Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.232
Filter
1.
Sci Rep ; 14(1): 19626, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179681

ABSTRACT

MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.


Subject(s)
Goats , Lung , MicroRNAs , Pasteurella Infections , Pasteurella multocida , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Pasteurella multocida/genetics , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Pasteurella Infections/genetics , Lung/microbiology , Lung/metabolism , Lung/pathology , Gene Expression Profiling , Signal Transduction , Host-Pathogen Interactions/genetics , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Goat Diseases/microbiology , Goat Diseases/genetics , Transcriptome
2.
Microb Pathog ; 193: 106768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960217

ABSTRACT

Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Poultry Diseases , Pasteurella multocida/genetics , Pasteurella multocida/pathogenicity , Animals , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Virulence/genetics , Poultry Diseases/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Homologous Recombination , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Gene Knockout Techniques , Chickens/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Birds/microbiology , Multigene Family , Virulence Factors/genetics , Poultry/microbiology
3.
Emerg Infect Dis ; 30(7): 1475-1477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916800

ABSTRACT

Pasteurella bettyae is a gram-negative bacillus sporadically involved in human infections; its main reservoirs are cats and dogs. A recent publication suggests the possibility of sexual transmission leading to genital infections in men who have sex with men. We report 9 cases in France of genital infection among this population.


Subject(s)
Homosexuality, Male , Pasteurella Infections , Pasteurella , Humans , Male , France/epidemiology , Adult , Pasteurella Infections/transmission , Pasteurella Infections/microbiology , Pasteurella/isolation & purification , Pasteurella/genetics , Pasteurella/classification , Middle Aged , Young Adult
4.
Acta Vet Hung ; 72(2): 71-79, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38842941

ABSTRACT

The spread of antibiotic resistance is one of the biggest challenges of our time, making it difficult to treat bacterial diseases. Pasteurella multocida is a widespread facultative pathogenic bacterium, which causes a wide range of diseases in both mammals and birds. In the present study, antibiotic susceptibility of 155 P. multocida strains were tested using the broth microdilution method to obtain the minimum inhibitory concentration (MIC) values for 15 antibiotics. The most effective antibiotics against pasteurellosis were ceftiofur, tetracycline, doxycycline, florfenicol and tilmicosin. Of the strains, 12 proved to be multi-drug resistant (MDR). To combat antibiotic resistance, it is important to establish a pre-treatment antibiotic susceptibility profile. A well-chosen antibiotic would not only make the treatment more successful but may also slow down the spread of resistance and the evolution of MDR strains.


Subject(s)
Anti-Infective Agents , Drug Resistance, Bacterial , Pasteurella multocida , Pasteurella multocida/drug effects , Pasteurella multocida/isolation & purification , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Pasteurella Infections/microbiology , Drug Resistance, Multiple, Bacterial , Birds/microbiology , Mammals/microbiology , Animals , Cattle
5.
Front Immunol ; 15: 1392681, 2024.
Article in English | MEDLINE | ID: mdl-38835751

ABSTRACT

Background: Pasteurella multocida is a bacterial pathogen that causes a variety of infections across diverse animal species, with one of the most devastating associated diseases being hemorrhagic septicemia. Outbreaks of hemorrhagic septicemia in cattle and buffaloes are marked by rapid progression and high mortality. These infections have particularly harmful socio-economic impacts on small holder farmers in Africa and Asia who are heavily reliant on a small number of animals kept as a means of subsistence for milk and draft power purposes. A novel vaccine target, PmSLP-3, has been identified on the surface of hemorrhagic septicemia-associated strains of P. multocida and was previously shown to elicit robust protection in cattle against lethal challenge with a serogroup B strain. Methods: Here, we further investigate the protective efficacy of this surface lipoprotein, including evaluating the immunogenicity and protection upon formulation with a variety of adjuvants in both mice and cattle. Results: PmSLP-3 formulated with Montanide ISA 61 elicited the highest level of serum and mucosal IgG, elicited long-lasting serum antibodies, and was fully protective against serogroup B challenge. Studies were then performed to identify the minimum number of doses required and the needed protein quantity to maintain protection. Duration studies were performed in cattle, demonstrating sustained serum IgG titres for 3 years after two doses of vaccine and full protection against lethal serogroup B challenge at 7 months after a single vaccine dose. Finally, a serogroup E challenge study was performed, demonstrating that PmSLP-3 vaccine can provide protection against challenge by the two serogroups responsible for hemorrhagic septicemia. Conclusion: Together, these data indicate that PmSLP-3 formulated with Montanide ISA 61 is an immunogenic and protective vaccine against hemorrhagic septicemia-causing P. multocida strains in cattle.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Cattle Diseases , Hemorrhagic Septicemia , Pasteurella multocida , Animals , Cattle , Pasteurella multocida/immunology , Hemorrhagic Septicemia/prevention & control , Hemorrhagic Septicemia/veterinary , Hemorrhagic Septicemia/immunology , Hemorrhagic Septicemia/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Cattle Diseases/prevention & control , Cattle Diseases/immunology , Cattle Diseases/microbiology , Mice , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Female , Serogroup , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Pasteurella Infections/immunology , Pasteurella Infections/microbiology , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mice, Inbred BALB C , Vaccination
6.
Virulence ; 15(1): 2359467, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38808732

ABSTRACT

Pasteurella multocida (P. multocida) is a bacterial pathogen responsible for a range of infections in humans and various animal hosts, causing significant economic losses in farming. Integrative and conjugative elements (ICEs) are important horizontal gene transfer elements, potentially enabling host bacteria to enhance adaptability by acquiring multiple functional genes. However, the understanding of ICEs in P. multocida and their impact on the transmission of this pathogen remains limited. In this study, 42 poultry-sourced P. multocida genomes obtained by high-throughput sequencing together with 393 publicly available P. multocida genomes were used to analyse the horizontal transfer of ICEs. Eighty-two ICEs were identified in P. multocida, including SXT/R391 and Tn916 subtypes, as well as three subtypes of ICEHin1056 family, with the latter being widely prevalent in P. multocida and carrying multiple resistance genes. The correlations between insertion sequences and resistant genes in ICEs were also identified, and some ICEs introduced the carbapenem gene blaOXA-2 and the bleomycin gene bleO to P. multocida. Phylogenetic and collinearity analyses of these bioinformatics found that ICEs in P. multocida were transmitted vertically and horizontally and have evolved with host specialization. These findings provide insight into the transmission and evolution mode of ICEs in P. multocida and highlight the importance of understanding these elements for controlling the spread of antibiotic resistance.


Subject(s)
Gene Transfer, Horizontal , Genome, Bacterial , Pasteurella Infections , Pasteurella multocida , Phylogeny , Pasteurella multocida/genetics , Pasteurella multocida/classification , Animals , Pasteurella Infections/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/transmission , DNA Transposable Elements , Conjugation, Genetic , Evolution, Molecular , Poultry/microbiology , Prevalence , High-Throughput Nucleotide Sequencing
7.
BMJ Case Rep ; 17(5)2024 May 24.
Article in English | MEDLINE | ID: mdl-38789270

ABSTRACT

Pasteurella multocida is a gram-negative coccobacillus that is commonly transmitted through animal bites including cats and dogs. The degree of infection can be worrisome in the immunosuppressed population with a stark correlation in patients with cirrhosis. However, taking that population into account, only 13 cases of P. multocida bacteraemia have been recorded with the majority of those cases having cirrhotic liver disease along with multiple comorbidities. Here, we present an elderly patient with only pertinent medical history of mixed hyperlipidaemia who presents after a mechanical fall with acute renal failure and septic shock secondary to P. multocida bacteraemia.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Humans , Pasteurella Infections/diagnosis , Pasteurella Infections/drug therapy , Pasteurella Infections/microbiology , Bacteremia/microbiology , Bacteremia/diagnosis , Bacteremia/drug therapy , Pasteurella multocida/isolation & purification , Male , Aged , Anti-Bacterial Agents/therapeutic use , Shock, Septic/microbiology , Acute Kidney Injury/etiology , Acute Kidney Injury/microbiology
8.
ScientificWorldJournal ; 2024: 5605552, 2024.
Article in English | MEDLINE | ID: mdl-38655561

ABSTRACT

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Subject(s)
Anti-Bacterial Agents , Goats , Mannheimia haemolytica , Microbial Sensitivity Tests , Pasteurella multocida , Sheep Diseases , Animals , Pasteurella multocida/drug effects , Pasteurella multocida/isolation & purification , Mannheimia haemolytica/drug effects , Mannheimia haemolytica/isolation & purification , Ethiopia/epidemiology , Sheep/microbiology , Goats/microbiology , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Goat Diseases/microbiology , Goat Diseases/epidemiology , Prevalence , Risk Factors , Pasteurella Infections/microbiology , Pasteurella Infections/veterinary , Pasteurella Infections/epidemiology
9.
BMC Vet Res ; 20(1): 147, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643185

ABSTRACT

BACKGROUND: Gamithromycin is an effective therapy for bovine and swine respiratory diseases but not utilized for rabbits. Given its potent activity against respiratory pathogens, we sought to determine the pharmacokinetic profiles, antimicrobial activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with therapeutic effect of gamithromycin against Pasteurella multocida in rabbits. RESULTS: Gamithromycin showed favorable PK properties in rabbits, including high subcutaneous bioavailability (86.7 ± 10.7%) and low plasma protein binding (18.5-31.9%). PK analysis identified a mean plasma peak concentration (Cmax) of 1.64 ± 0.86 mg/L and terminal half-life (T1/2) of 31.5 ± 5.74 h after subcutaneous injection. For P. multocida, short post-antibiotic effects (PAE) (1.1-5.3 h) and post-antibiotic sub-inhibitory concentration effects (PA-SME) (6.6-9.1 h) were observed after exposure to gamithromycin at 1 to 4× minimal inhibitory concentration (MIC). Gamithromycin demonstrated concentration-dependent bactericidal activity and the PK/PD index area under the concentration-time curve over 24 h (AUC24h)/MIC correlated well with efficacy (R2 > 0.99). The plasma AUC24h/MIC ratios of gamithromycin associated with the bacteriostatic, bactericidal and bacterial eradication against P. multocida were 15.4, 24.9 and 27.8 h in rabbits, respectively. CONCLUSIONS: Subcutaneous administration of 6 mg/kg gamithromycin reached therapeutic concentrations in rabbit plasma against P. multocida. The PK/PD ratios determined herein in combination with ex vivo activity and favorable rabbit PK indicate that gamithromycin may be used for the treatment of rabbit pasteurellosis.


Subject(s)
Cattle Diseases , Lagomorpha , Pasteurella Infections , Pasteurella multocida , Swine Diseases , Rabbits , Animals , Cattle , Swine , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Pasteurella Infections/drug therapy , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Macrolides/therapeutic use , Macrolides/pharmacokinetics , Microbial Sensitivity Tests/veterinary , Cattle Diseases/drug therapy , Swine Diseases/drug therapy
10.
Vet Res ; 55(1): 46, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589976

ABSTRACT

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Rodent Diseases , Humans , Animals , Rabbits , Mice , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Proto-Oncogene Proteins c-akt , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/veterinary , Lung/pathology , Bacteremia/veterinary , Bacteremia/pathology , Apoptosis , Mammals , Forkhead Box Protein O1
12.
Vet Med Sci ; 10(3): e1424, 2024 05.
Article in English | MEDLINE | ID: mdl-38519838

ABSTRACT

BACKGROUND: Companion animals, including dogs and cats, are frequently identified as sources of Pasteurella multocida, a bacterium that can be transmitted to humans and cause infections. OBJECTIVES: This survey defines the prevalence, antibiotic sensitivity, capsular types, lipopolysaccharide (LPS) types and virulence factors of P. multocida isolated from cats. METHODS: A total of 100 specimens from various cat breeds were collected. P. multocida was characterized using both biochemical tests and PCR. Genotypes of isolates were determined using capsular and LPS typing methods. Additionally, virulotyping was performed by detecting the presence of 12 virulence-associated genes. Disk diffusion was used to determine the antibiotic sensitivity of the isolates. RESULTS: The prevalence of P. multocida in cats was 29%. Among the isolates, the majority were capsular type A (96.5%) and type D (3.4%), with a predominant presence of type A. Twenty-six of the isolates (89.66%) belonged to LPS genotype L6, whereas three isolates (10.3%) belonged to genotype L3. Among the 12 virulence genes examined, sodC, oma87, ptfA, nanB and ompH showed remarkable prevalence (100%). The toxA gene was detected in four isolates (13.8%). Variations were observed in other virulence genes. The nanH gene was present in 93.1% of the isolates, whereas the pfhA gene was detected in 58.6% of the isolates. The exbD-tonB, hgbB, sodA and hgbA genes showed prevalence rates of 96.5%, 96.5%, 96.5% and 82.8%, respectively. Additionally, particular capsule and LPS types were associated with specific virulence genes. Specifically, the toxA and pfhA genes were found to be more prevalent in isolates with capsular type A and LPS genotype L6. Most isolates were resistant to ampicillin, clindamycin, lincomycin, streptomycin and penicillin. CONCLUSIONS: According to this epidemiological and molecular data, P. multocida from cats possess several virulence-associated genes and are resistant to antimicrobial medicines commonly used in humans and animals. Thus, it is crucial to consider the public health concerns of P. multocida in humans.


Subject(s)
Cat Diseases , Dog Diseases , Pasteurella Infections , Pasteurella multocida , Cats , Animals , Humans , Dogs , Pasteurella multocida/genetics , Pasteurella Infections/epidemiology , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Lipopolysaccharides , Cat Diseases/epidemiology
13.
J Infect Chemother ; 30(8): 820-823, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38373634

ABSTRACT

Pasteurellosis is a common zoonotic infection that occurs after an animal bite or scratch (B/S). We compared the clinical features of six patients with non-B/S pasteurellosis with those of 14 patients with B/S infections. Pasteurella multocida was identified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in all six non-B/S infections, whereas 13 of the 14 B/S infections were identified with diagnostic kits. The non-B/S infections were pneumonia (n = 3), skin and soft tissue infections (n = 2), and bacteremia (n = 1). Pneumonia occurred in two patients with underlying pulmonary disease, whereas ventilator-associated pneumonia developed in one patient with cerebral infarction. Pasteurella multocida was isolated from a blood specimen and nasal swab from a patient with liver cirrhosis (Child-Pugh class C) and diabetes. Cellulitis developed in one patient with diabetes and normal-pressure hydrocephalus, who had an open wound following a fall, and in one patient with diabetes and a foot ulcer. Three patients with non-B/S infections had no pet and no episode of recent animal contact. The rate of moderate-to-severe comorbidities was significantly higher in patients with non-B/S infections than in those with B/S infections (100% and 14.3%, respectively, p < 0.001). In conclusion, non-B/S infections can develop in patients with chronic pulmonary disease, invasive mechanical ventilation, or open wounds, or who are immunocompromised, irrespective of obvious animal exposure. In contrast to B/S infections, non-B/S pasteurellosis should be considered opportunistic.


Subject(s)
Bites and Stings , Pasteurella Infections , Pasteurella multocida , Humans , Pasteurella Infections/microbiology , Pasteurella Infections/diagnosis , Animals , Male , Female , Pasteurella multocida/isolation & purification , Middle Aged , Aged , Bites and Stings/complications , Bites and Stings/microbiology , Aged, 80 and over , Adult , Bacteremia/microbiology , Bacteremia/diagnosis
14.
Vet Microbiol ; 290: 109990, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228079

ABSTRACT

The bacterial agent that causes fowl cholera, Pasteurella multocida, was isolated from two deceased wild waterbirds in Victoria, Australia, in 2013. Whole genome sequence analysis placed the isolates into ST20, a subtype described in farmed chickens from Queensland, Australia and more recently in feedlot cattle and in pigs across a broader area of the continent. This study also found ST20 between 2009 and 2022 on three chicken farms and two turkey farms located in four Australian states. The sequences of 25 of these ST20 isolates were compared to 280 P. multocida genomes from 23 countries and to 94 ST20 Illumina datasets from Queensland that have been deposited in public databases. The ST20 isolates formed a single phylogenetic clade and were clustered into four sub-groups with highly similar genomes, possessing either LPS type 1 or type 3 loci. Various repertoires of mobile genetic elements were present in isolates from farmed, but not wild birds, suggesting complex histories of spill-over between avian populations and gene acquisition within farm environments. No major antimicrobial resistance was predicted in any of the ST20 isolates by the genomic analysis. The closest relative of these isolates was a ST394 bovine respiratory tract isolate from Queensland, which differed from ST20 by only one allele and carried beta-lactam and tetracycline resistance genes. These findings underline the importance of understanding the role of wild and commercial birds in the maintenance of fowl cholera, and of implementing regular epidemiological surveillance and biosecurity management programmes in wildlife, as well as free-range poultry farms.


Subject(s)
Cattle Diseases , Cholera , Pasteurella Infections , Pasteurella multocida , Poultry Diseases , Swine Diseases , Animals , Cattle , Swine , Poultry , Farms , Chickens , Phylogeny , Cholera/veterinary , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Animals, Wild , Victoria
15.
Rev Med Chil ; 151(1): 120-124, 2023 Feb.
Article in Spanish | MEDLINE | ID: mdl-37906753

ABSTRACT

Pasteurella multocida is a gram-negative coccobacillus bacterium found as a commensal in the oropharynx of domestic animals such as cats and dogs and some farm animals. Soft tissue infections and occasionally bacteremia in immunocompromised patients with direct contact with animals are described. We report a 61 year old male with a history of scratches and close contact with domestic cats, with a septic shock originating from a pulmonary focus, requiring mechanical ventilation and vasopressors. Blood cultures disclosed the presence of Pasteurella multocida. He responded successfully to antimicrobials.


Subject(s)
Bacteremia , Pasteurella Infections , Pasteurella multocida , Shock, Septic , Animals , Cats , Humans , Male , Middle Aged , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Pasteurella Infections/etiology , Pasteurella Infections/microbiology
16.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37796828

ABSTRACT

Pasteurella multocida is widely distributed in all pig-rearing countries, affecting the economic viability and profitability of pig production. The present research highlights the molecular characterization and pathology of untypeable capsular serotypes of P. multocida in slaughtered pigs from prominent pig-rearing states of India. The prevalence of Pasteurellosis was 27.17% by Pasteurella multocida specific Pasteurella multocida specific PCR (PM-PCR). assay, while isolation rate was 7.62%. The microscopic lesions of bronchopneumonia, tonsillitis, and the presence of bacterial antigens in immunohistochemistry confirmed P. multocida with pathologies. In capsular typing, the majority of the isolates were untypeable with prevalence of 52.15% and 43.58% in molecular and microbiological methods, respectively. All the isolates showed the uniform distribution of virulence genes such as exbB, nanB, sodC, plpB, and oma87 (100%), while the variations were observed in ptfA, hasR, ptfA, pfhA, hsf-1, and plpE genes. The untypeable isolates showed higher prevalence of hsf-1 gene as compared to others. The untypeable serotypes showed a higher degree of resistance to ampicillin, amoxicillin, and penicillin antibiotics. The mouse pathogenicity testing of untypeable capsular isolates confirmed its pathogenic potential. The higher frequency of pathogenic untypeable isolates with antibiotic resistance profile might pose a serious threat to the pigs, and therefore, preventive measures should be adopted for effective control.


Subject(s)
Anti-Infective Agents , Pasteurella Infections , Pasteurella multocida , Animals , Swine , Mice , Pasteurella multocida/genetics , Virulence/genetics , Serogroup , Virulence Factors/genetics , Pasteurella Infections/veterinary , Pasteurella Infections/epidemiology , Pasteurella Infections/microbiology , India
17.
Microb Pathog ; 185: 106398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852551

ABSTRACT

Pasteurella multocida, a Gram-negative zoonotic bacterial pathogen, interacts with the host environment, immune response, and infection through outer membrane proteins, adhesins, and sialic acid binding proteins. Sialic acids provide nutrition and mask bacterial identity, hindering the complement system, facilitates tissue access and biofilm formation. Sialic acid binding protein (SAB) enable adhesion to host cells, immune evasion, and nutrient acquisition, making them potential targets for preventing Pasteurella multocida infections. In this study, in silico molecular docking assessed 11 antibiotics targeting SAB (4MMP) comparing their docking scores to Amoxicillin. As SAB (4MMP) exhibits a highly conserved sequence in various Pasteurella multocida strains, including the specific strain PMR212 studied in this article, with a 96.09% similarity score. Aztreonam and Gentamicin displayed the highest docking scores (-6.025 and -5.718), followed by a 100ns molecular dynamics simulation. Aztreonam exhibited stable simulation with protein RMSD fluctuations of 1.8-2.2 Å. The ligand initially had an RMSD of 1.6 Å, stabilizing at 4.8 Å. Antibiotic sensitivity testing confirmed Aztreonam's efficacy with the largest inhibition zone of 42 mm, while Amoxicillin and Gentamicin had inhibition zones of 32 mm and 25 mm, respectively. According to CLSI guidelines, all three antibiotics were effective against Pasteurella multocida. Aztreonam's superior efficacy positions it as a promising candidate for further investigation in targeting Pasteurella multocida.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Humans , Anti-Bacterial Agents/metabolism , Aztreonam/pharmacology , Aztreonam/metabolism , Pasteurella Infections/microbiology , N-Acetylneuraminic Acid/metabolism , Molecular Docking Simulation , Amoxicillin/pharmacology , Gentamicins/pharmacology
18.
Vet Res ; 54(1): 91, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845774

ABSTRACT

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Subject(s)
Biological Products , Ligilactobacillus salivarius , Pasteurella Infections , Pasteurella multocida , Humans , Animals , Immunity, Innate , Epithelial Cells , Biological Products/pharmacology , Pasteurella Infections/microbiology , Pasteurella Infections/veterinary
19.
Front Cell Infect Microbiol ; 13: 1207855, 2023.
Article in English | MEDLINE | ID: mdl-37502603

ABSTRACT

Objective: Pasteurella multocida is a widespread zoonotic pathogen that causes severe damage to the poultry industry. This study focused on the antibacterial effects and mechanism of action of coptisine against P. multocida. Methods: The minimum inhibitory concentration and half maximal inhibitory concentration of coptisine against P. multocida was measured. Additionally, the effect of coptisine on growth, cell wall, activity of respiratory enzymes, soluble protein content and DNA synthesis were also analyzed. Finally, the effect of coptisine on gene transcription was determined using RNA sequencing. Results: We demonstrated that coptisine has a strong antibacterial effect against P. multocida, with a minimum inhibitory concentration of 0.125 mg/mL. Moreover, the measurement of the half maximal inhibitory concentration confirmed that coptisine was safe for the pathogen. The growth curve showed that coptisine inhibited bacterial growth. Measurement of alkaline phosphatase activity in the culture solution showed that coptisine affected cell wall permeability. Transmission electron microscopy revealed that coptisine chloride destroyed the cell structure. In addition, coptisine blocked the respiratory system, as measured by the levels of critical enzymes of the tricarboxylic acid cycle and glycolysis, succinate dehydrogenase and lactate dehydrogenase, respectively. Similarly, coptisine inhibited the synthesis of soluble proteins and genomic DNA. The KEGG pathway analysis of the differentially expressed genes showed that they were associated with cellular, respiratory, and amino acid metabolism, which were downregulated after coptisine treatment. Additionally, genes related to RNA degradation and the aminoacyl-tRNA pathway were upregulated. Conclusion: In this study, we demonstrated that coptisine exerts an antibacterial effect on P. multocida. These findings suggest that coptisine has a multifaceted impact on various pathways, resulting in the inhibition of P. multocida. Thus, coptisine is a potential alternative to antibiotics for the treatment of P. multocida infections in a clinical setting.


Subject(s)
Berberine , Pasteurella Infections , Pasteurella multocida , Humans , Pasteurella multocida/genetics , Pasteurella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Berberine/pharmacology
20.
Microb Pathog ; 183: 106212, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37353176

ABSTRACT

Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Rats , Animals , Pasteurella Infections/microbiology , Vascular Endothelial Growth Factor A , Macrophages/pathology
SELECTION OF CITATIONS
SEARCH DETAIL