed systems in wastewater treatment is beneficial for achieving high COD removal efficiency. Optimizing hydraulic retention time (HRT) in these systems can further improve their overall effectiveness and sustainability.


Subject(s)
Bioreactors , Industrial Waste , Paper , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Anaerobiosis , Wastewater/chemistry , Aerobiosis , Water Purification/methods , Ultrafiltration/methods
9.
Environ Sci Pollut Res Int ; 31(47): 57822-57831, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39292306

ABSTRACT

A synergistic photocatalytic system based on Fe-based perovskite with persulfate was constructed for alkali lignin (AL) degradation in pulp and paper wastewater. The degradation performance and mechanism on AL were carried out under ambient temperature and pressure, accompanied by visible light irradiation. The results showed that the synergistic photocatalytic system exhibited much better performance on AL degradation than the single catalytic system. The degradation efficiency reached 73.5% under the optimal conditions and was constant at around 65% over the pH range from 2 to 8. A significant escalation of the AL degradation was observed at pH 10, reaching 80.1%. The photogenerated holes, 1O2 and SO4-·, generated by the system were involved in the degradation, and the holes played a dominant role. During the degradation process, the efficient promotion of cleavage events in lignin methoxy, ß-O-4 bond, and benzene ring was observed. Consequently, the depolymerization process led to the generation of high-value compounds, namely p-hydroxybenzaldehyde and vanillin. Remarkably, the yields of the high-value compounds in the synergistic photocatalytic system were five times larger than those in the control. This study offered a viable method to activate persulfate for alkali lignin degradation and to achieve a mutually beneficial strategy for wastewater treatment and recycling.


Subject(s)
Lignin , Paper , Wastewater , Lignin/chemistry , Wastewater/chemistry , Catalysis , Titanium/chemistry , Alkalies/chemistry , Iron/chemistry , Oxides/chemistry , Calcium Compounds/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry
10.
ACS Appl Mater Interfaces ; 16(40): 53449-53459, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39332816

ABSTRACT

In this work, we report the design and fabrication of a light-addressable, paper-based nanocomposite scaffold for optical pacing and read-out of in vitro grown cardiac tissue. The scaffold consists of paper cellulose microfibers functionalized with gold nanorods (GNRs) and semiconductor quantum dots (QDs), embedded in a cell-permissive collagen matrix. The GNRs enable cardiomyocyte activity modulation through local temperature gradients induced by modulated near-infrared (NIR) laser illumination, with the local temperature changes reported by temperature-dependent QD photoluminescence (PL). The micrometer-sized paper fibers promote the tubular organization of HL-1 cardiac muscle cells, while the NIR plasmonic stimulation modulates reversibly their activity. Given the nanoscale spatial resolution and facile fabrication, paper-based nanocomposite scaffolds with NIR modulation offer excellent alternatives to electrode-based or optogenetic methods for cell activity modulation, at the single cell level, and are compatible with 3D tissue constructs. Such paper-based optical platforms can provide new possibilities for the development of in vitro drug screening assays and heart disease modeling.


Subject(s)
Gold , Myocytes, Cardiac , Nanotubes , Paper , Tissue Scaffolds , Tissue Scaffolds/chemistry , Gold/chemistry , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Nanotubes/chemistry , Quantum Dots/chemistry , Animals , Mice , Cell Line , Nanocomposites/chemistry , Tissue Engineering , Cellulose/chemistry
11.
Lab Chip ; 24(20): 4879-4891, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39302137

ABSTRACT

Isothermal nucleic acid amplification tests (NAATs) are a vital tool for point-of-care (POC) diagnostics. These assays are well-suited for rapid, low-cost POC diagnostics for infectious diseases compared to traditional PCR tests conducted in central laboratories. There has been significant development of POC NAATs using paper-based diagnostic devices because they provide an affordable, user-friendly, and easy to store format; however, the difficulties in integrating separate liquid components, resuspending dried reagents, and achieving a low limit of detection hinder their use in commercial applications. Several studies report low assay efficiencies, poor detection output, and poorer limits of detection in porous membranes compared to traditional tube-based protocols. Recombinase polymerase amplification is a rapid, isothermal NAAT that is highly suited for POC applications, but requires viscous reaction conditions that has poor performance when amplifying in a porous paper membrane. In this work, we show that we can dramatically improve the performance of membrane-based recombinase polymerase amplification (RPA) of HIV-1 DNA and viral RNA by employing a coin cell-based vibration mixing platform. We achieve a limit of detection of 12 copies of DNA per reaction, nearly 50% reduction in time to threshold (from ∼10 minutes to ∼5 minutes), and an overall fluorescence output increase up to 16-fold when compared to unmixed experiments. This active mixing strategy enables reactions where the target and reaction cofactors are isolated from each other prior to the reaction. We also demonstrate amplification using a low-cost vibration motor for both temperature control and mixing, without the requirement of any additional heating components.


Subject(s)
DNA, Viral , HIV-1 , Nucleic Acid Amplification Techniques , Paper , Recombinases , Recombinases/metabolism , HIV-1/genetics , DNA, Viral/analysis , DNA, Viral/genetics , Vibration , RNA, Viral/analysis , RNA, Viral/genetics , Humans
12.
ACS Nano ; 18(36): 24792-24802, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252606

ABSTRACT

This study explores the fusion of a field-effect transistor (FET), a paper-based analytical cartridge, and the computational power of deep learning (DL) for quantitative biosensing via kinetic analyses. The FET sensors address the low sensitivity challenge observed in paper analytical devices, enabling electrical measurements with kinetic data. The paper-based cartridge eliminates the need for surface chemistry required in FET sensors, ensuring economical operation (cost < $0.15/test). The DL analysis mitigates chronic challenges of FET biosensors such as sample matrix interference, by leveraging kinetic data from target-specific bioreactions. In our proof-of-concept demonstration, our DL-based analyses showcased a coefficient of variation of <6.46% and a decent concentration measurement correlation with an r2 value of >0.976 for cholesterol testing when blindly compared to results obtained from a CLIA-certified clinical laboratory. These integrated technologies have the potential to advance FET-based biosensors, potentially transforming point-of-care diagnostics and at-home testing through enhanced accessibility, ease-of-use, and accuracy.


Subject(s)
Biosensing Techniques , Deep Learning , Paper , Transistors, Electronic , Biosensing Techniques/instrumentation , Kinetics , Cholesterol/analysis , Humans
13.
Mikrochim Acta ; 191(10): 617, 2024 09 24.
Article in English | MEDLINE | ID: mdl-39316098

ABSTRACT

A new, sensitive, and cost-effective lab-on-paper-based immunosensor was designed based on electrochemical impedance spectroscopy (EIS) for the detection of exosomes. EIS was selected as the determination method since there was a surface blockage in electron transfer by binding the exosomes to the transducer. Briefly, the carbon working electrode (WE) on the paper electrode (PE) was modified with gold particles (AuPs@PE) and then conjugated with anti-CD9 (Anti-CD9/AuPs@PE) for the detection of exosomes. Variables involved in the biosensor design were optimized with the univariate mode. The developed method presents the limit of detection of  8.7 × 102 exosomes mL-1, which is lower than that of many other available methods under the best conditions. The biosensor was also tested with urine samples from cancer patients with high recoveries. Due to this  a unique, low-cost, biodegradable technology is presented that can directly measure exosomes without labeling them for early cancer or metastasis detection.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Exosomes , Gold , Limit of Detection , Paper , Dielectric Spectroscopy/methods , Biosensing Techniques/methods , Exosomes/chemistry , Humans , Gold/chemistry , Electrodes , Antibodies, Immobilized/immunology , Tetraspanin 29/analysis , Tetraspanin 29/urine , Metal Nanoparticles/chemistry , Immunoassay/methods
14.
Biosensors (Basel) ; 14(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39329817

ABSTRACT

Lactate is a critical regulatory factor secreted by tumors, influencing tumor development, metastasis, and clinical prognosis. Precise analysis of tumor-cell-secreted lactate is pivotal for early cancer diagnosis. This study describes a paper-based microfluidic chip to enable the detection of lactate levels secreted externally by living cells. Under optimized conditions, the lactate biosensor can complete the assay in less than 30 min. In addition, the platform can be used to distinguish lactate secretion levels in different cell lines and can be applied to the screening of antitumor drugs. Through enzymatic chemical conversion, this platform generates fluorescent signals, enabling qualitative assessment under a handheld UV lamp and quantitative analysis via grayscale intensity measurements using ImageJ (Ver. 1.50i) software. The paper-based platform presented in this study is rapid and highly sensitive and does not necessitate other costly and intricate instruments, thus making it applicable in resource-constrained areas and serving as a valuable tool for investigating cell lactate secretion and screening various anti-cancer drugs.


Subject(s)
Biosensing Techniques , Lab-On-A-Chip Devices , Lactic Acid , Lactic Acid/analysis , Lactic Acid/metabolism , Humans , Paper , Cell Line, Tumor
15.
Molecules ; 29(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39339486

ABSTRACT

As a prescription drug, retinoic acid is listed as a banned cosmetic additive in the EU and China regulations. Currently, spectrophotometric methods, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and HPLC-MS/MS, are commonly used for the determination of retinoic acid. As these conventional methods require complex pretreatment and are time-consuming, chemical derivatization combined with paper spray ionization mass spectrometry was developed for the fast detection of retinoic acid in cosmetics. N,N-dimethylpiperazine iodide (DMPI) was utilized as a derivatization reagent. Carboxylic acid in retinoic acid was derivatized to carry a positive charge and was subjected to mass spectrometry analysis. Results showed that compared with non-derivatized compounds, the detection limit was increased by about 50 times. The linearity in the range of 0.005-1 µg·mL-1 was good. The limit of detection (LOD) was 0.0013 µg·mL-1, and the limit of quantification (LOQ) was 0.0043 µg·mL-1. The recoveries of spiked samples were in the range of 95-105%, and the RSDs were below 5%. Derivatization and paper spray ionization MS render a quick, sensitive, and accurate method for the detection of retinoic acid in a complex matrix.


Subject(s)
Cosmetics , Tretinoin , Tretinoin/analysis , Tretinoin/chemistry , Cosmetics/chemistry , Cosmetics/analysis , Limit of Detection , Paper , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Mass Spectrometry/methods
16.
Mikrochim Acta ; 191(10): 580, 2024 09 07.
Article in English | MEDLINE | ID: mdl-39243287

ABSTRACT

A wearable potentiometric device is reported based on an innovative butterfly-like paper-based microfluidic system, allowing for continuous monitoring of pH and Na+ levels in sweat during physical activity. Specifically, the use of the butterfly-like configuration avoids evaporation phenomena and memory effects, enabling precise and timely biomarker determination in sweat. Two ad hoc modified screen-printed electrodes were embedded in the butterfly-like paper-based microfluidics, and the sensing device was further integrated with a portable and miniaturized potentiostat, leveraging Bluetooth technology for efficient data transmission. First, the paper-based microfluidic configuration was tested for optimal fluidic management to obtain optimized performance of the device. Subsequently, the two electrodes were individually tested to detect the two biomarkers, namely pH and Na+. The results demonstrated highly promising near-Nernstian (0.056 ± 0.002 V/dec) and super-Nernstian (- 0.080 ± 0.003 V/pH) responses, for Na+ and pH detection, respectively. Additionally, several important parameters such as storage stability, interferents, and memory effect by hysteresis study were also investigated. Finally, the butterfly-like paper-based microfluidic wearable device was tested for Na+ and pH monitoring during the physical activity of three volunteers engaged in different exercises, obtaining a good correlation between Na+ increase and dehydration phenomena. Furthermore, one volunteer was tested through a cardiopulmonary test, demonstrating a correlation between sodium Na+ increase and the energetic effort by the volunteer. Our wearable device highlights the high potential to enable early evaluation of dehydration and open up new opportunities in sports activity monitoring.


Subject(s)
Paper , Sodium , Sweat , Wearable Electronic Devices , Sweat/chemistry , Humans , Hydrogen-Ion Concentration , Sodium/analysis , Electrodes , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Lab-On-A-Chip Devices
17.
Mikrochim Acta ; 191(10): 619, 2024 09 25.
Article in English | MEDLINE | ID: mdl-39320528

ABSTRACT

A wax-patterned paper analytical device (µPAD) has been developed for point-of-care colourimetric testing of serum glutamic oxaloacetic transaminase (SGOT). The detection method was based on the transamination reaction of aspartate with α-ketoglutarate, leading to the formation of oxaloacetate which reacts with the reagent Fast Blue BB salt and forms a cavern pink colour. The intensity of the cavern pink colour grows as the concentration of SGOT increases. UV-visible spectroscopy was utilized to optimize reaction conditions, and the optimized reagents were dropped onto the wax-patterned paper. The coloured PADs, after the addition of SGOT, have been photographed, and a colour band has been generated to correlate the SGOT concentration visually. The images were used to calculate the intensity values using ImageJ software, which inturn was used to calculate the SGOT concentration. The PADs were also tested with serum samples, and SGOT spiked serum samples. The PAD could detect the SGOT concentration ranging from 5 to 200 U/L. The analysis yielded highly accurate results with less than 6% relative error compared to the clinical sample. This colourimetric test demonstrated exceptional selectivity in the presence of other biomolecules in the blood serum, with a detection limit of 2.77 U/L and a limit of quantification of 9.25 U/L. Additionally, a plasma separation membrane was integrated with the PAD to directly test SGOT from finger-prick blood samples.


Subject(s)
Aspartate Aminotransferases , Colorimetry , Point-of-Care Testing , Humans , Aspartate Aminotransferases/blood , Colorimetry/methods , Paper , Limit of Detection , Ketoglutaric Acids/blood , Ketoglutaric Acids/chemistry , Aspartic Acid/blood , Aspartic Acid/chemistry
18.
Luminescence ; 39(9): e4895, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39239921

ABSTRACT

Easy, economical, and swift detecting tools are very demanded for assaying various chemical species. The introduction of label-free paper-based read-out devices has significantly reached the demand of analytical science for target analytes assays. Herein, a facile, and disposable inexpensive paper-based sensing tool was fabricated for sensing As3+ ion using graphene quantum dots (GQDs) as a fluorescent reader. The CA-GQDs were synthesized using citric acid (CA) as a precursor via the pyrolysis method, further physisorbed on the cellulose substrate for sensing of As3+ via aggregation-based fluorescence "turn-off" mechanism. The linear range for quantitating As3+ ion is in the range of 0.05-50 µM with a detection limit of 10 nM. The practical application of the CA-GQDs-based analytical platform was verified by assaying As3+ ion in water samples. The CA-GQDs-embedded paper strip can be easily extended for assaying of As3+ ion, which meets the demand for monitoring of As3+ ion in real samples.


Subject(s)
Cellulose , Graphite , Paper , Quantum Dots , Graphite/chemistry , Quantum Dots/chemistry , Cellulose/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence , Ions/analysis , Ions/chemistry , Limit of Detection , Fluorescence
19.
Water Sci Technol ; 90(4): 1115-1131, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39215727

ABSTRACT

This study evaluates the performance of the Internal Circulation eXperience (ICX) reactor in treating high-strength paper mill wastewater in the south of Vietnam. The ICX reactor effectively managed organic concentrations (sCOD) of up to 11,800 mg/L. Results indicate a volumetric loading rate (VLR) of 26.8 kg/m3 × day, achieving processing efficiency exceeding 81% while consistently maintaining volatile fatty acids (VFA) below 300 mg/L. The study employed Monod and Stover-Kincannon kinetic modeling, revealing dynamic parameters including Ks = 56.81 kg/m3, Y = 0.121 kgVSS/kgsCOD, Kd = 0.0242 1/day, µmax = 0.372 1/day, Umax = 151 kg/m3 × day, and KB = 175.92 kg/m3 × day, underscoring the ICX reactor's superior efficiency compared to alternative technologies. Notably, the reactor's heightened sensitivity to VFA levels necessitates influent concentrations below 1,400 mg/L for effective sludge treatment. Furthermore, the influence of calcium on treatment efficiency requires post-treatment alkalinity maintenance below 19 meq/L to stabilize MLVSS/MLSS concentration. Biogas production ranged from 0.6 to 0.7 Nm3 biogas/kg sCOD; however, calcium impact diminished this ratio, reducing overall treatment efficiency and biogas production. The study contributes valuable insights into anaerobic treatment processes for complex industrial wastewaters, emphasizing the significance of controlling VFA, calcium, and alkalinity for optimal system performance.


Subject(s)
Bioreactors , Industrial Waste , Paper , Waste Disposal, Fluid , Vietnam , Waste Disposal, Fluid/methods , Industrial Waste/analysis , Wastewater/chemistry , Fatty Acids, Volatile/analysis
20.
Talanta ; 280: 126750, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39213890

ABSTRACT

The discovery of pancreatic lipase (PL) inhibitors is an essential route to develop new anti-obesity drugs. In this experiment, chitosan was used to add amino groups to cellulose filter paper (CFP) and then glutaraldehyde was used to covalently combine PL with amino-modified CFP through the Schiff base reaction. Under optimal immobilization conditions, CFP immobilized PL has a wide range of pH and temperature tolerance, as well as excellent reproducibility, reusability and storage stability. Subsequently, 26 natural products (NPs) were screened by immobilized PL with black tea extract having the highest inhibition rate. Three compounds with binding effects on PL (epigallocatechin gallate, theaflavin-3-gallate and theaflavin-3,3'-digallate) were captured. Molecular docking proved that these three compounds have a strong binding affinity for PL. Fluorescence spectra further revealed that theaflavin-3,3'-digallate could statically quench the intrinsic fluorescence of pancreatic lipase. The molecular docking and thermodynamic parameters indicated that electrostatic interaction was considered as the main interaction force between PL and theaflavin-3,3'-digallate. Finally, the potential anti-obesity targets and pathways of the three compounds were discussed through network pharmacology. This study not only proposes a simple and efficient method for screening PL inhibitors, but also sheds light on the anti-obesity mechanism of active compounds in black tea.


Subject(s)
Anti-Obesity Agents , Cellulose , Enzyme Inhibitors , Enzymes, Immobilized , Lipase , Molecular Docking Simulation , Lipase/antagonists & inhibitors , Lipase/metabolism , Lipase/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/antagonists & inhibitors , Enzymes, Immobilized/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Network Pharmacology , Pancreas/enzymology , Catechin/analogs & derivatives , Catechin/chemistry , Catechin/pharmacology , Catechin/metabolism , Paper , Tea/chemistry , Drug Evaluation, Preclinical
SELECTION OF CITATIONS
SEARCH DETAIL