Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.026
Filter
1.
J Neuroinflammation ; 21(1): 216, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218899

ABSTRACT

Parkinson's disease (PD) is characterized by neuroinflammation, progressive loss of dopaminergic neurons, and accumulation of α-synuclein (α-Syn) into insoluble aggregates called Lewy pathology. The Line 61 α-Syn mouse is an established preclinical model of PD; Thy-1 is used to promote human α-Syn expression, and features of sporadic PD develop at 9-18 months of age. To accelerate the PD phenotypes, we injected sonicated human α-Syn preformed fibrils (PFFs) into the striatum, which produced phospho-Syn (p-α-Syn) inclusions in the substantia nigra pars compacta and significantly increased MHC Class II-positive immune cells. Additionally, there was enhanced infiltration and activation of innate and adaptive immune cells in the midbrain. We then used this new model, Line 61-PFF, to investigate the effect of inhibiting the JAK/STAT signaling pathway, which is critical for regulation of innate and adaptive immune responses. After administration of the JAK1/2 inhibitor AZD1480, immunofluorescence staining showed a significant decrease in p-α-Syn inclusions and MHC Class II expression. Flow cytometry showed reduced infiltration of CD4+ T-cells, CD8+ T-cells, CD19+ B-cells, dendritic cells, macrophages, and endogenous microglia into the midbrain. Importantly, single-cell RNA-Sequencing analysis of CD45+ cells from the midbrain identified 9 microglia clusters, 5 monocyte/macrophage (MM) clusters, and 5 T-cell (T) clusters, in which potentially pathogenic MM4 and T3 clusters were associated with neuroinflammatory responses in Line 61-PFF mice. AZD1480 treatment reduced cell numbers and cluster-specific expression of the antigen-presentation genes H2-Eb1, H2-Aa, H2-Ab1, and Cd74 in the MM4 cluster and proinflammatory genes such as Tnf, Il1b, C1qa, and C1qc in the T3 cluster. Together, these results indicate that inhibiting the JAK/STAT pathway suppresses the activation and infiltration of innate and adaptive cells, reducing neuroinflammation in the Line 61-PFF mouse model.


Subject(s)
Disease Models, Animal , Neuroinflammatory Diseases , Parkinson Disease , STAT Transcription Factors , Signal Transduction , alpha-Synuclein , Animals , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Signal Transduction/drug effects , Signal Transduction/physiology , STAT Transcription Factors/metabolism , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/immunology , Humans , Mice, Transgenic , Mice, Inbred C57BL , Janus Kinases/metabolism , Janus Kinases/antagonists & inhibitors , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/immunology , Pyrimidines/pharmacology
2.
Bull Exp Biol Med ; 177(4): 412-417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39259467

ABSTRACT

The behavioral effects of α-synuclein oligomers were studied at various times after its chronic intranasal administration to 75-day-old C57BL/6J mice in comparison with the dynamics of changes in the transcriptional activity of caspases genes (Casp9, Casp8, and Casp3) in the hippocampus, frontal cortex, and cerebellum. The negative effects of α-synuclein oligomers on exploratory activity and short-term memory in the novel object recognition test were most pronounced after 90 days from the end of administration, while after 1 and 270 days, partial compensation of the studied cognitive functions was observed. Analysis of the expression of caspase genes suggests that early compensatory mechanisms are associated with suppression of the effector caspase-3 gene expression along with increased activity of the genes encoding initiator caspases-9 and -8. Late compensation processes are associated with a decrease in the activity of initiator caspases in the frontal cortex and cerebellum.


Subject(s)
Caspase 3 , Caspase 8 , Caspase 9 , Cerebellum , Cognitive Dysfunction , Hippocampus , Mice, Inbred C57BL , alpha-Synuclein , Animals , Mice , Caspase 3/genetics , Caspase 3/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Hippocampus/metabolism , Cerebellum/metabolism , Frontal Lobe/metabolism , Male , Disease Models, Animal , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Memory, Short-Term/drug effects
3.
PLoS One ; 19(9): e0296424, 2024.
Article in English | MEDLINE | ID: mdl-39302939

ABSTRACT

In this study, we investigated the neuroprotective effect of a water extract of ginseng (WEG) obtained via low-temperature extraction of the brain of mice with Parkinson's disease (PD) and the ameliorative effect on the damaged intestinal system for the treatment of dyskinesia in PD mice. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was injected intraperitoneally into male C57BL/6 mice to establish a PD model, and WEG was given via oral gavage. The results indicated that WEG could protect the damaged neuronal cells of the mice brain, inhibit the aggregation of α-synuclein (α-Syn) in the brain, and increase the positive expression rate of tyrosine hydroxylase (TH). WEG significantly improved intestinal damage and regulated intestinal disorders (P<0.05). WEG intervention increased the levels of beneficial bacteria, such as Lactobacillus, and normalized the abundance and diversity of colonies in the intestine of mice. Our results suggested that WEG protected neurons in the brain of PD mice via inhibiting the aggregation of α-Syn in the brain and increasing the positive expression level of TH in the brain. WEG regulated the gut microbiota of mice, improved the behavioral disorders of PD mice, and offered some therapeutic effects on PD mice.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Mice, Inbred C57BL , Panax , Plant Extracts , alpha-Synuclein , Animals , Male , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Panax/chemistry , Mice , alpha-Synuclein/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal , Water/chemistry , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Tyrosine 3-Monooxygenase/metabolism , Gastrointestinal Microbiome/drug effects
4.
Biomed Khim ; 70(4): 231-239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39239897

ABSTRACT

Parkinsonism in rats induced by the pesticide rotenone is one of the most adequate models of Parkinson's disease (PD). Isatin (indole-2,3-dione) is an endogenous regulator found in mammals and humans and exhibiting a wide range of biological activities mediated by numerous isatin-binding proteins, including those associated with neurodegenerative pathology. A course of rotenone administration to rats caused behavioral impairments and changes in the profile and relative content of isatin-binding proteins in the brain. In this study, we have investigated the delayed neuroprotective effect of isatin (5 days after completion of the course of rotenone administration) on behavioral reactions and the relative content of isatin-binding proteins in the brain of rats with rotenone-induced experimental parkinsonism. Although during this period the rats retained locomotor dysfunction, the proteomic analysis data (profile of isatin-binding proteins in the brain and changes in their relative content) differed from the results obtained immediately after completion of the course of rotenone administration. Moreover, all isatin-binding proteins with altered relative content changed during this period are associated to varying degrees with neurodegeneration (many with Parkinson's and Alzheimer's diseases).


Subject(s)
Brain , Isatin , Neuroprotective Agents , Rotenone , Animals , Isatin/pharmacology , Rotenone/toxicity , Neuroprotective Agents/pharmacology , Rats , Male , Brain/metabolism , Brain/drug effects , Brain/pathology , Disease Models, Animal , Rats, Wistar , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/drug therapy , Parkinson Disease, Secondary/pathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/drug therapy
5.
Brain Behav ; 14(9): e70001, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245995

ABSTRACT

BACKGROUND: Parkinson's disease (PD), the most prevalent type of Parkinsonism, is a progressive neurological condition characterized by a range of motor and non-motor symptoms. The complicated etiology of PD is thought to involve a summation of aging, genetic predisposition, and environmental variables. However, the α-synuclein protein plays a significant role in the disease's pathophysiology. MATERIALS AND METHODS: The UAS-α-Syn and Ddc-Gal4 strains were crossed to produce offspring referred to as PD flies. The entire population of flies was divided into five groups, each having about 100 flies and five replicates. The control group (w1118) and the PD group not receiving treatment were exposed to lauric acid (LA)/levodopa (LD)-free diet, while the PD groups that received treatments were fed with either a 250 mg/kg LA diet, a 250 mg/kg LD diet, or a combination of the two for 21 days. Longevity, geotaxis, and olfactory assays were performed in addition to other biochemical tests. RESULTS: As a result of the overexpression of α-synuclein, the locomotive capacity, lifespan, and antioxidant status were all significantly (p < .05) reduced, and the apoptotic and neuroinflammatory activities were increased. Nevertheless, the majority of the treated flies improved significantly (p < .05). CONCLUSION: LA, whether combined with LD or not, elicited a significant response in α-synuclein/dopa decarboxylase genetically modified Drosophila melanogaster Parkinsonism models.


Subject(s)
Apoptosis , Disease Models, Animal , Drosophila melanogaster , Lauric Acids , Levodopa , Parkinsonian Disorders , Animals , Drosophila melanogaster/drug effects , Lauric Acids/pharmacology , Lauric Acids/administration & dosage , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Levodopa/pharmacology , Levodopa/administration & dosage , Apoptosis/drug effects , alpha-Synuclein/metabolism , Animals, Genetically Modified , Oxidative Stress/drug effects , Longevity/drug effects , Male
6.
J Integr Neurosci ; 23(9): 175, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39344237

ABSTRACT

BACKGROUND: The abnormal aggregation of α-synuclein (α-syn) in the substantia nigra pars compacta (SNpc) region of the brain is characteristic of Parkinson's disease (PD), leading to the selective demise of neurons. Modifications in the post-translational processing of α-syn, phosphorylation at Ser129 in particular, are implicated in α-syn aggregation and are considered key hallmarks of PD. Furthermore, dysregulated Wnt/ß-catenin signaling, influenced by glycogen synthase kinase-3 beta (GSK-3ß), is implicated in PD pathogenesis. Inhibition of GSK-3ß holds promise in promoting neuroprotection by enhancing the Wnt/ß-catenin pathway. METHODS: In our previous study utilizing 1-methyl-4-phenylpyridinium (MPP+)-administered differentiated SH-SY5Y cells and a PD mouse model, we explored Vanillin's neuroprotective properties and related mechanisms against neuronal loss induced by MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. In the current study, we elucidated the mitigating effects of Vanillin on motor impairments, P-Ser129-α-syn expression, Wnt/ß-catenin signaling, and autophagic neuron death induced by MPTP in a mouse model of PD by performing motor function tests, western blot analysis and immunostaining. RESULTS: Our results show that Vanillin effectively modulated the motor dysfunctions, GSK-3ß expression, and activity, activated the Wnt/ß-catenin signaling, and reduced autophagic neuronal demise in the MPTP-lesioned mice, highlighting its neuroprotective effects. CONCLUSIONS: These findings underscore the complex interplay between α-syn pathology, GSK-3ß, Wnt/ß-catenin signaling, and autophagic-cell death in PD pathogenesis. Targeting these pathways, particularly with Vanillin, can be a promising therapeutic strategy for restoring dopaminergic (DA-ergic) neuronal homeostasis and slowing the progression of PD. Further research is crucial to resolving existing disputes and translating these discoveries into effective therapeutic interventions for PD patients.


Subject(s)
Benzaldehydes , Disease Models, Animal , Mice, Inbred C57BL , Neuroprotective Agents , Wnt Signaling Pathway , alpha-Synuclein , Animals , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Mice , alpha-Synuclein/metabolism , alpha-Synuclein/drug effects , Benzaldehydes/pharmacology , Benzaldehydes/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Synucleinopathies/metabolism , Synucleinopathies/drug therapy , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/drug therapy , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism
7.
Neurosci Lett ; 839: 137936, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39151573

ABSTRACT

Synucleins, including α-synuclein (α-syn), ß-syn, and γ-syn, have been implicated in various synucleinopathies, notably Parkinson's disease (PD), which has generated increased interest in understanding their roles. Although α-syn and ß-syn have contrasting neuropathological consequences, the precise role of γ-syn remains unclear. This study validated non-motor symptoms, specifically anxiety-like behavior, along with the degradation of dopaminergic (DAergic) neurons in the nigrostriatal system and DAergic neurites in the prefrontal cortex and hippocampus of rats infused with striatal 6-hydroxydopamine (6-OHDA). Our study further investigated the alterations in γ-syn expression levels in the prefrontal cortices and hippocampi of these 6-OHDA-treated rats, aiming to establish foundational insights into the neuropathophysiology of DA depletion, a central feature of PD. Our findings revealed a significant increase in the expression of γ-syn mRNA and protein in these brain regions, in contrast to unaltered α- and ß-syn expression levels. This suggests a distinct role of γ-syn within the neurobiological milieu under conditions of DA deficiency. Overall, our data shed light on the neurobiological changes observed in the hemiparkinsonian rat model induced with 6-OHDA, underscoring the potential significance of γ-syn in PD pathology.


Subject(s)
Dopamine , Hippocampus , Oxidopamine , Prefrontal Cortex , Up-Regulation , gamma-Synuclein , Animals , Prefrontal Cortex/metabolism , Oxidopamine/toxicity , Male , Hippocampus/metabolism , Dopamine/metabolism , gamma-Synuclein/metabolism , gamma-Synuclein/genetics , Rats , Rats, Sprague-Dawley , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Corpus Striatum/metabolism , Disease Models, Animal , alpha-Synuclein/metabolism , alpha-Synuclein/genetics
8.
Cell Rep Med ; 5(8): 101684, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39128469

ABSTRACT

Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.


Subject(s)
Brain , Homeostasis , Lactic Acid , Pyruvate Kinase , Sirtuin 1 , Sirtuin 1/metabolism , Sirtuin 1/genetics , Animals , Brain/metabolism , Brain/pathology , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Mice , Lactic Acid/metabolism , Humans , Acetylation/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/genetics , Disease Models, Animal , Male , Mice, Inbred C57BL , Thyroid Hormone-Binding Proteins , Thyroid Hormones/metabolism , Naphthoquinones/pharmacology
9.
Neurochem Res ; 49(10): 2940-2956, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39088165

ABSTRACT

Alterations of the microbiota-gut-brain axis has been associated with intestinal and neuronal inflammation in Parkinson's disease (PD). The aim of this work was to study some mechanisms associated with the neuroprotective effect of a combination (MIX) of lactic acid bacteria (LAB) composed by Lactiplantibacillus plantarum CRL2130 (riboflavin overproducing strain), Streptococcus thermophilus CRL808 (folate producer strain), and CRL807 (immunomodulatory strain) in cell cultures and in a chronic model of parkinsonism induced with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in aged mice, and under levodopa-benserazide treatment. In vitro, N2a differentiated neurons were exposed to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) and treated with intracellular bacterial extracts or with conditioned media from BV-2 cells exposed to the bacterial extracts. In vivo, motor skills, tyrosine hydrolase (TH) in brain and cytokine concentrations in serum and in brain were evaluated. The study of the faecal microbiota and the histology of the small intestine was also performed. The results showed that the neuroprotective effect associated with LAB MIX administration did not interfere with levodopa-benserazide treatment. This effect could be associated with the antioxidant and immunomodulatory potential of the LAB selected in the MIX, and was associated with the significant improvement in the motor tests and a higher number of TH + cells in the brain. In addition, LAB MIX administration was associated with modulation of the immune response. LAB administration decreased intestinal damage with an increase in the villus length /crypt depth ratio. Finally, the administration of the LAB MIX in combination with levodopa-benserazide treatment was able to partially revert the intestinal dysbiosis observed in the model, showing greater similarity to the profiles of healthy controls, and highlighting the increase in the Lactobacillaceae family. Different mechanisms of action would be related to the protective effect of the selected LAB combination which has the potential to be evaluated as an adjuvant for conventional PD therapies.


Subject(s)
Benserazide , Levodopa , Mice, Inbred C57BL , Neuroprotective Agents , Parkinsonian Disorders , Animals , Levodopa/pharmacology , Benserazide/pharmacology , Benserazide/therapeutic use , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/metabolism , Male , Mice , Drug Combinations , Gastrointestinal Microbiome/drug effects , Disease Models, Animal , Lactobacillales , Probiotics/therapeutic use , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Streptococcus thermophilus/drug effects
10.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39015077

ABSTRACT

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Subject(s)
Cannabinoids , Dopaminergic Neurons , Iron , Oxidopamine , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2 , Animals , Male , Cannabinoids/pharmacology , Rats , Iron/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/agonists , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Tyrosine 3-Monooxygenase/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology
11.
Neuropathol Appl Neurobiol ; 50(4): e13000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39036836

ABSTRACT

AIMS: Astrocytic tau pathology is a major feature of tauopathies and ageing-related tau astrogliopathy (ARTAG). The substantia nigra (SN) is one of the important degenerative areas in tauopathies with parkinsonism. Nigral tau pathology is usually reported as neuronal predominant with less prominent astrocytic involvement. We aimed to identify cases with prominent astrocytic tau pathology in the SN. METHODS: We use the term nigral tau-astrogliopathy (NITAG) to describe cases showing an unusually high density of ARTAG with less neuronal tau pathology in the SN. We collected clinical information and studied the distribution of tau pathology, morphological features and immunostaining profiles in three cases. RESULTS: Three cases, all males with parkinsonism, were identified with the following clinicopathological diagnoses: (i) atypical parkinsonism with tau pathology reminiscent to that in postencephalitic parkinsonism (69-year-old); (ii) multiple system atrophy (73-year-old); (iii) traumatic encephalopathy syndrome/chronic traumatic encephalopathy (84-year-old). Double-labelling immunofluorescence confirmed co-localization of GFAP and phosphorylated tau in affected astrocytes. Staining profiles of NITAG revealed immunopositivity for various phosphorylated tau antibodies. Some astrocytic tau lesions were also seen in other brainstem regions and cerebral grey matter. CONCLUSIONS: We propose NITAG is a rare neuropathological feature, and not a distinct disease entity, in the frame of multiple system ARTAG, represented by abundant tau-positive astrocytes in various brain regions but having the highest density in the SN. The concept of NITAG allows the stratification of cases with various background pathologies to understand its relevance and contribution to neuronal dysfunction.


Subject(s)
Aging , Astrocytes , Substantia Nigra , Tauopathies , tau Proteins , Humans , Male , Substantia Nigra/pathology , Substantia Nigra/metabolism , Aged , Astrocytes/pathology , Astrocytes/metabolism , Tauopathies/pathology , Tauopathies/metabolism , Aged, 80 and over , Aging/pathology , tau Proteins/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism
12.
Brain Behav ; 14(7): e3605, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956819

ABSTRACT

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Subject(s)
Disease Models, Animal , Mice, Inbred C57BL , Parkinsonian Disorders , Probenecid , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Mice , Male , Probenecid/pharmacology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/therapy , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Motor Cortex/metabolism , Motor Cortex/physiopathology , Dopaminergic Neurons/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Interleukin-1beta/metabolism , Substantia Nigra/metabolism , Corpus Striatum/metabolism , Vesicular Monoamine Transport Proteins/metabolism , MPTP Poisoning/therapy , MPTP Poisoning/prevention & control , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Motor Activity/physiology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
13.
NPJ Biofilms Microbiomes ; 10(1): 61, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060267

ABSTRACT

The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.


Subject(s)
Feces , Gastrointestinal Microbiome , Macaca fascicularis , Animals , Feces/microbiology , Disease Models, Animal , Dysbiosis/microbiology , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Parkinsonian Disorders/microbiology , Parkinsonian Disorders/metabolism , Metabolomics/methods , Metabolome , Host Microbial Interactions , Multiomics
14.
Neurotoxicology ; 103: 320-334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38960072

ABSTRACT

Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide. Current treatments for PD largely center around dopamine replacement therapies and fail to prevent the progression of pathology, underscoring the need for neuroprotective interventions. Approaches that target neuroinflammation, which occurs prior to dopaminergic neuron (DAn) loss in the substantia nigra (SN), represent a promising therapeutic strategy. The glucocorticoid receptor (GR) has been implicated in the neuropathology of PD and modulates numerous neuroinflammatory signaling pathways in the brain. Therefore, we investigated the neuroprotective effects of the novel GR modulator, PT150, in the rotenone mouse model of PD, postulating that inhibition of glial inflammation would protect DAn and reduce accumulation of neurotoxic misfolded ⍺-synuclein protein. C57Bl/6 mice were exposed to 2.5 mg/kg/day rotenone by intraperitoneal injection for 14 days. Upon completion of rotenone dosing, mice were orally treated at day 15 with 30 mg/kg/day or 100 mg/kg/day PT150 in the 14-day post-lesioning incubation period, during which the majority of DAn loss and α-synuclein (α-syn) accumulation occurs. Our results indicate that treatment with PT150 reduced both loss of DAn and microgliosis in the nigrostriatal pathway. Although morphologic features of astrogliosis were not attenuated, PT150 treatment promoted potentially neuroprotective activity in these cells, including increased phagocytosis of hyperphosphorylated α-syn. Ultimately, PT150 treatment reduced the loss of DAn cell bodies in the SN, but not the striatum, and prohibited intra-neuronal accumulation of α-syn. Together, these data indicate that PT150 effectively reduced SN pathology in the rotenone mouse model of PD.


Subject(s)
Dopaminergic Neurons , Mice, Inbred C57BL , Neuroprotective Agents , Receptors, Glucocorticoid , Rotenone , alpha-Synuclein , Animals , Rotenone/toxicity , Neuroprotective Agents/pharmacology , Mice , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Dopaminergic Neurons/metabolism , Receptors, Glucocorticoid/metabolism , alpha-Synuclein/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Substantia Nigra/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Disease Models, Animal , Phenanthrenes
15.
Brain Res ; 1841: 149128, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39053685

ABSTRACT

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Subject(s)
Deep Brain Stimulation , Disease Models, Animal , Dopamine , Norepinephrine , Oxidopamine , Subthalamic Nucleus , Synaptic Transmission , Animals , Subthalamic Nucleus/metabolism , Deep Brain Stimulation/methods , Male , Oxidopamine/toxicity , Synaptic Transmission/physiology , Dopamine/metabolism , Norepinephrine/metabolism , Rats , Parkinson Disease/metabolism , Parkinson Disease/therapy , Dopaminergic Neurons/metabolism , Olfactory Bulb/metabolism , Rats, Sprague-Dawley , Corpus Striatum/metabolism , Dentate Gyrus/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Parkinsonian Disorders/physiopathology
16.
Biochem Pharmacol ; 226: 116343, 2024 08.
Article in English | MEDLINE | ID: mdl-38852645

ABSTRACT

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Subject(s)
Endoplasmic Reticulum Stress , Rats, Sprague-Dawley , Rotenone , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , Rotenone/toxicity , Endoplasmic Reticulum Stress/drug effects , Rats , Male , Cell Line, Tumor , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pentanoic Acids/pharmacology , Pentanoic Acids/therapeutic use , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Protein Aggregates/drug effects
17.
Brain Res Bull ; 214: 110989, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825252

ABSTRACT

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Subject(s)
Dopaminergic Neurons , Intercellular Adhesion Molecule-1 , Mice, Inbred C57BL , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dopaminergic Neurons/drug effects , Intercellular Adhesion Molecule-1/metabolism , Mice , Male , Disease Models, Animal , Neuroinflammatory Diseases/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Microbiome/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Inflammation/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Microglia/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Parkinsonian Disorders/metabolism , MPTP Poisoning/metabolism , MPTP Poisoning/pathology
18.
Elife ; 122024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940422

ABSTRACT

Parkinson's disease (PD) is characterized by motor impairments caused by degeneration of dopamine neurons in the substantia nigra pars compacta. In addition to these symptoms, PD patients often suffer from non-motor comorbidities including sleep and psychiatric disturbances, which are thought to depend on concomitant alterations of serotonergic and noradrenergic transmission. A primary locus of serotonergic neurons is the dorsal raphe nucleus (DRN), providing brain-wide serotonergic input. Here, we identified electrophysiological and morphological parameters to classify serotonergic and dopaminergic neurons in the murine DRN under control conditions and in a PD model, following striatal injection of the catecholamine toxin, 6-hydroxydopamine (6-OHDA). Electrical and morphological properties of both neuronal populations were altered by 6-OHDA. In serotonergic neurons, most changes were reversed when 6-OHDA was injected in combination with desipramine, a noradrenaline (NA) reuptake inhibitor, protecting the noradrenergic terminals. Our results show that the depletion of both NA and dopamine in the 6-OHDA mouse model causes changes in the DRN neural circuitry.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons , Dorsal Raphe Nucleus , Oxidopamine , Parkinsonian Disorders , Serotonergic Neurons , Animals , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Serotonergic Neurons/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Mice , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Male , Mice, Inbred C57BL , Desipramine/pharmacology , Norepinephrine/metabolism
19.
Parkinsonism Relat Disord ; 125: 107043, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896976

ABSTRACT

INTRODUCTION: The substantia nigra pars compacta (SNc) is the key pathologic locus in neurodegenerative parkinsonian disorders. Recently, in vivo susceptibility MRI metrics were associated with postmortem glial cell density and tau burden in the SNc of parkinsonism subjects. This study investigated the red nucleus (RN), another iron-rich region adjacent to the SNc and a potential site of higher functionality in parkinsonisms. METHODS: In vivo MRI and postmortem data were obtained from 34 parkinsonism subjects and 3 controls. Neuron density, glial cell density, and percentages of area occupied by α-synuclein and tau were quantified using digitized midbrain slides. R2* and quantitative susceptibility mapping (QSM) metrics in the RN and SNc were derived from multi-gradient echo images. Histopathology data were compared between the RN and SNc using paired t-tests. MRI-histology associations were analyzed using partial Pearson correlations. RESULTS: The RN had greater neuron (t23 = 3.169, P = 0.004) and glial cell densities (t23 = 2.407, P = 0.025) than the SNc, whereas the SNc had greater α-synuclein (t28 = 4.614, P < 0.0001) and tau burden (t24 = 4.513, P = 0.0001). In both the RN (R2*: r = 0.47, P = 0.043; QSM: r = 0.52, P = 0.024) and SNc (R2*: r = 0.57, P = 0.01; QSM: r = 0.58, P = 0.009), MRI values were associated with glial cell density but not neuron density or α-synuclein (Ps > 0.092). QSM associated with tau burden (r = 0.49, P = 0.038) in the SNc, but not the RN. CONCLUSIONS: The RN is resilient to parkinsonian-related pathological processes compared to the SNc, and susceptibility MRI captured glial cell density in both regions. These findings help to further our understanding of the underlying pathophysiological processes in parkinsonisms.


Subject(s)
Magnetic Resonance Imaging , Parkinsonian Disorders , Pars Compacta , Red Nucleus , Substantia Nigra , Humans , Red Nucleus/diagnostic imaging , Red Nucleus/pathology , Red Nucleus/metabolism , Male , Aged , Female , Pars Compacta/diagnostic imaging , Pars Compacta/pathology , Pars Compacta/metabolism , Aged, 80 and over , Middle Aged , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/pathology , Parkinsonian Disorders/metabolism , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology , Substantia Nigra/metabolism , tau Proteins/metabolism , Neuroglia/pathology , Neuroglia/metabolism , alpha-Synuclein/metabolism , Neurons/pathology , Neurons/metabolism
20.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38866066

ABSTRACT

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Subject(s)
Anti-Anxiety Agents , Anxiety , GABA-B Receptor Antagonists , Oxidopamine , Parkinsonian Disorders , Receptors, GABA-B , Septal Nuclei , Animals , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Male , Anxiety/metabolism , GABA-B Receptor Antagonists/pharmacology , Anti-Anxiety Agents/pharmacology , Rats , Receptors, GABA-B/metabolism , Oxidopamine/toxicity , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/psychology , Dopamine/metabolism , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Rats, Sprague-Dawley , Serotonin/metabolism , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Organophosphorus Compounds
SELECTION OF CITATIONS
SEARCH DETAIL