Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.740
1.
J Biochem Mol Toxicol ; 38(6): e23747, 2024 Jun.
Article En | MEDLINE | ID: mdl-38800879

Parkinson's disease (PD) is a predominant neuromotor disorder characterized by the selective death of dopaminergic neurons in the midbrain. The majority of PD cases are sporadic or idiopathic, with environmental toxins and pollutants potentially contributing to its development or exacerbation. However, clinical PD patients are often associated with a reduced stroke frequency, where circulating blood platelets are indispensable. Although platelet structural impairment is evident in PD, the platelet functional alterations and their underlying molecular mechanisms are still obscure. Therefore, we investigated rotenone (ROT), an environmental neurotoxin that selectively destroys dopaminergic neurons mimicking PD, on human blood platelets to explore its impact on platelet functions, thus replicating PD conditions in vitro. Our study deciphered that ROT decreased thrombin-induced platelet functions, including adhesion, activation, secretion, and aggregation in human blood platelets. As ROT is primarily responsible for generating intracellular reactive oxygen species (ROS), and ROS is a key player regulating the platelet functional parameters, we went on to check the effect of ROT on platelet ROS production. In our investigation, it became evident that ROT treatment resulted in the stimulation of ROS production in human blood platelets. Additionally, we discovered that ROT induced ROS production by augmenting Ca2+ mobilization from inositol 1,4,5-trisphosphate receptor. Apart from this, the treatment of ROT triggers protein kinase C associated NADPH oxidase-mediated ROS production in platelets. In summary, this research, for the first time, highlights ROT-induced abnormal platelet functions and may provide a mechanistic insight into the altered platelet activities observed in PD patients.


Blood Platelets , Parkinson Disease , Reactive Oxygen Species , Rotenone , Humans , Rotenone/pharmacology , Blood Platelets/metabolism , Blood Platelets/drug effects , Parkinson Disease/metabolism , Parkinson Disease/blood , Reactive Oxygen Species/metabolism
2.
Anal Chim Acta ; 1306: 342623, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692796

BACKGROUND: Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS: In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE: The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.


Exosomes , Magnetite Nanoparticles , MicroRNAs , Parkinson Disease , Transferrin , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Exosomes/chemistry , MicroRNAs/blood , Magnetite Nanoparticles/chemistry , Transferrin/chemistry , Brain/metabolism , Biomarkers/blood , Male , Female
3.
Neurol India ; 72(2): 319-325, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38691476

BACKGROUND: A central role for apolipoprotein E (APOE) has been suggested in modulating processes of neurodegeneration. OBJECTIVE: To study the association between serum APOE levels, APOE gene polymorphisms, and Parkinson's disease (PD). MATERIAL AND METHODS: Fifty-five patients with PD and 30 healthy subjects were enrolled. PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr scale, and Schwab-England Activities of Daily Living scale. Serum APOE level and genotyping for APOE polymorphisms were done for PD patients and controls using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. RESULTS: Mean serum APOE level was significantly higher in PD patients compared with healthy controls. APOE ε2/4 genotype was present in a significantly higher proportion of patients compared with controls. APOE ε4 allele was significantly associated with a higher score on the "mentation, behavior, and mood section" of UPDRS compared with ε2 allele. APOE ε2 allele was significantly associated with a shorter disease duration compared with ε3 and ε4 alleles. Mean serum APOE level was significantly higher in patients presenting predominantly by rigidity and bradykinesia compared with those presenting predominantly by tremors. Serum APOE level was positively correlated with mean scores of "mentation, behavior, and mood section" of UPDRS and disease duration. Serum APOE level was a significant predictor for the scores of "mentation, behavior, and mood section" of UPDRS. CONCLUSION: APOE ε2/4 genotype might be a susceptibility variant for PD. There may be a possible role for APOE in modulating the process of neurodegeneration in PD.


Apolipoproteins E , Parkinson Disease , Polymorphism, Genetic , Adult , Aged , Female , Humans , Male , Middle Aged , Apolipoproteins E/genetics , Apolipoproteins E/blood , Genetic Predisposition to Disease , Genotype , Parkinson Disease/genetics , Parkinson Disease/blood , Polymorphism, Genetic/genetics , Severity of Illness Index
4.
BMC Geriatr ; 24(1): 433, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755545

OBJECTIVE: This study was performed to explore the differences in the clinical characteristics and oxidative stress indicators, inflammatory factors, and pathological proteins in serum between Parkinson's disease (PD) with anxiety (PD-A) and with no anxiety (PD-NA) patients, and further correlations among clinical characteristics and above variables were analyzed in PD-A and PD-NA groups. METHODS: A total of 121 patients with PD were enrolled in this study and assessed by the Hamilton Anxiety Scale (14 items) (HAMA-14). These patients were divided into PD-A and PD-NA groups according to a cut-off point of 7 of HAMA-14. Demographic variables were collected, and clinical symptoms were assessed by multiple rating scales. The levels of free radicals, inflammatory factors, and pathological proteins in serum were measured by chemical colorimetric method and enzyme-linked immunosorbent assay (ELISA). The differences of above variables were compared between PD-A and PD-NA groups, and the correlations of clinical symptoms with the abovevariables were analyzed in PD-A and PD-NA groups. RESULTS: The frequency of PD-A was 62.81%. PD-A group exhibited significantly impaired motor dysfunction and multiple non-motor symptoms, including fatigue, sleep behavior disorder, restless leg syndrome and autonomic dysfunction, and dramatically compromised activities of daily living compard with PD-NA group. PD-A group displayed prominently increasedlevels of hydroxyl radical (·OH) and tumor necrosis factor (TNF)-α, and a decreased nitric oxide (NO) level in serum compared with PD-NA group (P<0.001, P = 0.001, P= 0.027, respectively). ·OH, NO, and TNF-α were identified as the risk factors of PD-A (OR = 1.005, P = 0.036; OR = 0.956, P = 0.017; OR = 1.039, P = 0.033, respectively). In PD patients, HAMA-14 score was significantly and positively correlated with the levels of ·OH and TNF-α in serum (P<0.001, P = 0.002, respectively). In PD-A group, ·OH level was significantly and negatively correlated with Aß1-42 level, while TNF-α level was significantly and positively correlated with P-tau (S396) level in serum. CONCLUSIONS: The frequency of PD-A is high. PD-A patients present more severe motor dysfunction and multiple non-motor symptoms, and poorer activities of daily living. The increased levels of ·OH and TNF-α levels and the decreased NO level in serum are all associated with more severe anxiety in PD patients.Findings from this study may provide in-depth insights into the clinical characteristics, underlying mechanisms of PD-A, and potential correlations among anxiety, oxidative stress, inflammation, and cognitive decline in PD patients.


Anxiety , Inflammation , Oxidative Stress , Parkinson Disease , Humans , Parkinson Disease/blood , Parkinson Disease/psychology , Parkinson Disease/diagnosis , Male , Female , Oxidative Stress/physiology , Aged , Middle Aged , Anxiety/blood , Anxiety/psychology , Inflammation/blood
5.
Sci Adv ; 10(20): eadl6442, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748787

Early and precise diagnosis of α-synucleinopathies is challenging but critical. In this study, we developed a molecular beacon-based assay to evaluate microRNA-containing extracellular vesicles (EVs) in plasma. We recruited 1203 participants including healthy controls (HCs) and patients with isolated REM sleep behavior disorder (iRBD), α-synucleinopathies, or non-α-synucleinopathies from eight centers across China. Plasma miR-44438-containing EV levels were significantly increased in α-synucleinopathies, including those in the prodromal stage (e.g., iRBD), compared to both non-α-synucleinopathy patients and HCs. However, there are no significant differences between Parkinson's disease (PD) and multiple system atrophy. The miR-44438-containing EV levels negatively correlated with age and the Hoehn and Yahr stage of PD patients, suggesting a potential association with disease progression. Furthermore, a longitudinal analysis over 16.3 months demonstrated a significant decline in miR-44438-containing EV levels in patients with PD. These results highlight the potential of plasma miR-44438-containing EV as a biomarker for early detection and progress monitoring of α-synucleinopathies.


Biomarkers , Circulating MicroRNA , Extracellular Vesicles , Parkinson Disease , Synucleinopathies , Humans , Extracellular Vesicles/metabolism , Male , Biomarkers/blood , Female , Middle Aged , Circulating MicroRNA/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Aged , Synucleinopathies/blood , Synucleinopathies/diagnosis , alpha-Synuclein/blood , Case-Control Studies , MicroRNAs/blood , Multiple System Atrophy/blood , Multiple System Atrophy/diagnosis
6.
BMC Geriatr ; 24(1): 415, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730347

BACKGROUND: Parkinson's disease (PD) is a slowly progressive neurodegenerating disease that may eventually lead to disabling condition and pose a threat to the health of aging populations. This study aimed to explore the association of two potential risk factors, selenium and cadmium, with the prognosis of Parkinson's disease as well as their interaction effect. METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2006 to 2015-2016 and National Death Index (NDI). Participants were classified as Parkinson's patients by self-reported anti-Parkinson medications usage. Cox regression models and restricted cubic spline models were applied to evaluate the association between PD mortality and selenium intake level as well as blood cadmium level. Subgroup analysis was also conducted to explore the interaction between them. RESULTS: A total of 184 individuals were included. In full adjusted cox regression model (adjusted for age, gender, race, hypertension, pesticide exposure, smoking status and caffeine intake), compared with participants with low selenium intake, those with normal selenium intake level were significantly associated with less risk of death (95%CI: 0.18-0.76, P = 0.005) while no significant association was found between low selenium intake group and high selenium group (95%CI: 0.16-1.20, P = 0.112). Restricted cubic spline model indicated a nonlinear relationship between selenium intake and PD mortality (P for nonlinearity = 0.050). The association between PD mortality and blood cadmium level was not significant (95%CI: 0.19-5.57, P = 0.112). However, the interaction term of selenium intake and blood cadmium showed significance in the cox model (P for interaction = 0.048). Subgroup analysis showed that the significant protective effect of selenium intake existed in populations with high blood cadmium but not in populations with low blood cadmium. CONCLUSION: Moderate increase of selenium intake had a protective effect on PD mortality especially in high blood cadmium populations.


Cadmium , Parkinson Disease , Selenium , Humans , Cadmium/blood , Male , Female , Parkinson Disease/blood , Parkinson Disease/mortality , Selenium/blood , Selenium/administration & dosage , Retrospective Studies , Aged , Middle Aged , Nutrition Surveys/methods , Risk Factors , Diet , Cause of Death/trends , Cohort Studies
7.
BMC Neurol ; 24(1): 147, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693483

BACKGROUND: Sleep disorders are a prevalent non-motor symptom of Parkinson's disease (PD), although reliable biological markers are presently lacking. OBJECTIVES: To explore the associations between sleep disorders and serum neurofilament light chain (NfL) levels in individuals with prodromal and early PD. METHODS: The study contained 1113 participants, including 585 early PD individuals, 353 prodromal PD individuals, and 175 healthy controls (HCs). The correlations between sleep disorders (including rapid eye movement sleep behavior disorder (RBD) and excessive daytime sleepiness (EDS)) and serum NfL levels were researched using multiple linear regression models and linear mixed-effects models. We further investigated the correlations between the rates of changes in daytime sleepiness and serum NfL levels using multiple linear regression models. RESULTS: In baseline analysis, early and prodromal PD individuals who manifested specific behaviors of RBD showed significantly higher levels of serum NfL. Specifically, early PD individuals who experienced nocturnal dream behaviors (ß = 0.033; P = 0.042) and movements of arms or legs during sleep (ß = 0.027; P = 0.049) showed significantly higher serum NfL levels. For prodromal PD individuals, serum NfL levels were significantly higher in individuals suffering from disturbed sleep (ß = 0.038; P = 0.026). Our longitudinal findings support these baseline associations. Serum NfL levels showed an upward trend in early PD individuals who had a higher total RBDSQ score (ß = 0.002; P = 0.011) or who were considered as probable RBD (ß = 0.012; P = 0.009) or who exhibited behaviors on several sub-items of the RBDSQ. In addition, early PD individuals who had a high total ESS score (ß = 0.001; P = 0.012) or who were regarded to have EDS (ß = 0.013; P = 0.007) or who exhibited daytime sleepiness in several conditions had a trend toward higher serum NfL levels. CONCLUSION: Sleep disorders correlate with higher serum NfL, suggesting a link to PD neuronal damage. Early identification of sleep disorders and NfL monitoring are pivotal in detecting at-risk PD patients promptly, allowing for timely intervention. Regular monitoring of NfL levels holds promise for tracking both sleep disorders and disease progression, potentially emerging as a biomarker for evaluating treatment outcomes.


Biomarkers , Neurofilament Proteins , Parkinson Disease , Sleep Wake Disorders , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/complications , Male , Female , Neurofilament Proteins/blood , Middle Aged , Aged , Sleep Wake Disorders/blood , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/epidemiology , Biomarkers/blood , REM Sleep Behavior Disorder/blood , REM Sleep Behavior Disorder/diagnosis , Prodromal Symptoms
8.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791346

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid ß 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.


Biomarkers , Exosomes , MicroRNAs , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Parkinson Disease/genetics , Exosomes/metabolism , Exosomes/genetics , Biomarkers/blood , MicroRNAs/blood , MicroRNAs/genetics , alpha-Synuclein/blood , Amyloid beta-Peptides/blood
9.
Anal Chem ; 96(21): 8586-8593, 2024 May 28.
Article En | MEDLINE | ID: mdl-38728058

Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.


Boron Compounds , Electrochemical Techniques , Luminescent Measurements , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/blood , Boron Compounds/chemistry , Biosensing Techniques/methods , alpha-Synuclein/analysis , alpha-Synuclein/blood , Protoporphyrins/chemistry , Aptamers, Nucleotide/chemistry , Limit of Detection
10.
Alzheimers Res Ther ; 16(1): 106, 2024 May 11.
Article En | MEDLINE | ID: mdl-38730474

BACKGROUND: Previous studies on the associations between serum urate levels and neurodegenerative outcomes have yielded inconclusive results, and the causality remains unclear. This study aimed to investigate whether urate levels are associated with the risks of Alzheimer's disease and related dementias (ADRD), Parkinson's disease (PD), and neurodegenerative deaths. METHODS: This prospective study included 382,182 participants (45.7% men) from the UK Biobank cohort. Cox proportional hazards models were used to assess the associations between urate levels and risk of neurodegenerative outcomes. In the Mendelian randomization (MR) analysis, urate-related single-nucleotide polymorphisms were identified through a genome-wide association study. Both linear and non-linear MR approaches were utilized to investigate the potential causal associations. RESULTS: During a median follow-up period of 12 years, we documented 5,400 ADRD cases, 2,553 PD cases, and 1,531 neurodegenerative deaths. Observational data revealed that a higher urate level was associated with a decreased risk of ADRD (hazard ratio [HR]: 0.93, 95% confidence interval [CI]: 0.90, 0.96), PD (HR: 0.87, 95% CI: 0.82, 0.91), and neurodegenerative death (HR: 0.88, 95% CI: 0.83, 0.94). Negative linear associations between urate levels and neurodegenerative events were observed (all P-values for overall < 0.001 and all P-values for non-linearity > 0.05). However, MR analyses yielded no evidence of either linear or non-linear associations between genetically predicted urate levels and the risk of the aforementioned neurodegenerative events. CONCLUSION: Although the prospective cohort study demonstrated that elevated urate levels were associated with a reduced risk of neurodegenerative outcomes, MR analyses found no evidence of causality.


Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Uric Acid , Aged , Female , Humans , Male , Middle Aged , Alzheimer Disease/genetics , Alzheimer Disease/blood , Alzheimer Disease/epidemiology , Cohort Studies , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/epidemiology , Parkinson Disease/genetics , Parkinson Disease/blood , Parkinson Disease/epidemiology , Prospective Studies , UK Biobank , United Kingdom/epidemiology , Uric Acid/blood
12.
Medicine (Baltimore) ; 103(17): e37919, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669409

BACKGROUND: Parkinson disease (PD) is a common neurodegenerative disorder, but its pathogenesis is still not entirely understood. While some trace elements, such as selenium, iron, and copper, are considered pivotal in PD onset due to their role in oxidative stress, the association between selenium concentrations and PD susceptibility remains ambiguous. METHODS: A systematic review and meta-analysis was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and framed by the Patient, Intervention, Comparison, Outcome paradigm. Data were sourced from 4 prominent electronic databases: PubMed, Embase, Web of Science, and Cochrane Library. Eligible studies must have had a PD case group and a control group, both of which presented data on selenium concentrations. The quality of the studies was assessed using the Newcastle-Ottawa Scale. RESULTS: Of 1541 initially identified articles, 12 studies comprising a total of 597 PD cases and 733 controls were selected for the meta-analysis. Pronounced heterogeneity was observed among these studies. When assessing blood selenium levels, no significant difference was found between patients with PD and the controls. However, when examining the cerebrospinal fluid, selenium levels in PD patients were significantly elevated compared to controls (standard mean difference = 1.21, 95% CI 0.04-2.39, P < .05). Subgroup analyses, sensitivity analyses, and evaluation of publication bias were performed to ensure data robustness. CONCLUSIONS: Elevated selenium levels in cerebrospinal fluid may be associated with a higher risk of Parkinson. Further prospective research is required to solidify this potential link and to offer avenues for novel therapeutic interventions or preventive measures.


Parkinson Disease , Selenium , Humans , Selenium/blood , Parkinson Disease/blood
13.
Anal Bioanal Chem ; 416(14): 3361-3371, 2024 Jun.
Article En | MEDLINE | ID: mdl-38607383

The elucidation of disease pathogenesis can be achieved by analyzing the low-abundance phosphopeptides in organisms. Herein, we developed a novel and easy-to-prepare polymer-coated nanomaterial. By improving the hydrophilicity and spatial conformation of the material, we effectively enhanced the adsorption of phosphopeptides and demonstrated excellent enrichment properties. The material was able to successfully enrich the phosphopeptides in only 1 min. Meanwhile, the material has high selectivity (1:2000), good loading capacity (100 µg/mg), excellent sensitivity (0.5 fmol), and great acid and alkali resistance. In addition, the material was applied to real samples, and 70 phosphopeptides were enriched from the serum of Parkinson's disease (PD) patients and 67 phosphopeptides were enriched from the serum of normal controls. Sequences Logo showed that PD is probably associated with threonine, glutamate, serine, and glutamine. Finally, gene ontology (GO) analysis was performed on phosphopeptides enriched in PD patients' serum. The results showed that PD patients expressed abnormal expression of the cholesterol metabolic process and cell-matrix adhesion in the biological process (BP), endoplasmic reticulum and lipoprotein in the cellular component (CC), and heparin-binding, lipid-binding, and receptor-binding in the molecular function (MF) as compared with normal individuals. All the experiments indicate that the nanomaterials have great potential in proteomics studies.


Nanostructures , Parkinson Disease , Phosphopeptides , Polymers , Parkinson Disease/blood , Humans , Phosphopeptides/blood , Polymers/chemistry , Nanostructures/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
14.
Article Ru | MEDLINE | ID: mdl-38676689

OBJECTIVE: To evaluate the clinical and laboratory correlation of biomarkers with anti- and pro-apoptotic activity with the severity of motor and non-motor symptoms depending on the progression rate of Parkinson's disease (PD). MATERIAL AND METHODS: A wide range of non-motor symptoms (emotional-affective, cognitive, psychotic and behavioral disorders, fatigue, sleep disorders and autonomic disorders) was evaluated using validated scales and a number of serum neuromarkers responsible for neuroplasticity and neuronal survival processes (BDNF, PDGF, cathepsin D) in 71 patients with PD (mean age 65 (55; 70) years, disease duration 7 (4; 9) years, age of onset 57 (49; 62) years). RESULTS: The concentration of biomarkers (BDNF, PDGF and cathepsin D) was the lowest in the group of patients with a rapid PD progression rate (p<0.001, p=0.001 and p=0.031, respectively), the severity of motor and most non-motor symptoms was higher (p=0.023 and p=0.001, respectively) compared to middle and slow progression rate. There were correlations between BDNF concentration and the severity of depression (r=-0.63, p<0.001), apathy (r=-0.48, p<0.001), impulsive behavioral disorders (r=0.500, p<0.001), level of cognitive functions (r=0.54, p<0.001), motor symptoms (r=-0.43, p<0.001); between PDGF level and the severity of motor manifestations of PD (r=-0.30, p=0.011), depression (r=-0.70, p<0.001), apathy (r=-0.460, p<0.001), the degree of severity of behavioral disorders (r=0.742, p<0.001). No significant correlations were observed between the level of cathepsin D and the severity of clinical manifestations of PD, which indicates the connection of cathepsin D with the general pathogenesis of PD. CONCLUSION: The possibility of using serum proteins of the neurotrophin subfamily and the protein associated with autophagy, cathepsin D, as biomarkers that determine the prognosis of PD, is considered.


Biomarkers , Brain-Derived Neurotrophic Factor , Cathepsin D , Disease Progression , Parkinson Disease , Platelet-Derived Growth Factor , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Male , Female , Middle Aged , Aged , Biomarkers/blood , Brain-Derived Neurotrophic Factor/blood , Cathepsin D/blood , Platelet-Derived Growth Factor/metabolism , Platelet-Derived Growth Factor/analysis , Severity of Illness Index
15.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Article En | MEDLINE | ID: mdl-38640169

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


14-3-3 Proteins , Biomarkers , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , p21-Activated Kinases , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/genetics , 14-3-3 Proteins/blood , Male , p21-Activated Kinases/blood , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Female , Aged , Biomarkers/blood , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Middle Aged , Aged, 80 and over , Prospective Studies , Adult , Mutation
16.
Ann Neurol ; 95(6): 1162-1172, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563317

OBJECTIVE: To characterize DNA methylation (DNAm) differences between sporadic Parkinson's disease (PD) and healthy control (HC) individuals enrolled in the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using whole blood, we characterized longitudinal differences in DNAm between sporadic PD patients (n = 196) and HCs (n = 86) enrolled in PPMI. RNA sequencing (RNAseq) was used to conduct gene expression analyses for genes mapped to differentially methylated cytosine-guanine sites (CpGs). RESULTS: At the time of patient enrollment, 5,178 CpGs were differentially methylated (2,683 hypermethylated and 2,495 hypomethylated) in PD compared to HC. Of these, 579 CpGs underwent significant methylation changes over 3 years. Several differentially methylated CpGs were found near the cytochrome P450 family 2 subfamily E member 1 (CYP2E1) gene. Additionally, multiple hypermethylated CpGs were associated with the N-myc downregulated gene family member 4 (NDRG4) gene. RNA-Seq analyses showed 75 differentially expressed genes in PD patients compared to controls. An integrative analysis of both differentially methylated sites and differentially expressed genes revealed 20 genes that exhibited hypomethylation concomitant with overexpression. Additionally, 1 gene, cathepsin H (CTSH), displayed hypermethylation that was associated with its decreased expression. INTERPRETATION: We provide initial evidence of alterations in DNAm in blood of PD patients that may serve as potential epigenetic biomarker of disease. To evaluate the significance of these changes throughout the progression of PD, additional profiling at longer intervals and during the prodromal stages of disease will be necessary. ANN NEUROL 2024;95:1162-1172.


Biomarkers , DNA Methylation , Epigenesis, Genetic , Parkinson Disease , Humans , Parkinson Disease/genetics , Parkinson Disease/blood , Male , Female , DNA Methylation/genetics , Aged , Middle Aged , Biomarkers/blood , Epigenesis, Genetic/genetics , Epigenome/genetics , CpG Islands/genetics
17.
Biomolecules ; 14(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38672506

Parkinson's disease (PD) is a neurodegenerative movement disorder associated with a loss of dopamine neurons in the substantia nigra. The diagnosis of PD is sensitive since it shows clinical features that are common with other neurodegenerative diseases. In addition, most symptoms arise at the late stage of the disease, where most dopaminergic neurons are already damaged. Several studies reported that oxidative stress is a key modulator in the development of PD. This condition occurs due to excess reactive oxygen species (ROS) production in the cellular system and the incapability of antioxidants to neutralize it. In this study, we focused on the pathology of PD by measuring serum xanthine oxidase (XO) activity, which is an enzyme that generates ROS. Interestingly, the serum XO activity of patients with PD was markedly upregulated compared to patients with other neurological diseases (ONDs) as a control. Moreover, serum XO activity in patients with PD showed a significant correlation with the disease severity based on the Hoehn and Yahr (HY) stages. The investigation of antioxidant status also revealed that serum uric acid levels were significantly lower in the severe group (HY ≥ 3) than in the ONDs group. Together, these results suggest that XO activity may contribute to the development of PD and might potentially be a biomarker for determining disease severity in patients with PD.


Antioxidants , Parkinson Disease , Uric Acid , Xanthine Oxidase , Humans , Parkinson Disease/blood , Parkinson Disease/metabolism , Xanthine Oxidase/blood , Xanthine Oxidase/metabolism , Male , Female , Aged , Antioxidants/metabolism , Middle Aged , Uric Acid/blood , Biomarkers/blood , Oxidative Stress , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/blood
18.
Clin Chim Acta ; 558: 119671, 2024 May 15.
Article En | MEDLINE | ID: mdl-38621587

BACKGROUND AND AIMS: A machine learning algorithm based on circulating metabolic biomarkers for the predictions of neurological diseases (NLDs) is lacking. To develop a machine learning algorithm to compare the performance of a metabolic biomarker-based model with that of a clinical model based on conventional risk factors for predicting three NLDs: dementia, Parkinson's disease (PD), and Alzheimer's disease (AD). MATERIALS AND METHODS: The eXtreme Gradient Boosting (XGBoost) algorithm was used to construct a metabolic biomarker-based model (metabolic model), a clinical risk factor-based model (clinical model), and a combined model for the prediction of the three NLDs. Risk discrimination (c-statistic), net reclassification improvement (NRI) index, and integrated discrimination improvement (IDI) index values were determined for each model. RESULTS: The results indicate that incorporation of metabolic biomarkers into the clinical model afforded a model with improved performance in the prediction of dementia, AD, and PD, as demonstrated by NRI values of 0.159 (0.039-0.279), 0.113 (0.005-0.176), and 0.201 (-0.021-0.423), respectively; and IDI values of 0.098 (0.073-0.122), 0.070 (0.049-0.090), and 0.085 (0.068-0.101), respectively. CONCLUSION: The performance of the model based on circulating NMR spectroscopy-detected metabolic biomarkers was better than that of the clinical model in the prediction of dementia, AD, and PD.


Algorithms , Biomarkers , Machine Learning , Humans , Biomarkers/blood , Aged , Male , Female , Nervous System Diseases/diagnosis , Nervous System Diseases/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/diagnosis
19.
Front Endocrinol (Lausanne) ; 15: 1376545, 2024.
Article En | MEDLINE | ID: mdl-38660510

Background: Aging clocks tag the actual underlying age of an organism and its discrepancy with chronological age and have been reported to predict incident disease risk in the general population. However, the relationship with neurodegenerative risk and in particular with Parkinson's Disease (PD) remains unclear, with few discordant findings reporting associations with both incident and prevalent PD risk. Objective: To clarify this relationship, we computed a common aging clock based on blood markers and tested the resulting discrepancy with chronological age (ΔPhenoAge) for association with both incident and prevalent PD risk. Methods: In a large Italian population cohort - the Moli-sani study (N=23,437; age ≥ 35 years; 52% women) - we carried out both Cox Proportional Hazards regressions modelling ΔPhenoAge as exposure and incident PD as outcome, and linear models testing prevalent PD as exposure and ΔPhenoAge as outcome. All models were incrementally adjusted for age, sex, education level completed and other risk/protective factors previously associated with PD risk in the same cohort (prevalent dysthyroidism, hypertension, diabetes, use of oral contraceptives, exposure to paints, daily coffee intake and cigarette smoking). Results: No significant association between incident PD risk (209 cases, median (IQR) follow-up time 11.19 (2.03) years) and PhenoAging was observed (Hazard Ratio [95% Confidence Interval] = 0.98 [0.71; 1.37]). However, a small but significant increase of ΔPhenoAge was observed in prevalent PD cases vs healthy subjects (ß (Standard Error) = 1.39 (0.70)). An analysis of each component biomarker of PhenoAge revealed a significant positive association of prevalent PD status with red cell distribution width (RDW; ß (SE) = 0.46 (0.18)). All the remaining markers did not show any significant evidence of association. Conclusion: The reported evidence highlights systemic effects of prevalent PD status on biological aging and red cell distribution width. Further cohort and functional studies may help shedding a light on the related pathways altered at the organism level in prevalent PD, like red cells variability, inflammatory and oxidative stress mechanisms.


Aging , Erythrocyte Indices , Parkinson Disease , Humans , Parkinson Disease/epidemiology , Parkinson Disease/blood , Female , Male , Italy/epidemiology , Middle Aged , Aging/blood , Cohort Studies , Adult , Aged , Prevalence , Risk Factors , Biomarkers/blood , Incidence
20.
Exp Gerontol ; 190: 112415, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614225

BACKGROUND: Lymphocyte antigen 96 (LY96) plays an important role in innate immunity and has been reported to be associated with various neurological diseases. However, its role in Parkinson's disease (PD) remains unclear. METHODS: Transcriptome data from a total of 49 patients with PD and 34 healthy controls were downloaded from the Gene Expression Omnibus (GEO) database to analyse the expression pattern of LY96 and its relationship with gene function and immune-related markers. In addition, peripheral blood samples were collected from clinical patients to validate LY96 mRNA expression levels. Finally, an in vitro cell model of PD based on highly differentiated SH-SY5Y cells was constructed, with small interfering RNA-silenced LY96 expression, and LY96 mRNA level, cell viability, flow cytometry, and mitochondrial membrane potential assays were performed. RESULTS: The results of the analyses of the GEO database and clinical samples revealed significantly abnormally high LY96 expression in patients with PD compared with healthy controls. The results of cell experiments showed that inhibiting LY96 expression alleviated adverse cellular effects by increasing cell viability, reducing apoptosis, and reducing oxidative stress. Gene set enrichment analysis showed that LY96 was positively correlated with T1 helper cells, T2 helper cells, neutrophils, natural killer T cells, myeloid-derived suppressor cells, macrophages, and activated CD4 cells, and may participate in PD through natural killer cell-mediated cytotoxicity pathways and extracellular matrix receptor interaction pathways. CONCLUSION: These findings suggested that LY96 might be a novel potential biomarker for PD, and offer insights into its immunoregulatory role.


Biomarkers , Lymphocyte Antigen 96 , Parkinson Disease , Aged , Female , Humans , Male , Middle Aged , Apoptosis , Biomarkers/blood , Case-Control Studies , Cell Survival , Immunity, Innate , Membrane Potential, Mitochondrial , Oxidative Stress , Parkinson Disease/blood , Parkinson Disease/genetics , Transcriptome , Lymphocyte Antigen 96/blood , Lymphocyte Antigen 96/genetics
...