Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.192
Filter
1.
Rev. biol. trop ; 72(1): e55265, ene.-dic. 2024. tab, graf
Article in English | SaludCR, LILACS | ID: biblio-1559322

ABSTRACT

Abstract Introduction: The Wood Thrush is a migratory bird that has experienced dramatic declines in its populations in recent decades. This species overwinters in forest fragments with intermediate levels of habitat modification in Central America. However, more studies detailing the use of remnant forests through time are needed to elucidate the threats this species faces in the wintering grounds. Objective: To understand the effects of environmental and forest structure variables on the occupancy of Wood Thrush in Northern Costa Rica. Methods: The study area was the Área de Conservación Guanacaste (ACG), located in Northern Costa Rica, in December 2016, and during the 2018-2019 migration season. We estimated Wood Thrush occupancy and detection probability in four locations of ACG (dry forest, cloud forest, and two locations in the wet forest) using single-season occupancy models. We also estimated Wood Thrush occupancy and probability of persistence in different months in three vegetation types (open area, secondary forest, and old-growth forest) in the wet forest of ACG using a multi-season occupancy model approach. Results: Wood Thrush occupancy was best described by precipitation in the four locations of the ACG; the probability of occupancy increased with precipitation. The average occupancy of Wood Thrushes varied with vegetation type: open area with shrubs and forest edge (0.69 ± 0.09), secondary forest (0.46 ± 0.1), and old-growth forest (0.61 ± 0.1). Wood Thrush probability of persistence responded partially to changes in precipitation, with an unexpected increase in persistence when the rainfall continued decreasing in the season. Conclusion: Wood Thrush occupancy was best predicted by changes in precipitation considering a larger spatial scale. Its probability of persistence partially varied with precipitation. An increase in persistence closer to Spring migration might be explained by the start of the breeding season of resident birds, potentially reducing territorial conflicts and conserving energy before migration. The long-term protection of wet forests in Northern Costa Rica is of paramount importance for the conservation of Wood Thrushes in their wintering grounds.


Resumen Introducción: El Zorzal del Bosque es un ave migratoria que ha experimentado caídas dramáticas en sus poblaciones en las últimas décadas. Esta especie pasa el invierno en fragmentos de bosque con niveles intermedios de modificación de hábitat en Centroamérica. Sin embargo, se necesitan más estudios que detallen el uso de los bosques remanentes a lo largo del tiempo para dilucidar las amenazas que enfrenta esta especie en las zonas de invernada. Objetivo: Comprender los efectos de variables ambientales y de estructura del bosque en la ocurrencia del Zorzal del Bosque en el Norte de Costa Rica. Métodos: El área de estudio fue el Área de Conservación Guanacaste (ACG), ubicada en el Norte de Costa Rica, en diciembre de 2016, y en la temporada migratoria 2018-2019. Estimamos la ocurrencia y la probabilidad de detección del Zorzal del Bosque en cuatro ubicaciones de ACG (bosque seco, bosque nuboso y dos ubicaciones en el bosque húmedo) utilizando modelos de ocurrencia de una sola temporada. También estimamos la ocurrencia del Zorzal del Bosque y la probabilidad de persistencia en diferentes meses en tres tipos de vegetación (área abierta, bosque secundario y bosque primario) en el bosque húmedo de ACG utilizando un enfoque de modelo de ocurrencia multi-estacional. Resultados: La ocurrencia del Zorzal del Bosque estuvo mejor descrita por la precipitación en las cuatro localidades del ACG; la probabilidad de ocurrencia aumentó con las precipitaciones. La ocurrencia media de zorzales varió con el tipo de vegetación: área abierta con arbustos y borde de bosque (0.69 ± 0.09), bosque secundario (0.46 ± 0.1) y bosque primario (0.61 ± 0.1). La probabilidad de persistencia del zorzal respondió parcialmente a cambios en la precipitación, con un aumento inesperado en la persistencia cuando las precipitaciones continuaron disminuyendo en la temporada. Conclusión: La ocurrecia del Zorzal del Bosque varió con la precipitación considerando una escala espacial mayor. Su probabilidad de persistencia varió parcialmente con la precipitación. Un aumento en la persistencia más cerca de la migración de primavera podría explicarse por el inicio de la temporada de reproducción de las aves residentes, lo que podría reducir los conflictos territoriales y conservar energía antes de la migración. La protección a largo plazo de los bosques húmedos en el norte de Costa Rica es de suma importancia para la conservación de los Zorzales del Bosque en sus zonas de invernada.


Subject(s)
Animals , Animal Migration , Passeriformes , Seasons , Costa Rica
2.
Anim Cogn ; 27(1): 47, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980424

ABSTRACT

Performance in tests of various cognitive abilities has often been compared, both within and between species. In intraspecific comparisons, habitat effects on cognition has been a popular topic, frequently with an underlying assumption that urban animals should perform better than their rural conspecifics. In this study, we tested problem-solving ability in great tits Parus major, in a string-pulling and a plug-opening test. Our aim was to compare performance between urban and rural great tits, and to compare their performance with previously published problem solving studies. Our great tits perfomed better in string-pulling than their conspecifics in previous studies (solving success: 54%), and better than their close relative, the mountain chickadee Poecile gambeli, in the plug-opening test (solving success: 70%). Solving latency became shorter over four repeated sessions, indicating learning abilities, and showed among-individual correlation between the two tests. However, the solving ability did not differ between habitat types in either test. Somewhat unexpectedly, we found marked differences between study years even though we tried to keep conditions identical. These were probably due to small changes to the experimental protocol between years, for example the unavoidable changes of observers and changes in the size and material of test devices. This has an important implication: if small changes in an otherwise identical set-up can have strong effects, meaningful comparisons of cognitive performance between different labs must be extremely hard. In a wider perspective this highlights the replicability problem often present in animal behaviour studies.


Subject(s)
Problem Solving , Animals , Male , Female , Ecosystem , Passeriformes/physiology
3.
Sci Rep ; 14(1): 14259, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902251

ABSTRACT

Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.


Subject(s)
Cloaca , Proteomics , Reproduction , Animals , Female , Proteomics/methods , Cloaca/metabolism , Male , Reproduction/physiology , Proteome/metabolism , Proteome/analysis , Seasons , Sexual Behavior, Animal/physiology , Spermatozoa/metabolism , Spermatozoa/physiology , Passeriformes/physiology , Passeriformes/metabolism
4.
Sci Rep ; 14(1): 14204, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902276

ABSTRACT

The reaction of birds to the nest parasite, the European cuckoo Cuculus canorus, has been the subject of extensive testing in various aspects. However, while the cuckoo is a long-distance migrant, some of its hosts are sedentary species. In this study, we aimed to investigate whether species, primarily hosts, react to the presence of the cuckoo also in the winter season. This behaviour may involve an attempt to drive the parasite away from locations that will subsequently become their breeding sites. During playback experiments conducted in the winter of 2021/2022 in Poland, we demonstrated that numerous bird species react to the male cuckoo calls in winter. These calls may be perceived as a source of danger, particularly by cuckoo hosts, who responded to this call more frequently than non-hosts and the control species (pigeon). Nonetheless, the birds' reactions were not strong, as they did not approach the source of the call. However, our results are constrained by the limited number of cuckoo host species wintering in Poland. To better evaluate the intensity of bird responses to the male cuckoo's call during the non-breeding season, further studies should be conducted in regions where a greater variety of species, especially those most susceptible to parasitism, overwinter.


Subject(s)
Passeriformes , Seasons , Animals , Male , Passeriformes/physiology , Passeriformes/parasitology , Poland , Vocalization, Animal/physiology , Nesting Behavior/physiology , Animal Migration/physiology
5.
Biol Lett ; 20(6): 20240069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38889775

ABSTRACT

Infection risk by pathogenic agents motivates hosts to avoid using resources with high risks. This, in turn, results in increased availability of these resources for other species that are more tolerant of infections. For instance, carcasses of mammalian carnivores are frequently avoided by conspecific or closely related carnivores, allowing them to be almost exclusively used by maggots. This may lead to novel interactions with other species. This study investigated the consumption of maggots from carnivore carcasses by non-corvid passerines. We successfully monitored 66 raccoon carcasses in Hokkaido, Japan, from 2016 to 2019. Vertebrates only scavenged 14 carcasses before maggot dispersal; the other 52 carcasses produced abundant maggots that regularly fed at least 12 species of non-corvid passerines. Surprisingly, predation occurred at a distance from the carcasses, mainly after maggot dispersal for pupation, despite the higher efficiency of feeding on maggot masses on the carcasses. Birds are likely to reduce the potential risk of infection from the carcass and/or from maggots on the carcasses. Overall, only 1% of maggots were consumed. Our results suggest that necrophagous flies could benefit from the infection risk associated with carnivore carcasses, which may decrease scavenging by other carnivores and constrain maggot consumption by insectivorous birds.


Subject(s)
Food Chain , Passeriformes , Predatory Behavior , Animals , Passeriformes/physiology , Raccoons/physiology , Larva/physiology , Japan , Feeding Behavior
6.
Proc Biol Sci ; 291(2024): 20240435, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835280

ABSTRACT

Extensive research has investigated the relationship between the social environment and cognition, suggesting that social complexity may drive cognitive evolution and development. However, evidence for this relationship remains equivocal. Group size is often used as a measure of social complexity, but this may not capture intraspecific variation in social interactions. Social network analysis can provide insight into the cognitively demanding challenges associated with group living at the individual level. Here, we use social networks to investigate whether the cognitive performance of wild Western Australian magpies (Gymnorhina tibicen dorsalis) is related to group size and individual social connectedness. We quantified social connectedness using four interaction types: proximity, affiliative, agonistic and vocal. Consistent with previous research on this species, individuals in larger groups performed better on an associative learning task. However, social network position was also related to cognitive performance. Individuals receiving aggressive interactions performed better, while those involved in aggressive interactions with more group members performed worse. Overall, this suggests that cognitive performance is related to specific types of social interaction. The findings from this study highlight the value of considering fine-grained metrics of sociality that capture the challenges associated with social life when testing the relationship between the social environment and cognition.


Subject(s)
Aggression , Cognition , Social Behavior , Animals , Western Australia , Male , Passeriformes/physiology , Female
7.
Ecol Lett ; 27(5): e14434, 2024 May.
Article in English | MEDLINE | ID: mdl-38716556

ABSTRACT

Anthropogenic habitat modification can indirectly effect reproduction and survival in social species by changing the group structure and social interactions. We assessed the impact of habitat modification on the fitness and life history traits of a cooperative breeder, the Arabian babbler (Argya squamiceps). We collected spatial, reproductive and social data on 572 individuals belonging to 21 social groups over 6 years and combined it with remote sensing to characterize group territories in an arid landscape. In modified resource-rich habitats, groups bred more and had greater productivity, but individuals lived shorter lives than in natural habitats. Habitat modification favoured a faster pace-of-life with lower dispersal and dominance acquisition ages, which might be driven by higher mortality providing opportunities for the dominant breeding positions. Thus, habitat modification might indirectly impact fitness through changes in social structures. This study shows that trade-offs in novel anthropogenic opportunities might offset survival costs by increased productivity.


Subject(s)
Ecosystem , Life History Traits , Animals , Male , Female , Reproduction , Passeriformes/physiology , Genetic Fitness , Anthropogenic Effects
8.
Front Cell Infect Microbiol ; 14: 1385599, 2024.
Article in English | MEDLINE | ID: mdl-38741893

ABSTRACT

Avian haemosporidian parasites are useful model organisms to study the ecology and evolution of parasite-host interactions due to their global distribution and extensive biodiversity. Detection of these parasites has evolved from microscopic examination to PCR-based methods, with the mitochondrial cytochrome b gene serving as barcoding region. However, standard PCR protocols used for screening and identification purposes have limitations in detecting mixed infections and generating phylogenetically informative data due to short amplicon lengths. To address these issues, we developed a novel genus-specific nested PCR protocol targeting avian haemosporidian parasites. The protocol underwent rigorous testing utilizing a large dataset comprising blood samples from Malagasy birds of three distinct Passeriformes families. Furthermore, validation was done by examining smaller datasets in two other laboratories employing divergent master mixes and different bird species. Comparative analyses were conducted between the outcomes of the novel PCR protocol and those obtained through the widely used standard nested PCR method. The novel protocol enables specific identification of Plasmodium, Haemoproteus (Parahaemoproteus), and Leucocytozoon parasites. The analyses demonstrated comparable sensitivity to the standard nested PCR with notable improvements in detecting mixed infections. In addition, phylogenetic resolution is improved by amplification of longer fragments, leading to a better understanding of the haemosporidian biodiversity and evolution. Overall, the novel protocol represents a valuable addition to avian haemosporidian detection methodologies, facilitating comprehensive studies on parasite ecology, epidemiology, and evolution.


Subject(s)
Haemosporida , Polymerase Chain Reaction , Protozoan Infections, Animal , Animals , Haemosporida/genetics , Haemosporida/isolation & purification , Haemosporida/classification , Polymerase Chain Reaction/methods , Protozoan Infections, Animal/diagnosis , Protozoan Infections, Animal/parasitology , Bird Diseases/parasitology , Bird Diseases/diagnosis , Birds/parasitology , Phylogeny , Sensitivity and Specificity , Passeriformes/parasitology , DNA, Protozoan/genetics
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38743589

ABSTRACT

Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.


Subject(s)
Chromosome Inversion , Animals , Selection, Genetic , Genetic Speciation , Evolution, Molecular , Passeriformes/genetics
10.
Mol Phylogenet Evol ; 197: 108105, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754709

ABSTRACT

Rivers constitute an important biogeographic divide in vast areas of tropical rainforest, such as the Amazon and Congo Basins. Southeast Asia's rainforests are currently fragmented across islands divided by sea, which has long obscured their extensive history of terrestrial connectivity as part of a vast (but now submerged) subcontinent - Sundaland - during most of the Quaternary. The role of paleo-rivers in determining population structure in Sundaic rainforests at a time when these forests were connected remains little understood. We examined the coloration of museum skins and used the genomic DNA of museum samples and freshly-collected blood tissue of a pair of Sundaic songbird species, the pin-striped and bold-striped tit-babblers (Mixornis gularis and M. bornensis, respectively), to assess the genetic affinity of populations on small Sundaic islands that have largely been ignored by modern research. Our genomic and morphological results place the populations from the Anambas and Natuna Islands firmly within M. gularis from the Malay Peninsula in western Sundaland, even though some of these islands are geographically much closer to Borneo, where M. bornensis resides. Our results reveal genetic structure consistent with the course of Sundaic paleo-rivers and the location of the interfluvia they formed, and add to a small but growing body of evidence that rivers would have been of equal biogeographic importance in Sundaland's former connected forest landscape as they are in Amazonia and the Congo Basin today.


Subject(s)
Rivers , Animals , Genetics, Population , Passeriformes/genetics , Passeriformes/classification , DNA, Mitochondrial/genetics , Phylogeny , Phylogeography , Songbirds/genetics , Songbirds/classification
11.
Sci Total Environ ; 944: 173624, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38821291

ABSTRACT

While organisms have evolved to cope with predictable changes in the environment, the rapid rate of current global change presents numerous novel and unpredictable stressors to which organisms have had less time to adapt. To persist in the urban environment, organisms must modify their physiology, morphology and behaviour accordingly. Metabolomics offers great potential for characterising organismal responses to natural and anthropogenic stressors at the systems level and can be applied to any species, even without genomic knowledge. Using metabolomic profiling of blood, we investigated how two closely related species of passerine bird respond to the urban environment. Great tits Parus major and blue tits Cyanistes caeruleus residing in urban and forest habitats were sampled during the breeding (spring) and non-breeding (winter) seasons across replicated sites in southern Sweden. During breeding, differences in the plasma metabolome between urban and forest birds were characterised by higher levels of amino acids in urban-dwelling tits and higher levels of fatty acyls in forest-dwelling tits. The suggested higher rates of fatty acid oxidation in forest tits could be driven by habitat-associated differences in diet and could explain the higher reproductive investment and success of forest tits. High levels of amino acids in breeding urban tits could reflect the lack of lipid-rich caterpillars in the urban environment and a dietary switch to protein-rich spiders, which could be of benefit for tackling inflammation and oxidative stress associated with pollution. In winter, metabolomic profiles indicated lower overall levels of amino acids and fatty acyls in urban tits, which could reflect relaxed energetic demands in the urban environment. Our metabolomic profiling of two urban-adapted species suggests that their metabolism is modified by urban living, though whether these changes represent adaptative or non-adaptive mechanisms to cope with anthropogenic challenges remains to be determined.


Subject(s)
Metabolome , Urbanization , Animals , Sweden , Passeriformes/physiology , Passeriformes/metabolism , Seasons , Ecosystem , Environmental Monitoring , Forests
12.
Mol Ecol ; 33(12): e17365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733214

ABSTRACT

When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.


Subject(s)
Gene Flow , Genetic Variation , Genetics, Population , Passeriformes , Selection, Genetic , Animals , Passeriformes/genetics , Islands , Genetic Drift , Genetic Speciation , Adaptation, Physiological/genetics , Genomics
13.
Oecologia ; 205(1): 163-176, 2024 May.
Article in English | MEDLINE | ID: mdl-38724708

ABSTRACT

Migratory bird populations are declining globally at alarming rates. Non-breeding site conditions affect breeding populations, but generalising non-breeding habitat conditions over large spatial regions cannot address potential fine-scale differences across landscapes or local populations. Plumage characteristics can mediate the effects of environmental conditions on individual fitness. However, whether different phenotypes use distinctive non-breeding sites, and whether they respond to non-breeding site conditions differently remains largely unknown. Stable isotopes (δ13C, δ15N, δ2H) of inert tissues are useful to infer habitat characteristics and geographic origins where those tissues were grown. We collected winter-grown feathers from pied flycatchers (Ficedula hypoleuca) on their breeding grounds over several years from males whose dorsal plumage colouration ranged continuously from brown to black and assessed their stable isotope values as proxies of local habitat conditions. Based on feather δ2H profiles we found that browner males spent their non-breeding season in drier habitats than black males. Assignment to origin analysis shows potential regional non-breeding ground separation between differently coloured males. High within-individual repeatability of both δ13C and δ15N indicate the pied flycatcher males return yearly to similar areas. Blacker males were more likely to return to the breeding grounds after dry years compared with brown males. The opposite was found in wet years. Our study demonstrates that different phenotypes are exposed to different non-breeding site conditions which can differentially affect individual survivorship. This has important ramifications for population dynamics under predicted climate change scenarios where especially brown phenotype pied flycatcher males may be under a risk of decreasing.


Subject(s)
Animal Migration , Ecosystem , Feathers , Phenotype , Seasons , Animals , Male , Passeriformes/physiology , Songbirds/physiology , Birds
14.
Mol Ecol Resour ; 24(5): e13969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747336

ABSTRACT

A major aim of evolutionary biology is to understand why patterns of genomic diversity vary within taxa and space. Large-scale genomic studies of widespread species are useful for studying how environment and demography shape patterns of genomic divergence. Here, we describe one of the most geographically comprehensive surveys of genomic variation in a wild vertebrate to date; the great tit (Parus major) HapMap project. We screened ca 500,000 SNP markers across 647 individuals from 29 populations, spanning ~30 degrees of latitude and 40 degrees of longitude - almost the entire geographical range of the European subspecies. Genome-wide variation was consistent with a recent colonisation across Europe from a South-East European refugium, with bottlenecks and reduced genetic diversity in island populations. Differentiation across the genome was highly heterogeneous, with clear 'islands of differentiation', even among populations with very low levels of genome-wide differentiation. Low local recombination rates were a strong predictor of high local genomic differentiation (FST), especially in island and peripheral mainland populations, suggesting that the interplay between genetic drift and recombination causes highly heterogeneous differentiation landscapes. We also detected genomic outlier regions that were confined to one or more peripheral great tit populations, probably as a result of recent directional selection at the species' range edges. Haplotype-based measures of selection were related to recombination rate, albeit less strongly, and highlighted population-specific sweeps that likely resulted from positive selection. Our study highlights how comprehensive screens of genomic variation in wild organisms can provide unique insights into spatio-temporal evolutionary dynamics.


Subject(s)
Genetic Variation , Polymorphism, Single Nucleotide , Songbirds , Animals , Songbirds/genetics , Songbirds/classification , Genetics, Population/methods , Europe , Passeriformes/genetics , Passeriformes/classification , Haplotypes/genetics , Recombination, Genetic , Selection, Genetic
15.
PLoS One ; 19(5): e0293715, 2024.
Article in English | MEDLINE | ID: mdl-38781204

ABSTRACT

The family Melampittidae is endemic to New Guinea and consists of two monotypic genera: Melampitta lugubris (Lesser Melampitta) and Megalampitta gigantea (Greater Melampitta). Both Melampitta species have scattered and disconnected distributions across New Guinea in the central mountain range and in some of the outlying ranges. While M. lugubris is common and found in most montane regions of the island, M. gigantaea is elusive and known from only six localities in isolated pockets on New Guinea with very specific habitats of limestone and sinkholes. In this project, we apply museomics to determine the population structure and demographic history of these two species. We re-sequenced the genomes of all seven known M. gigantaea samples housed in museum collections as well as 24 M. lugubris samples from across its distribution. By comparing population structure between the two species, we investigate to what extent habitat dependence, such as in M. gigantaea, may affect population connectivity. Phylogenetic and population genomic analyses, as well as acoustic variation revealed that M. gigantaea consists of a single population in contrast to M. lugubris that shows much stronger population structure across the island. We suggest a recent collapse of M. gigantaea into its fragmented habitats as an explanation to its unexpected low diversity and lack of population structure. The deep genetic divergences between the M. lugubris populations on the Vogelkop region, in the western central range and the eastern central range, respectively, suggests that these three populations should be elevated to full species level. This work sheds new light on the mechanisms that have shaped the intriguing distribution of the two species within this family and is a prime example of the importance of museum collections for genomic studies of poorly known and rare species.


Subject(s)
Passeriformes , Animals , Passeriformes/genetics , New Guinea , Species Specificity , Phylogeny , Ecosystem , Genetics, Population , Phylogeography , Genome
16.
Ticks Tick Borne Dis ; 15(4): 102350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723399

ABSTRACT

Wild animals in general, birds in particular, play a key role in transporting ticks and propagating tick-borne pathogens. Several studies have confirmed the infection of birds with Anaplasma phagocytophilum, with overall prevalence varying widely from country to country and/or study to study. This zoonotic bacterium, transmitted mainly by ticks of the genus Ixodes, is responsible for granulocytic anaplasmosis in humans (HGA) and domestic animals (cats, dogs, horses). The disease is also called tick-borne fever (TBF) in ruminants. Extremely rare in the USA, TBF is very common in Europe, where it causes economic losses in livestock. Conversely, HGA is well established in the USA whereas only a few less severe cases have been observed in Europe. Current typing techniques support the existence of multiple variants with differences in virulence/pathogenicity and tropism for certain tick and host species. However, epidemiological cycles remain difficult to characterize in Europe. Several studies describe a cycle apparently involving only birds in Europe, but no such study has been conducted in mainland France. Our objectives were to search for A. phagocytophilum in passerine birds in the Ile-de-France region and to explore their diversity using groEL and ankA gene typing and multilocus sequence typing (MLST). Various tissues (spleen, liver, and skin) were collected from cadavers of 680 passerines between March and December 2021. The presence of A. phagocytophilum was detected by qPCR Taqman targeting the msp2 gene. Three blackbirds (Turdus merula) were found positive, representing detection rates of 0.4 % in all birds tested and 3.3 % in blackbirds. The higher frequency of detection in blackbirds could be at least partially explained by their lifestyle, as they feed on the ground. Analysis of the results of groEL and ankA typing and MLST from positive blackbirds support the hypothesis that the avian A. phagocytophilum strains in Ile-de-France are distinct from those found in mammals, and that they form their own cluster in Europe.


Subject(s)
Anaplasma phagocytophilum , Bird Diseases , Ehrlichiosis , Animals , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Bird Diseases/epidemiology , Bird Diseases/microbiology , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Ehrlichiosis/microbiology , Passeriformes , Phylogeny , France/epidemiology , Prevalence
17.
PLoS One ; 19(5): e0301298, 2024.
Article in English | MEDLINE | ID: mdl-38748646

ABSTRACT

Episodic memory describes the conscious reimagining of our memories and is often considered to be a uniquely human ability. As these phenomenological components are embedded within its definition, major issues arise when investigating the presence of episodic memory in non-human animals. Importantly, however, when we as humans recall a specific experience, we may remember details from that experience that were inconsequential to our needs, thoughts, or desires at that time. This 'incidental' information is nevertheless encoded automatically as part of the memory and is subsequently recalled within a holistic representation of the event. The incidental encoding and unexpected question paradigm represents this characteristic feature of human episodic memory and can be employed to investigate memory recall in non-human animals. However, without evidence for the associated phenomenology during recall, this type of memory is termed 'episodic-like memory'. Using this approach, we tested seven Eurasian jays (Garrulus glandarius) on their ability to use incidental visual information (associated with observed experimenter made 'caches') to solve an unexpected memory test. The birds performed above chance levels, suggesting that Eurasian jays can encode, retain, recall, and access incidental visual information within a remembered event, which is an ability indicative of episodic memory in humans.


Subject(s)
Memory, Episodic , Animals , Mental Recall/physiology , Passeriformes/physiology , Male , Female , Humans
18.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38726757

ABSTRACT

Differences in the physical and behavioral attributes of prey are likely to impose disparate demands of force and speed on the jaws of a predator. Because of biomechanical trade-offs between force and speed, this presents an interesting conundrum for predators of diverse prey types. Loggerhead shrikes (Lanius ludovicianus) are medium-sized (∼50 g) passeriform birds that dispatch and feed on a variety of arthropod and vertebrate prey, primarily using their beaks. We used high-speed video of shrikes biting a force transducer in lateral view to obtain corresponding measurements of bite force, upper and lower bill linear and angular displacements, and velocities. Our results show that upper bill depression (about the craniofacial hinge) is more highly correlated with bite force, whereas lower bill elevation is more highly correlated with jaw-closing velocity. These results suggest that the upper and lower jaws might play different roles for generating force and speed (respectively) in these and perhaps other birds as well. We hypothesize that a division of labor between the jaws may allow shrikes to capitalize on elements of force and speed without compromising performance. As expected on theoretical grounds, bite force trades-off against jaw-closing velocity during the act of biting, although peak bite force and jaw-closing velocity across individual shrikes show no clear signs of a force-velocity trade-off. As a result, shrikes appear to bite with jaw-closing velocities and forces that maximize biting power, which may be selectively advantageous for predators of diverse prey that require both jaw-closing force and speed.


Subject(s)
Bite Force , Jaw , Animals , Biomechanical Phenomena , Jaw/physiology , Passeriformes/physiology , Predatory Behavior/physiology , Beak/physiology , Video Recording
19.
Environ Res ; 255: 119117, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729409

ABSTRACT

Plastic pollution is becoming a global problem due to its ubiquitous occurrence and the impacts detected for many species. However, the research about plastics in nests of terrestrial bird species has remained relatively overlooked in comparison to those devoted to marine ecosystems. Here we study the occurrence and patterns of use of anthropogenic material in nests of two passerine birds, the Eurasian magpie (Pica pica) and the European serin (Serinus serinus), breeding in an orange tree cultivation in Mediterranean Spain. Our results show that both species use extensively plastic debris as nest material; almost 71% of the European serin nests and 96% of nests of Eurasian magpies contained plastic debris. Furthermore, by analyzing the plastic debris availability in the agricultural landscape surveyed we confirmed a selection pattern in the two species. Thus, both species preferably select plastic filaments over other plastic debris. The Eurasian magpie does not select plastic based on size or color but the European serin avoid black plastics prefer smaller fragments in comparison to the average size available. Moreover, we suggest the apparent similarity of plastic filaments with the natural materials typically used by these species, as well as how they use the plastic in their nests could influence their selection behavior. More studies focused on terrestrial birds inhabiting human modified habitats could offer a deeper approach to how plastic debris interacts with wildlife in different ways.


Subject(s)
Agriculture , Nesting Behavior , Plastics , Animals , Plastics/analysis , Spain , Waste Products/analysis , Passeriformes , Environmental Monitoring
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1905): 20230198, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38768205

ABSTRACT

It has recently become clear that some language-specific traits previously thought to be unique to humans (such as the capacity to combine sounds) are widespread in the animal kingdom. Despite the increase in studies documenting the presence of call combinations in non-human animals, factors promoting this vocal trait are unclear. One leading hypothesis proposes that communicative complexity co-evolved with social complexity owing to the need to transmit a diversity of information to a wider range of social partners. The Western Australian magpie (Gymnorhina tibicen dorsalis) provides a unique model to investigate this proposed link because it is a group-living, vocal learning species that is capable of multi-level combinatoriality (independently produced calls contain vocal segments and comprise combinations). Here, we compare variations in the production of call combinations across magpie groups ranging in size from 2 to 11 birds. We found that callers in larger groups give call combinations: (i) in greater diversity and (ii) more frequently than callers in smaller groups. Significantly, these observations support the hypothesis that combinatorial complexity may be related to social complexity in an open-ended vocal learner, providing an important step in understanding the role that sociality may have played in the development of vocal combinatorial complexity. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.


Subject(s)
Vocalization, Animal , Animals , Western Australia , Social Environment , Social Behavior , Male , Passeriformes/physiology , Female , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...