Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Int J Neuropsychopharmacol ; 27(10)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39276147

ABSTRACT

BACKGROUND: Stress has become a common public health concern, contributing to the rising prevalence of psychiatric disorders. Understanding the impact of stress considering critical variables, such as age, sex, and individual differences, is of the utmost importance for developing effective intervention strategies. METHODS: Stress effects (daily footshocks for 10 days) during adolescence (postnatal day [PND] 31-40) and adulthood (PND 65-74) were investigated on behavioral outcomes and parvalbumin (PV)-expressing GABAergic interneurons and their associated perineuronal nets (PNNs) in the prefrontal cortex of male and female mice 5 weeks post stress. RESULTS: In adulthood, adolescent stress induced behavioral alterations in male mice, including anxiety-like behaviors, social deficits, cognitive impairments, and altered dopamine system responsivity. Applying integrated behavioral z-score analysis, we identified sex-specific differences in response to adolescent stress, with males displaying greater vulnerability than females. Furthermore, adolescent-stressed male mice showed decreased PV+ and PNN+ cell numbers and PV+/PNN+ colocalization, while in females, adolescent stress reduced prefrontal PV+/PNN+ colocalization in the prefrontal cortex. Further analysis identified distinct behavioral clusters, with certain females demonstrating resilience to adolescent stress-induced deficits in sociability and PV+ cell number. Adult stress in male and female mice did not cause long-lasting changes in behavior and PV+ and PNN+ cell number. CONCLUSION: Our findings indicate that the timing of stress, sex, and individual variabilities seem to be determinants for the development of behavioral changes associated with psychiatric disorders, particularly in male mice during adolescence.


Subject(s)
Behavior, Animal , Interneurons , Parvalbumins , Prefrontal Cortex , Stress, Psychological , Animals , Female , Male , Parvalbumins/metabolism , Interneurons/metabolism , Stress, Psychological/metabolism , Prefrontal Cortex/metabolism , Mice , Behavior, Animal/physiology , Sex Characteristics , Age Factors , Mice, Inbred C57BL , Social Behavior , Anxiety/metabolism
2.
Basic Clin Pharmacol Toxicol ; 134(5): 614-628, 2024 May.
Article in English | MEDLINE | ID: mdl-38426366

ABSTRACT

The brain extracellular matrix (ECM) has garnered increasing attention as a fundamental component of brain function in a predominantly "neuron-centric" paradigm. Particularly, the perineuronal nets (PNNs), a specialized net-like structure formed by ECM aggregates, play significant roles in brain development and physiology. PNNs enwrap synaptic junctions in various brain regions, precisely balancing new synaptic formation and long-term stabilization, and are highly dynamic entities that change in response to environmental stimuli, especially during the neurodevelopmental period. They are found mainly surrounding parvalbumin (PV)-expressing GABAergic interneurons, being proposed to promote PV interneuron maturation and protect them against oxidative stress and neurotoxic agents. This structural and functional proximity underscores the crucial role of PNNs in modulating PV interneuron function, which is critical for the excitatory/inhibitory balance and, consequently, higher-level behaviours. This review delves into the molecular underpinnings governing PNNs formation and degradation, elucidating their functional interactions with PV interneurons. In the broader physiological context and brain-related disorders, we also explore their intricate relationship with other molecules, such as reactive oxygen species and metalloproteinases, as well as glial cells. Additionally, we discuss potential therapeutic strategies for modulating PNNs in brain disorders.


Subject(s)
Interneurons , Parvalbumins , Parvalbumins/metabolism , Interneurons/metabolism , Extracellular Matrix/metabolism , Neurons/metabolism , Brain/metabolism
3.
Schizophr Bull ; 50(1): 210-223, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37584417

ABSTRACT

BACKGROUND: Consistent with postmortem findings in patients, most animal models for schizophrenia (SCZ) present abnormal levels of parvalbumin (PV), a marker of fast-spiking GABAergic interneurons, in the prefrontal cortex (PFC) and hippocampus (HIP). However, there are discrepancies in the literature. PV reductions lead to a functional loss of PV interneurons, which is proposed to underly SCZ symptoms. Given its complex etiology, different categories of animal models have been developed to study SCZ, which may distinctly impact PV levels in rodent brain areas. STUDY DESIGN: We performed a quantitative meta-analysis on PV-positive cell number/density and expression levels in the PFC and HIP of animal models for SCZ based on pharmacological, neurodevelopmental, and genetic manipulations. RESULTS: Our results confirmed that PV levels are significantly reduced in the PFC and HIP regardless of the animal model. By categorizing into subgroups, we found that all pharmacological models based on NMDA receptor antagonism decreased PV-positive cell number/density or PV expression levels in both brain areas examined. In neurodevelopmental models, abnormal PV levels were confirmed in both brain areas in maternal immune activation models and HIP of the methylazoxymethanol acetate model. In genetic models, negative effects were found in neuregulin 1 and ERBB4 mutant mice in both brain regions and the PFC of dysbindin mutant mice. Regarding sex differences, male rodents exhibited PV reductions in both brain regions only in pharmacological models, while few studies have been conducted in females. CONCLUSION: Overall, our findings support deficits in prefrontal and hippocampal PV interneurons in animal models for SCZ.


Subject(s)
Schizophrenia , Humans , Mice , Male , Female , Animals , Schizophrenia/genetics , Parvalbumins/metabolism , Disease Models, Animal , Interneurons/metabolism , Prefrontal Cortex/metabolism , Hippocampus/metabolism
4.
Sci Rep ; 13(1): 19473, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945756

ABSTRACT

Abnormal dopamine neurotransmission is a common trait of some psychiatric diseases, like schizophrenia or bipolar disorder. Excessive dopaminergic tone in subcortical brain regions is associated with psychotic episodes, while reduced prefrontal dopaminergic activity is associated with impaired cognitive performance and reduced motivation, among other symptoms. Inhibitory interneurons expressing the calcium binding protein parvalbumin are particularly affected in both schizophrenia and bipolar disorder, as they set a fine-tuned physiological inhibitory/excitatory balance. Parvalbumin and somatostatin interneuron subtypes, are born from the medial ganglionic eminence and require the sequential expression of specific transcription factors for their specification, such as Nkx6.2. Here, we aimed at characterizing in detail interneuron subtypes derived from Nkx6.2 expressing progenitors by the generation of an Nkx6.2 Cre transgenic mouse line. We show that Nkx6.2 specifies over a third part of the total population of cortical somatostatin interneurons, preferentially at early developmental time points, whereas at late developmental stages, Nkx6.2 expressing progenitors shift to parvalbumin interneuron specification. Dopamine D2 receptor deletion from Nkx6.2 expressing progenitors causes abnormal phenotypes restricted to cognitive, motivation and anxiety domains. Our results show that Nkx6.2 have the potential to specify both somatostatin and parvalbumin interneurons in an opposite timed program and that DRD2 expression is required in Nkx6.2 expressing progenitors to avoid impaired phenotypes commonly associated to the pathophysiology of psychiatric diseases.


Subject(s)
Motivation , Parvalbumins , Animals , Mice , Anxiety/genetics , Cognition , Interneurons/metabolism , Mice, Transgenic , Parvalbumins/metabolism , Phenotype , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Somatostatin/genetics , Somatostatin/metabolism
5.
J Comp Neurol ; 530(13): 2385-2401, 2022 09.
Article in English | MEDLINE | ID: mdl-35650108

ABSTRACT

We studied changes in the expression of growth-associated protein 43 (GAP43), glial fibrillary acidic protein (GFAP), and calcium-binding proteins (calbindin [Cb] and parvalbumin [Pv]) in the dorsal lateral geniculate nucleus (dLGN) of four capuchin monkeys with laser-induced retinal lesions. The lesions were generated with the aid of a neodymium-YAG dual-frequency laser with shots of different intensity and at different survival time in each animal. The expression of these proteins in the layers of the dLGN was evaluated by performing histodensitometry of coronal sections throughout the nucleus. High-power laser shots administered at the border of the optic disc (OD)-injured fibers resulted in large scotomas. These lesions produced a devastating effect on fibers in this passage, resulting in large deafferentation of the dLGN. The time course of plasticity expressed in this nucleus varied with the degree of the retinal lesion. Topographically, corresponding portions of the dLGN were inferred by the extent of the ocular dominance column revealed by cytochrome oxidase histochemistry in flattened preparations of V1. In the region representing the retinal lesion, the expression of GFAP, GAP43, Pv, and Cb increased and decreased in the corresponding dLGN layers shortly after lesion induction and returned to their original values with different time courses. Synaptogenesis (indicated by GAP43 expression) appeared to be increased in all layers, while "cleansing" of the glial-damaged region (indicated by GFAP expression) was markedly greater in the parvocellular layers, followed by the magnocellular layers. Schematic drawings of optic discs laser lesions and of series of coronal sections of the dLGN, in three monkeys, depicting the areas of the nucleus deafferented by the lesions.


Subject(s)
Geniculate Bodies , Parvalbumins , Animals , Calbindins/metabolism , Haplorhini/metabolism , Lasers , Parvalbumins/metabolism , Visual Pathways/metabolism
6.
Learn Behav ; 50(1): 45-54, 2022 03.
Article in English | MEDLINE | ID: mdl-34244975

ABSTRACT

The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species' wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November-January) and premigration (May-July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.


Subject(s)
Charadriiformes , Parvalbumins , Animals , Birds , Charadriiformes/metabolism , Hippocampus/metabolism , Mammals/metabolism , Neurons , Parvalbumins/metabolism
7.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830262

ABSTRACT

Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin -Tn-, parvalbumin -Pv-, adenosine triphosphate -ATP-, sarcoplasmic reticulum Ca2+ pump -SERCA-, and dye) and new (mitochondria -MITO-, Na+/Ca2+ exchanger -NCX-, and store-operated calcium entry -SOCE-) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10-13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms-1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation-contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.


Subject(s)
Calcium/metabolism , Excitation Contraction Coupling/physiology , Models, Theoretical , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Sarcomeres/metabolism , Adenosine Triphosphate/metabolism , Animals , Computer Simulation , Kinetics , Mice , Mitochondria/metabolism , Parvalbumins/metabolism , Sarcoplasmic Reticulum/metabolism , Troponin/metabolism
8.
Int J Dev Neurosci ; 81(7): 616-632, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34196404

ABSTRACT

The exposure to selective serotonin reuptake inhibitors (SSRIs) during development results in behavioural impairment in adulthood in humans and animal models. Indeed, serotonergic overexpression in early life leads to structural and functional changes in brain circuits that control cognition and emotion. However, the effects of developmental exposure to these substances on the behaviour of adolescent rats are conflicting and remain poorly characterised. We performed a behavioural screening to investigate the effects of postnatal exposure to fluoxetine on memory and behaviours related to anxiety, anhedonia, and depression, as well we evaluate the parvalbumin expression in hippocampus of juvenile (~PND45) female and male rats. Fluoxetine (daily 20 mg/kg s.c. injections from PND7-PND21)- or vehicle-treated adolescent rats went through several behavioural tasks (from PND 38 to PND52) and were subject to transcardial perfusion and brain removal for immunohistochemical analysis (PND53). We found that postnatal exposure to fluoxetine increased anxiety- and depression-like behaviours in the open field and sucrose preference and forced swimming tests, respectively. In addition, this treatment induced working memory and short-term (but not long-term) recognition memory impairments, and reduced parvalbumin-positive interneurons in the hippocampus. In addition, the results revealed developmental sex-dependent effects of fluoxetine postnatal treatment on adolescent rats' behaviour. These outcomes indicate that affective disorders and mnemonic alterations caused by SSRIs perinatal exposure can be present at adolescence.


Subject(s)
Cognition/drug effects , Emotions/drug effects , Fluoxetine/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Parvalbumins/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Behavior, Animal/drug effects , Female , Hippocampus/metabolism , Male , Memory/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Swimming
9.
Schizophr Bull ; 47(5): 1300-1309, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33822178

ABSTRACT

Altered Excitatory/Inhibitory (E/I) balance of cortical synaptic inputs has been proposed as a central pathophysiological factor for psychiatric neurodevelopmental disorders, including schizophrenia (SZ). However, direct measurement of E/I synaptic balance have not been assessed in vivo for any validated SZ animal model. Using a mouse model useful for the study of SZ we show that a selective ablation of NMDA receptors (NMDAr) in cortical and hippocampal interneurons during early postnatal development results in an E/I imbalance in vivo, with synaptic inputs to pyramidal neurons shifted towards excitation in the adult mutant medial prefrontal cortex (mPFC). Remarkably, this imbalance depends on the cortical state, only emerging when theta and gamma oscillations are predominant in the network. Additional brain slice recordings and subsequent 3D morphological reconstruction showed that E/I imbalance emerges after adolescence concomitantly with significant dendritic retraction and dendritic spine re-localization in pyramidal neurons. Therefore, early postnatal ablation of NMDAr in cortical and hippocampal interneurons developmentally impacts on E/I imbalance in vivo in an activity-dependent manner.


Subject(s)
Brain Waves/physiology , Electrophysiological Phenomena/physiology , Hippocampus/physiopathology , Interneurons/physiology , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Pyramidal Cells/physiology , Receptors, N-Methyl-D-Aspartate/deficiency , Schizophrenia/physiopathology , Age Factors , Animals , Disease Models, Animal , Hippocampus/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Schizophrenia/metabolism
10.
Int. j. morphol ; 39(2): 538-547, abr. 2021. ilus, graf
Article in English | LILACS | ID: biblio-1385353

ABSTRACT

SUMMARY: The term "circling mouse" refers to an animal model of deafness, in which the mouse exhibits circling, head tossing, and hyperactivity, with pathological features including degenerated spiral ganglion cells in the cochlea, and the loss of the organ of Corti. The cochlear nuclear (CN) complex, a part of the auditory brain circuit, is essential to process both ascending and descending auditory information. Considering calcium's (Ca2+) importance in homeostasis of numerous biological processes, hearing loss by cochlear damage, either by ablation or genetic defect, could cause changes in the Ca2+ concentration that might trigger functional and structural alterations in the auditory circuit. However, little is known about the correlation of the central nervous system (CNS) pathology in circling mice, especially of the auditory pathway circuit and Ca2+ changes. This present study investigates the distribution of Ca2+- binding proteins (CaBPs), calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) by using a free floating immunohistochemical method inthe CN of the wild-type mouse (+/+), the heterozygous mouse (+/cir), and the homozygous (cir/cir) mouse. CaBPs are well known to be an important factor that regulates Ca2+ concentrations. Compared with the dorsal and ventral cochlear nuclei of +/+ and +/ cirmice, prominent decreases of CaBPs' immunoreactivity (IR) in cir/cirmice were observed in the somas, as well as in the neuropil. The present study reportson the overall distribution and changes in the immunoreactivity of CaBPs in the CN of cir/cirmice because ofa hearing defect. This data might be helpful to morphologically elucidate CNS disorders and their relation to CaBPs immunoreactivity related to hearing defects.


RESUMEN: El término "ratón circulante" se refiere a un modelo animal con sordera, en el que el ratón exhibe hiperactividad, movimientos circulares y movimientos de la cabeza, con características patológicas que incluyen células ganglionares espirales degeneradas en la cóclea, un canal de Rosenthal vacío y la pérdida del órgano de Corti. El complejo nuclear coclear (CN), una parte del circuito cerebral auditivo, es esencial para procesar la información auditiva tanto ascendente como descendente. Considerando la importancia del calcio (Ca2+) en la homeostasis de numerosos procesos biológicos, la hipoacusia por daño coclear, por ablación o por defecto genético, podría provocar cambios en la concentración de Ca2+que pueden desencadenar alteraciones funcionales y estructurales en el circuitoauditivo. Sin embargo, existe poca información de la correlación de la patología del sistema nervioso central (SNC) en ratones circulantes, especialmente del circuito de la víaauditiva y los cambios de Ca2+. Este estudio nvestiga la distribución de proteínas de unión a Ca2+ (CaBP), calbindina D-28k (CB), parvalbúmina (PV) y calretinina (CR) mediante el uso de un método inmunohistoquímico de flotaciónlibre en el CN del ratón de tiposalvaje (+/+), el ratón heterocigoto (+/cir) y el ratón homocigoto (cir/cir). Se sabe que los CaBP son un factor importante que regula las concentraciones de Ca2+. En comparación con los núcleos cocleares dorsal y ventral de los ratones +/+ y +/ cir, se observaron disminuciones prominentes de la inmunorreactividad (IR) de CaBPs en los ratonescir/cir en los somas, asícomo en el neuropilo. El presente estudio informa sobre la distribución general y los cambios en la inmunorreactividad de CaBP en el CN de ratones cir/cir debido a un defecto auditivo. Estos datos podrían ser útiles para dilucidar morfológicamente los trastornos del SNC y su relación con la inmunorreactividad de CaBP relacionada con los defectosauditivos.


Subject(s)
Animals , Mice , Calcium-Binding Proteins/metabolism , Cochlear Nucleus/metabolism , Parvalbumins/metabolism , Immunohistochemistry , Calbindins/metabolism , Mice, Inbred C57BL
11.
Eur J Neurosci ; 53(7): 2149-2164, 2021 04.
Article in English | MEDLINE | ID: mdl-31901201

ABSTRACT

The striatum is the largest entrance to the basal ganglia. Diverse neuron classes make up striatal microcircuit activity, consisting in the sequential activation of neuronal ensembles. How different neuron classes participate in generating ensemble sequences is unknown. In control mus musculus brain slices in vitro, providing excitatory drive generates ensemble sequences. In Parkinsonian microcircuits captured by a highly recurrent ensemble, a cortical stimulus causes a transitory reconfiguration of neuronal groups alleviating Parkinsonism. Alternation between neuronal ensembles needs interconnectivity, in part due to interneurons, preferentially innervated by incoming afferents. One main class of interneuron expresses parvalbumin (PV+ neurons) and mediates feed-forward inhibition. However, its more global actions within the microcircuit are unknown. Using calcium imaging in ex vivo brain slices simultaneously recording dozens of neurons, we aimed to observe the actions of PV+ neurons within the striatal microcircuit. PV+ neurons in active microcircuits are 5%-11% of the active neurons even if, anatomically, they are <1% of the total neuronal population. In resting microcircuits, optogenetic activation of PV+ neurons turns on circuit activity by activating or disinhibiting, more neurons than those actually inhibited, showing that feed-forward inhibition is not their only function. Optostimulation of PV+ neurons in active microcircuits inhibits and activates different neuron sets, resulting in the reconfiguration of neuronal ensembles by changing their functional connections and ensemble membership, showing that neurons may belong to different ensembles at different situations. Our results show that PV+ neurons participate in the mechanisms that generate alternation of neuronal ensembles, therefore provoking ensemble sequences.


Subject(s)
Corpus Striatum , Parvalbumins , Animals , Basal Ganglia/metabolism , Corpus Striatum/metabolism , Interneurons/metabolism , Mice , Neurons/metabolism , Parvalbumins/metabolism
12.
Neuroscience ; 446: 304-322, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32860933

ABSTRACT

The mouse motor cortex exhibits spontaneous activity in the form of temporal sequences of neuronal ensembles in vitro without the need of tissue stimulation. These neuronal ensembles are defined as groups of neurons with a strong correlation between its firing patterns, generating what appears to be a predetermined neural conduction mode that needs study. Each ensemble is commonly accompanied by one or more parvalbumin expressing neurons (PV+) or fast spiking interneurons. Many of these interneurons have functional connections between them, helping to form a circuit configuration similar to a small-world network. However, rich club metrics show that most connected neurons are neurons not expressing parvalbumin, mainly pyramidal neurons (PV-) suggesting feed-forward propagation through pyramidal cells. Ensembles with PV+ neurons are connected to these hubs. When ligand-gated fast GABAergic transmission is blocked, temporal sequences of ensembles collapse into a unique synchronous and recurrent ensemble, showing the need of inhibition for coding cortical spontaneous activity. This new ensemble has a duration and electrophysiological characteristics of brief recurrent interictal epileptiform discharges (IEDs) composed by the coactivity of both PV- and PV+ neurons, demonstrating that GABA transmission impedes its occurrence. Synchronous ensembles are clearly divided into two clusters one of them lasting longer and mainly composed by PV+ neurons. Because an ictal-like event was not recorded after several minutes of IEDs recording, it is inferred that an external stimulus and/or fast GABA transmission are necessary for its appearance, making this preparation ideal to study both the neuronal machinery to encode cortical spontaneous activity and its transformation into brief non-ictal epileptiform discharges.


Subject(s)
Motor Cortex , Action Potentials , Animals , Interneurons/metabolism , Mice , Motor Cortex/metabolism , Neurons/metabolism , Parvalbumins/metabolism
13.
Braz J Med Biol Res ; 53(8): e9950, 2020.
Article in English | MEDLINE | ID: mdl-32578721

ABSTRACT

Pathophysiological mechanisms involved in orofacial pain and their relationship with emotional disorders have emerged as an important research area for multidisciplinary studies. In particular, temporomandibular disorders (TMD) have been evaluated clinically from both physiological and psychological perspectives. We hypothesized that an altered neuronal activity occurs in the amygdala and the dorsal raphe nucleus (DR), encephalic regions involved in the modulation of painful and emotional information. Adult male Wistar rats were used in an experimental complete Freund's adjuvant (CFA)-induced temporomandibular joint (TMJ) inflammation model. CFA was applied for 1 or 10 days, and the animals were euthanized for brain samples dissection for FosB/ΔFosB and parvalbumin (PV) immunostaining. Our results were consistent in showing that the amygdala and DR were activated in the persistent inflammatory phase (10 days) and that the expression of PV+ interneurons in the amygdala was decreased. In contrast, in the DR, the expression of PV+ interneurons was increased in persistent states of CFA-induced TMJ inflammation. Moreover, at 10 days of inflammation, there was an increased co-localization of PV+ and FosB/ΔFosB+ neurons in the basolateral and central nucleus of the amygdala. Different nuclei of the amygdala, as well as portions of the DR, were activated in the persistent phase (10 days) of TMJ inflammation. In conclusion, altered activity of the amygdala and DR was detected during persistent inflammatory nociception in the temporomandibular joint. These regions may be essential for both sensory and affective dimensions of orofacial pain.


Subject(s)
Amygdala/metabolism , Dorsal Raphe Nucleus/metabolism , Parvalbumins/metabolism , Temporomandibular Joint/physiology , Animals , Inflammation , Male , Neurons , Rats , Rats, Sprague-Dawley , Rats, Wistar
14.
Cell Rep ; 30(1): 202-214.e4, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31914387

ABSTRACT

A strong GABAergic tone imposes sparse levels of activity in the dentate gyrus of the hippocampus. This balance is challenged by the addition of new granule cells (GCs) with high excitability. How developing GCs integrate within local inhibitory networks remains unknown. We used optogenetics to study synaptogenesis between new GCs and GABAergic interneurons expressing parvalbumin (PV-INs) and somatostatin (SST-INs). PV-INs target the soma, and synapses become mature after 6 weeks. This transition is accelerated by exposure to an enriched environment. PV-INs exert efficient control of GC spiking and participate in both feedforward and feedback loops, a mechanism that would favor lateral inhibition and sparse coding. SST-INs target the dendrites, and synapses mature after 8 weeks. Outputs from GCs onto PV-INs develop faster than those onto SST-INs. Our results reveal a long-lasting transition wherein adult-born neurons remain poorly coupled to inhibition, which might enhance activity-dependent plasticity of input and output synapses.


Subject(s)
Aging/metabolism , Cytoplasmic Granules/metabolism , Interneurons/metabolism , Parvalbumins/metabolism , Somatostatin/metabolism , Animals , GABAergic Neurons/metabolism , HEK293 Cells , Humans , Mice , Neural Inhibition , Neurogenesis , Neuronal Plasticity , Subcellular Fractions/metabolism , Synapses/metabolism
15.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(8): e9950, 2020. graf
Article in English | LILACS, Coleciona SUS | ID: biblio-1132542

ABSTRACT

Pathophysiological mechanisms involved in orofacial pain and their relationship with emotional disorders have emerged as an important research area for multidisciplinary studies. In particular, temporomandibular disorders (TMD) have been evaluated clinically from both physiological and psychological perspectives. We hypothesized that an altered neuronal activity occurs in the amygdala and the dorsal raphe nucleus (DR), encephalic regions involved in the modulation of painful and emotional information. Adult male Wistar rats were used in an experimental complete Freund's adjuvant (CFA)-induced temporomandibular joint (TMJ) inflammation model. CFA was applied for 1 or 10 days, and the animals were euthanized for brain samples dissection for FosB/ΔFosB and parvalbumin (PV) immunostaining. Our results were consistent in showing that the amygdala and DR were activated in the persistent inflammatory phase (10 days) and that the expression of PV+ interneurons in the amygdala was decreased. In contrast, in the DR, the expression of PV+ interneurons was increased in persistent states of CFA-induced TMJ inflammation. Moreover, at 10 days of inflammation, there was an increased co-localization of PV+ and FosB/ΔFosB+ neurons in the basolateral and central nucleus of the amygdala. Different nuclei of the amygdala, as well as portions of the DR, were activated in the persistent phase (10 days) of TMJ inflammation. In conclusion, altered activity of the amygdala and DR was detected during persistent inflammatory nociception in the temporomandibular joint. These regions may be essential for both sensory and affective dimensions of orofacial pain.


Subject(s)
Animals , Male , Rats , Parvalbumins/metabolism , Temporomandibular Joint/physiology , Dorsal Raphe Nucleus/metabolism , Amygdala/metabolism , Rats, Wistar , Rats, Sprague-Dawley , Inflammation , Neurons
16.
J Mol Histol ; 50(6): 515-531, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31515635

ABSTRACT

The striatum is an essential component of the basal ganglia that regulatessensory processing, motor, cognition, and behavior. Depending on the species, the striatum shows a unique structure called caudate-putamen as in mice, or its separation into two regions called caudate and lenticular nuclei, the latter formed by putamen and globus pallidus areas, as in primates. These structures have two compartments, striosome and matrix. We investigated the structural organization, GABAergic and tyrosine hydroxylase (TH) expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus. Its striatum showed regionalization arising from the presence of an internal capsule, and a similar organization to a striosome-matrix compartmentalization. GABAergic neurons in the matrix of caudate exhibited parvalbumin, calretinin, calbindin, GAD65, and NADPH-d-immunoreactivity. These were also expressed in cells of the putamen with the exception of calretinin showing neurofibers localization. Globus pallidus showed parvalbumin- and GAD65-immunoreactive cells, and calretinin- and calbindin-immunoreactive neuropil, plus GABA-A-immunoreactive neurofibers. NADPH-d-, GAD65- and GABA-A-immunoreactive neurons were larger than parvalbumin-, calretinin-, and calbindin-immunoreactive cells, whereas calbindin-immunoreactive cells were the most abundant. In addition, TH-immunoreactive neuropil was observed in the matrix of the striatum. A significant larger TH-immunoreactive area and neuron number was found in females compared to males. The presence of an internal capsule suggests an adaptive advantage concerning motor and cognitive abilities favoring reaction time in response to predators. In an anatomy-evolutive perspective, the striatum of vizcacha seems to be closer to that of humans than to that of laboratory traditional models such as mouse.


Subject(s)
Corpus Striatum/metabolism , GABAergic Neurons/metabolism , Globus Pallidus/metabolism , Tyrosine 3-Monooxygenase/metabolism , Animals , Calbindin 2/metabolism , Calbindins/metabolism , Corpus Striatum/anatomy & histology , Female , Globus Pallidus/anatomy & histology , Humans , Immunohistochemistry , Male , Mice , Parvalbumins/metabolism , Rodentia
17.
Mol Neurobiol ; 56(9): 6261-6275, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30746639

ABSTRACT

Using bacterial artificial chromosome-double transgenic mice expressing tdTomato in D1 receptor-medium spiny neurons (MSNs) and enhanced green fluorescent protein in D2 receptor-MSNs, we have studied changes in spine density and perisomatic GABAergic boutons density in MSNs of both the D1R and D2R pathways, in an experimental model of parkinsonism (mouse injected with 6-hydroxydopamine in the medial forebrain bundle), both in the parkinsonian and dyskinetic condition induced by L-DOPA treatment. To assess changes in perisomatic GABAergic connectivity onto MSNs, we measured the number of contacts originated from parvalbumin (PV)-containing striatal "fast-spiking" interneurons (FSIs), the major component of a feed-forward inhibition mechanism that regulates spike timing in MSNs, in both cell types as well as the number of vesicular GABA transporter (VGAT) contacts. Furthermore, we determined changes in PV-immunoreactive cell density by PV immunolabeling combined with Wisteria floribunda agglutinin (WFA) labeling to detect FSI in a PV-independent manner. We also explored the differential expression of striatal activity-regulated cytoskeleton-associated protein (Arc) and c-Fos in both types of MSNs as a measure of neuronal activation. Our results confirm previous findings of major structural changes in dendritic spine density after nigrostriatal denervation, which are further modified in the dyskinetic condition. Moreover, the finding of differential modifications in perisomatic GABAergic connectivity and neuronal activation in MSNs suggests an attempt by the system to regain homeostasis after denervation and an imbalance between excitation and inhibition leading to the development of dyskinesia after exposure to L-DOPA.


Subject(s)
Dendritic Spines/physiology , Dyskinesias/physiopathology , Nerve Net/physiopathology , Animals , Corpus Striatum/metabolism , Cytoskeletal Proteins/metabolism , Female , Interneurons/metabolism , Levodopa , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Oxidopamine , Parvalbumins/metabolism , Plant Lectins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, N-Acetylglucosamine/metabolism
18.
Neurosci Lett ; 690: 162-166, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30336195

ABSTRACT

Several studies report the influence of gender on physical exercise-induced brain plasticity, including neurotrophic factor levels, neurogenesis, and navigation strategies in spatial memory task. However, it has been noted that females are physically more active than males in animal models of physical exercise. With this in mind, we conducted an experimental study to investigate the effect of sex on the brain of rats submitted to same volume and intensity of aerobic exercise. To do so, we used calcium-binding protein parvalbumin as neuroplastic marker to explore the hippocampal formation (a brain neurogenic/mnemonic region) of male and female rats submitted to 4 weeks of aerobic exercise on a treadmill at 12 m/min, 30 min per day. Our results show that, in both sexes, physical exercise increased hippocampal density of parvalbumin neurons in the cornus ammonis (CA1, CA2/3) and hilus subfields, but not in the dentate gyrus and subiculum. No difference in exercise-induced hipocampal parvalbumin density was found between male and female rats. These findings suggest that aerobic exercise promotes similar effects on hippocampal distribution of parvalbumin neurons of male and female rats, especially when they are submitted to the same volume and intensity of physical exercise.


Subject(s)
Hippocampus/physiology , Neurons/physiology , Parvalbumins/metabolism , Physical Conditioning, Animal/physiology , Sex Characteristics , Animals , Cell Count , Female , Hippocampus/metabolism , Male , Neurons/metabolism , Rats
19.
Int. j. morphol ; 36(2): 670-676, jun. 2018. tab, graf
Article in English | LILACS | ID: biblio-954170

ABSTRACT

There are few studies of infection by rabies virus in the olfactory bulb (OB). This work was carried out with the purpose of establishing the time required to detect rabies antigens in the OB of mouse, after the intramuscular inoculation of the virus and to evaluate the effect of the infection on the expression of three proteins: calbindin (CB), parvalbumin (PV) and the glial fibrillary acidic protein (GFAP). Mice were inoculated with rabies virus intramuscularly in the hind limbs. Every 8 hours, after 72 hours postinoculation (p.i.), animals were sacrificed by perfusion with paraformaldehyde and coronal sections of OB were obtained for immunohistochemical study. These cuts were used to reveal the entry and spread of viral antigens. Tissue sections obtained in the terminal phase of the disease (144 hours p.i.), and controls of the same age were also processed for immunohistochemistry of CB, PV and GFAP. Rabies virus antigens were initially detected at 80 hours p.i. in a few mitral cells. At 88 hours p.i. the antigens had spread through most of these neurons but until the terminal phase of the disease there was little dispersion of the virus towards other cellular layers of the OB. The CB protein was expressed in cells of the glomerular stratum, the PV in cells of the outer plexiform layer and the GFAP was expressed in all the layers of the OB. Viral infection generated loss of CB expression and increase of PV expression. Immunoreactivity to GFAP was increased in the outer plexiform layer of the OB as a response to infection.


Son escasos los estudios de la infección por virus de la rabia en el bulbo olfatorio (OB). Este trabajo se realizó con el objetivo de establecer el tiempo requerido para detectar antígenos de rabia en el OB del ratón, luego de la inoculación intramuscular del virus y evaluar el efecto de la infección en la expresión de tres proteínas: calbindina (CB), parvoalbúmina (PV) y la proteína ácida fibrilar glial (GFAP). Los ratones fueron inoculados con virus de la rabia por vía intramuscular en las extremidades posteriores. Cada 8 horas, después de 72 horas de inoculación (p.i.), los animales se sacrificaron por perfusión con paraformaldehído y se obtuvieron secciones coronales de OB para el estudio inmunohistoquímico. Estos cortes se usaron para revelar la entrada y propagación de antígenos virales. Las secciones de tejido obtenidas en la fase terminal de la enfermedad (144 horas p.i.), y los controles de la misma edad también se procesaron para inmunohistoquímica de CB, PV y GFAP. Los antígenos del virus de la rabia se detectaron inicialmente a las 80 horas p.i. en unas pocas células mitrales. A las 88 horas p.i. los antígenos se habían diseminado a través de la mayoría de estas neuronas, pero hasta la fase terminal de la enfermedad había poca dispersión del virus hacia otras capas celulares del OB. La proteína CB se expresó en las células del estrato glomerular, la PV en células de la capa plexiforme externa y la GFAP se expresó en todas las capas del OB. La infección viral generó pérdida de expresión de CB y aumento en la expresión de PV. La inmunorreactividad a GFAP aumentó en la capa plexiforme externa del OB como respuesta a la infección.


Subject(s)
Animals , Female , Mice , Olfactory Bulb/metabolism , Olfactory Bulb/virology , Rabies/metabolism , Parvalbumins/metabolism , Immunohistochemistry , Calbindins/metabolism , Glial Fibrillary Acidic Protein/metabolism
20.
Proc Natl Acad Sci U S A ; 115(13): 3476-3481, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531031

ABSTRACT

Excessive dopamine neurotransmission underlies psychotic episodes as observed in patients with some types of bipolar disorder and schizophrenia. The dopaminergic hypothesis was postulated after the finding that antipsychotics were effective to halt increased dopamine tone. However, there is little evidence for dysfunction within the dopaminergic system itself. Alternatively, it has been proposed that excessive afferent activity onto ventral tegmental area dopaminergic neurons, particularly from the ventral hippocampus, increase dopamine neurotransmission, leading to psychosis. Here, we show that selective dopamine D2 receptor deletion from parvalbumin interneurons in mouse causes an impaired inhibitory activity in the ventral hippocampus and a dysregulated dopaminergic system. Conditional mutant animals show adult onset of schizophrenia-like behaviors and molecular, cellular, and physiological endophenotypes as previously described from postmortem brain studies of patients with schizophrenia. Our findings show that dopamine D2 receptor expression on parvalbumin interneurons is required to modulate and limit pyramidal neuron activity, which may prevent the dysregulation of the dopaminergic system.


Subject(s)
Antipsychotic Agents/pharmacology , Drug Resistance , Interneurons/metabolism , Parvalbumins/metabolism , Receptors, Dopamine D2/physiology , Schizophrenia/etiology , Animals , Male , Mice , Mice, Knockout , Parvalbumins/genetics , Phenotype , Schizophrenia/drug therapy , Schizophrenia/metabolism , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL