Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.177
Filter
1.
Elife ; 122024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990761

ABSTRACT

Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.


Subject(s)
Dendrites , Synapses , Visual Cortex , Animals , Dendrites/physiology , Synapses/physiology , Mice , Visual Cortex/physiology , Visual Cortex/growth & development , Patch-Clamp Techniques , Mice, Inbred C57BL
2.
PLoS One ; 19(7): e0302376, 2024.
Article in English | MEDLINE | ID: mdl-38990806

ABSTRACT

We applied the patch-seq technique to harvest transcripts from individual microglial cells from cortex, hippocampus and corpus callosum of acute brain slices from adult mice. After recording membrane currents with the patch-clamp technique, the cytoplasm was collected via the pipette and underwent adapted SMART-seq2 preparation with subsequent sequencing. On average, 4138 genes were detected in 113 cells from hippocampus, corpus callosum and cortex, including microglia markers such as Tmem119, P2ry12 and Siglec-H. Comparing our dataset to previously published single cell mRNA sequencing data from FACS-isolated microglia indicated that two clusters of cells were absent in our patch-seq dataset. Pathway analysis of marker genes in FACS-specific clusters revealed association with microglial activation and stress response. This indicates that under normal conditions microglia in situ lack transcripts associated with a stress-response, and that the microglia-isolation procedure by mechanical dissociation and FACS triggers the expression of genes related to activation and stress.


Subject(s)
Microglia , Microglia/metabolism , Animals , Mice , Flow Cytometry/methods , Stress, Physiological/genetics , Mice, Inbred C57BL , Patch-Clamp Techniques , Male , Hippocampus/metabolism , Hippocampus/cytology , Single-Cell Analysis/methods
3.
Sci Rep ; 14(1): 16092, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997408

ABSTRACT

Thermally stable full-length scorpion toxin peptides and partially degraded peptides with complete disulfide bond pairing are valuable natural peptide resources in traditional Chinese scorpion medicinal material. However, their pharmacological activities are largely unknown. This study discovered BmKcug1a-P1, a novel N-terminal degraded peptide, in this medicinal material. BmKcug1a-P1 inhibited hKv1.2 and hKv1.3 potassium channels with IC50 values of 2.12 ± 0.27 µM and 1.54 ± 0.28 µM, respectively. To investigate the influence of N-terminal amino acid loss on the potassium channel inhibiting activities, three analogs (i.e., full-length BmKcug1a, BmKcug1a-P1-D2 and BmKcug1a-P1-D4) of BmKcug1a-P1 were prepared, and their potassium channel inhibiting activities on hKv1.3 channel were verified by whole-cell patch clamp technique. Interestingly, the potassium channel inhibiting activity of full-length BmKcug1a on the hKv1.3 channel was significantly improved compared to its N-terminal degraded form (BmKcug1a-P1), while the activities of two truncated analogs (i.e., BmKcug1a-P1-D2 and BmKcug1a-P1-D4) were similar to that of BmKcug1a-P1. Extensive alanine-scanning experiments identified the bonding interface (including two key functional residues, Asn30 and Arg34) of BmKcug1a-P1. Structural and functional dissection further elucidated whether N-terminal residues of the peptide are located at the bonding interface is important in determining whether the N-terminus significantly influences the potassium channel inhibiting activity of the peptide. Altogether, this research identified a novel N-terminal degraded active peptide, BmKcug1a-P1, from traditional Chinese scorpion medicinal material and elucidated how the N-terminus of peptides influences their potassium channel inhibiting activity, contributing to the functional identification and molecular truncation optimization of full-length and degraded peptides from traditional Chinese scorpion medicinal material Buthus martensii Karsch.


Subject(s)
Peptides , Potassium Channel Blockers , Scorpion Venoms , Scorpions , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Scorpions/chemistry , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacology , Animals , Peptides/chemistry , Peptides/pharmacology , Humans , Kv1.3 Potassium Channel/antagonists & inhibitors , Kv1.3 Potassium Channel/metabolism , Kv1.3 Potassium Channel/chemistry , Proteolysis , Kv1.2 Potassium Channel/metabolism , Kv1.2 Potassium Channel/antagonists & inhibitors , Kv1.2 Potassium Channel/chemistry , Protein Stability , Amino Acid Sequence , Patch-Clamp Techniques , HEK293 Cells
4.
Sci Rep ; 14(1): 15244, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956407

ABSTRACT

TREK-1 is a mechanosensitive channel activated by polyunsaturated fatty acids (PUFAs). Its activation is supposed to be linked to changes in membrane tension following PUFAs insertion. Here, we compared the effect of 11 fatty acids and ML402 on TREK-1 channel activation using the whole cell and the inside-out configurations of the patch-clamp technique. Firstly, TREK-1 activation by PUFAs is variable and related to the variable constitutive activity of TREK-1. We observed no correlation between TREK-1 activation and acyl chain length or number of double bonds suggesting that the bilayer-couple hypothesis cannot explain by itself the activation of TREK-1 by PUFAs. The membrane fluidity measurement is not modified by PUFAs at 10 µM. The spectral shift analysis in TREK-1-enriched microsomes indicates a KD,TREK1 at 44 µM of C22:6 n-3. PUFAs display the same activation and reversible kinetics than the direct activator ML402 and activate TREK-1 in both whole-cell and inside-out configurations of patch-clamp suggesting that the binding site of PUFAs is accessible from both sides of the membrane, as for ML402. Finally, we proposed a two steps mechanism: first, insertion into the membrane, with no fluidity or curvature modifications at 10 µM, and then interaction with TREK-1 channel to open it.


Subject(s)
Fatty Acids, Unsaturated , Potassium Channels, Tandem Pore Domain , Potassium Channels, Tandem Pore Domain/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Humans , HEK293 Cells , Patch-Clamp Techniques , Membrane Fluidity/drug effects
5.
Nat Commun ; 15(1): 5563, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982047

ABSTRACT

The spatial organization of a neuronal circuit is critically important for its function since the location of neurons is often associated with function. In the cerebellum, the major output of the cerebellar cortex are synapses made from Purkinje cells onto neurons in the cerebellar nuclei, yet little has been known about the spatial organization of these synapses. We explored this question using whole-cell electrophysiology and optogenetics in acute sagittal cerebellar slices to produce spatial connectivity maps of cerebellar cortical output in mice. We observed non-random connectivity where Purkinje cell inputs clustered in cerebellar transverse zones: while many nuclear neurons received inputs from a single zone, several multi-zonal connectivity motifs were also observed. Single neurons receiving input from all four zones were overrepresented in our data. These findings reveal that the output of the cerebellar cortex is spatially structured and represents a locus for multimodal integration in the cerebellum.


Subject(s)
Cerebellar Cortex , Optogenetics , Purkinje Cells , Synapses , Animals , Cerebellar Cortex/physiology , Purkinje Cells/physiology , Mice , Synapses/physiology , Male , Cerebellar Nuclei/physiology , Patch-Clamp Techniques , Mice, Inbred C57BL , Neural Pathways/physiology , Female , Neurons/physiology , Cerebellum/physiology , Mice, Transgenic
6.
Braz J Biol ; 84: e283314, 2024.
Article in English | MEDLINE | ID: mdl-38958298

ABSTRACT

Aestivation and hibernation represent distinct forms of animal quiescence, characterized by physiological changes, including ion composition. Intracellular ion flows play a pivotal role in eliciting alterations in membrane potential and facilitating cellular communication, while outward K+ currents aid in the restitution and upkeep of the resting membrane potential. This study explores the relationship between inward and outward currents during aestivation in Achatina fulica snails. Specimens were collected near MSUBIT University in Shenzhen and divided into two groups. The first group was kept on a lattice diet, while the second one consisted of aestivating individuals, that were deprived of food and water until a cork-like structure sealed their shells. Recording of current from isolated neurons were conducted using the single-electrode voltage clamp mode with an AxoPatch 200B amplifier. Electrophysiological recordings on pedal ganglia neurons revealed significant differences in the inactivation processes of the Ia and Ikdr components. Alterations in the Ikdr component may inhibit pacemaker activity in pedal ganglion neurons, potentially contributing to locomotion cessation in aestivated animals. The KS current remains unaffected during aestivation. Changes in slow K+ current components could disrupt the resting membrane potential, possibly leading to cell depolarization and influx of Ca2+ and Na+ ions, impacting cell homeostasis. Thus, maintaining the constancy of outward K+ current is essential for cell stability.


Subject(s)
Membrane Potentials , Neurons , Snails , Animals , Snails/physiology , Neurons/physiology , Membrane Potentials/physiology , Estivation/physiology , Patch-Clamp Techniques , Potassium/metabolism , Potassium Channels/physiology
7.
Diabetes ; 73(8): 1255-1265, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38985991

ABSTRACT

Inducible pluripotent stem cell-derived human ß-like cells (BLCs) hold promise for both therapy and disease modeling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single-cell electrophysiological tools to evaluate function of BLCs from pioneer protocols that can be easily adapted to more differentiated BLCs. The multi-electrode arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs, like primary ß-cells, are electrically coupled and produce slow potential (SP) signals that are closely linked to insulin secretion. We also used high-resolution single-cell patch clamp measurements to capture the exocytotic properties, and characterize voltage-gated sodium and calcium currents, and found that they were comparable with those in primary ß- and EndoC-ßH1 cells. The KATP channel conductance is greater than in human primary ß-cells, which may account for the limited glucose responsiveness observed with MEA. We used MEAs to study the impact of the type 2 diabetes-protective SLC30A8 allele (p.Lys34Serfs50*) and found that BLCs with this allele have stronger electrical coupling activity. Our data suggest that BLCs can be used to evaluate the functional impact of genetic variants on ß-cell function and coupling.


Subject(s)
Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Zinc Transporter 8 , Humans , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Zinc Transporter 8/genetics , Zinc Transporter 8/metabolism , Cell Differentiation , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Patch-Clamp Techniques , Electrophysiological Phenomena
8.
Invest Ophthalmol Vis Sci ; 65(6): 41, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935030

ABSTRACT

Purpose: Retinal ganglion cells (RGCs) connect the retina to the brain. Proper development of the axons and dendrites of RGCs is the basis for these cells to function as projection neurons to deliver visual information to the brain. The purpose of this study was to investigate the function of Shtn1 (which encodes shootin1) in RGC neurite development. Methods: Immunofluorescence (IF) was used to characterize the expression pattern of marker genes. An in vitro direct somatic cell reprogramming system was used to generate RGC-like neurons (iRGCs), which was subsequently used to study the function of Shtn1. Short-hairpin RNAs (shRNAs) were used to knock down Shtn1, and the coding sequence (CDS) of Shtn1 was used to overexpress the gene. Lentiviruses were used to deliver shRNAs or CDSs into iRGCs. The patch clamp technique was used to measure the electrophysiological properties of the iRGCs. RNA sequencing (RNA-seq) was used to examine transcriptome expression. Results: Using IF, we demonstrated that shootin1 is distinctively expressed in RGCs during the period in which RGCs actively develop and adjust the connections of their neurites with upstream and downstream neurons. Using the iRGC system, we demonstrated that Shtn1 promotes the growth and complexity of neurites and thus the electrophysiological maturation, of iRGCs. RNA-seq analyses showed that Shtn1 may also regulate gene expression and neurogenesis in iRGCs. Conclusions: Shtn1 promotes RGC neurite development. These findings improve our understanding of the molecular machinery governing RGC neurite development and may help to optimize future RGC regeneration methods.


Subject(s)
Nerve Tissue Proteins , Neurites , Retinal Ganglion Cells , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/cytology , Animals , Neurites/physiology , Neurites/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Cellular Reprogramming/physiology , Cells, Cultured , Mice, Inbred C57BL , Patch-Clamp Techniques , Neurogenesis/physiology , Neurogenesis/genetics
9.
J Exp Biol ; 227(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38916053

ABSTRACT

Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.


Subject(s)
Action Potentials , Ambystoma mexicanum , Metamorphosis, Biological , Myocytes, Cardiac , Animals , Ambystoma mexicanum/physiology , Ambystoma mexicanum/growth & development , Myocytes, Cardiac/physiology , Myocytes, Cardiac/metabolism , Patch-Clamp Techniques , Heart/growth & development , Heart/physiology , Myocardium/metabolism
10.
Nat Commun ; 15(1): 5095, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876987

ABSTRACT

Two-photon voltage imaging has long been heralded as a transformative approach capable of answering many long-standing questions in modern neuroscience. However, exploiting its full potential requires the development of novel imaging approaches well suited to the photophysical properties of genetically encoded voltage indicators. We demonstrate that parallel excitation approaches developed for scanless two-photon photostimulation enable high-SNR two-photon voltage imaging. We use whole-cell patch-clamp electrophysiology to perform a thorough characterization of scanless two-photon voltage imaging using three parallel illumination approaches and lasers with different repetition rates and wavelengths. We demonstrate voltage recordings of high-frequency spike trains and sub-threshold depolarizations from neurons expressing the soma-targeted genetically encoded voltage indicator JEDI-2P-Kv. Using a low repetition-rate laser, we perform multi-cell recordings from up to fifteen targets simultaneously. We co-express JEDI-2P-Kv and the channelrhodopsin ChroME-ST and capitalize on their overlapping two-photon absorption spectra to simultaneously evoke and image action potentials using a single laser source. We also demonstrate in vivo scanless two-photon imaging of multiple cells simultaneously up to 250 µm deep in the barrel cortex of head-fixed, anaesthetised mice.


Subject(s)
Action Potentials , Neurons , Photons , Animals , Mice , Neurons/physiology , Action Potentials/physiology , Patch-Clamp Techniques , Lasers
11.
Sci Rep ; 14(1): 14315, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906952

ABSTRACT

Head-fixation of mice enables high-resolution monitoring of neuronal activity coupled with precise control of environmental stimuli. Virtual reality can be used to emulate the visual experience of movement during head fixation, but a low inertia floating real-world environment (mobile homecage, MHC) has the potential to engage more sensory modalities and provide a richer experimental environment for complex behavioral tasks. However, it is not known whether mice react to this adapted environment in a similar manner to real environments, or whether the MHC can be used to implement validated, maze-based behavioral tasks. Here, we show that hippocampal place cell representations are intact in the MHC and that the system allows relatively long (20 min) whole-cell patch clamp recordings from dorsal CA1 pyramidal neurons, revealing sub-threshold membrane potential dynamics. Furthermore, mice learn the location of a liquid reward within an adapted T-maze guided by 2-dimensional spatial navigation cues and relearn the location when spatial contingencies are reversed. Bilateral infusions of scopolamine show that this learning is hippocampus-dependent and requires intact cholinergic signalling. Therefore, we characterize the MHC system as an experimental tool to study sub-threshold membrane potential dynamics that underpin complex navigation behaviors.


Subject(s)
Hippocampus , Maze Learning , Spatial Navigation , Animals , Mice , Spatial Navigation/physiology , Male , Hippocampus/physiology , Pyramidal Cells/physiology , Mice, Inbred C57BL , Membrane Potentials/physiology , CA1 Region, Hippocampal/physiology , Virtual Reality , Scopolamine/pharmacology , Patch-Clamp Techniques/methods
12.
Nat Neurosci ; 27(7): 1309-1317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871992

ABSTRACT

The lateral amygdala (LA) encodes fear memories by potentiating sensory inputs associated with threats and, in the process, recruits 10-30% of its neurons per fear memory engram. However, how the local network within the LA processes this information and whether it also plays a role in storing it are still largely unknown. Here, using ex vivo 12-patch-clamp and in vivo 32-electrode electrophysiological recordings in the LA of fear-conditioned rats, in combination with activity-dependent fluorescent and optogenetic tagging and recall, we identified a sparsely connected network between principal LA neurons that is organized in clusters. Fear conditioning specifically causes potentiation of synaptic connections between learning-recruited neurons. These findings of synaptic plasticity in an autoassociative excitatory network of the LA may suggest a basic principle through which a small number of pyramidal neurons could encode a large number of memories.


Subject(s)
Basolateral Nuclear Complex , Fear , Neuronal Plasticity , Neurons , Animals , Fear/physiology , Rats , Basolateral Nuclear Complex/physiology , Male , Neurons/physiology , Neuronal Plasticity/physiology , Optogenetics , Conditioning, Classical/physiology , Learning/physiology , Patch-Clamp Techniques , Synapses/physiology , Memory/physiology , Amygdala/physiology , Amygdala/cytology
13.
J Neurophysiol ; 132(1): 68-77, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38838298

ABSTRACT

The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are involved in the control of horizontal and vertical gaze, respectively. A previous study showed that PHN neurons exhibit depolarized or hyperpolarized responses to noradrenaline (NA). However, the adrenoceptor types that participate in NA-induced responses and the effects of NA on INC neurons have not yet been investigated. Furthermore, the relationship between NA-induced responses and neuron types defined by neurotransmitter phenotypes has not been determined. In this study, we investigated NA-induced current responses in PHN and INC neurons and the relationships between these responses and neuron types using whole cell recordings in wild-type and transgenic rat brainstem slices. Local application of NA to the cell soma induced slow inward (SI) and slow outward (SO) currents that were mainly mediated by α1 and α2 adrenoceptors, respectively. These current responses were observed in both PHN and INC neurons, although the proportion of INC neurons that responded to NA was low. Analyses of the distributions of the current responses revealed that in the PHN, all fluorescently identified inhibitory neurons exhibited SI currents, whereas glutamatergic and cholinergic neurons exhibited both SI and SO currents. In the INC, glutamatergic and inhibitory neurons preferentially exhibited SI and SO currents, respectively. When the PHN and INC neurons were characterized by their firing pattern, we found that the proportions of the currents depended on their firing pattern. These results suggest that various modes of noradrenergic modulation in horizontal and vertical neural integrators are dependent on neuron type.NEW & NOTEWORTHY Noradrenergic modulation of oculomotor neural integrators involved in gaze control has not been elucidated. Here, we report that noradrenaline (NA)-induced slow inward (SI) and outward (SO) currents are mediated mainly by α1 and α2 adrenoceptors in neurons that participate in horizontal and vertical gaze control. The NA-induced current responses differed depending on the neurotransmitter phenotype and firing pattern. These results suggest various modes of noradrenergic modulation in horizontal and vertical integrator neurons.


Subject(s)
Norepinephrine , Animals , Norepinephrine/pharmacology , Rats , Male , Rats, Transgenic , Neurons/physiology , Neurons/drug effects , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-1/physiology , Adrenergic Neurons/physiology , Adrenergic Neurons/drug effects , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, alpha-2/physiology , Patch-Clamp Techniques , Brain Stem/physiology , Brain Stem/cytology , Brain Stem/drug effects , Cholinergic Neurons/physiology , Cholinergic Neurons/drug effects
14.
Molecules ; 29(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893312

ABSTRACT

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Subject(s)
Potassium Channel Blockers , Structure-Activity Relationship , Humans , Potassium Channel Blockers/chemistry , Potassium Channel Blockers/pharmacology , Potassium Channels, Sodium-Activated , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Xanthine/chemistry , Xanthine/pharmacology , Patch-Clamp Techniques , HEK293 Cells , Molecular Structure , Xanthines/chemistry , Xanthines/pharmacology
15.
Cell Physiol Biochem ; 58(3): 212-225, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38852193

ABSTRACT

BACKGROUND/AIMS: Adrenaline quickly inhibits the release of histamine from mast cells. Besides ß2-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties. METHODS: Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists. RESULTS: Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a ß2-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high dose prazosin, a selective α1-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells. CONCLUSION: This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell-stabilizer. The pharmacological blockade of α1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by ß2-adrenergic receptors.


Subject(s)
Cell Degranulation , Epinephrine , Exocytosis , Mast Cells , Prazosin , Animals , Mast Cells/drug effects , Mast Cells/metabolism , Mast Cells/cytology , Epinephrine/pharmacology , Rats , Prazosin/pharmacology , Cell Degranulation/drug effects , Male , Exocytosis/drug effects , Patch-Clamp Techniques , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Rats, Wistar
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230475, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853563

ABSTRACT

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse retrogradely into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is required for kainate receptor (KAR)-dependent presynaptic form of LTP (pre-LTP) in the adult insular cortex (IC). In the IC, we found that inhibition of NO synthase erased the maintenance of pre-LTP, while the induction of pre-LTP required the activation of KAR. Furthermore, NO is essential for pre-LTP induced between two pyramidal cells in the IC using the double patch-clamp recording. These results suggest that NO is required for homosynaptic pre-LTP in the IC. Our results present strong evidence for the critical roles of NO in pre-LTP in the IC. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Cerebral Cortex , Long-Term Potentiation , Nitric Oxide , Presynaptic Terminals , Long-Term Potentiation/physiology , Nitric Oxide/metabolism , Animals , Cerebral Cortex/physiology , Presynaptic Terminals/physiology , Receptors, Kainic Acid/metabolism , Patch-Clamp Techniques , Rats , Pyramidal Cells/physiology , Nitric Oxide Synthase/metabolism , Mice
17.
Methods Mol Biol ; 2796: 87-95, 2024.
Article in English | MEDLINE | ID: mdl-38856896

ABSTRACT

Voltage-gated ion channels (VGICs) are integral membrane proteins crucial for transmitting electrical signals in excitable cells. Understanding the kinetics of these ion channels requires conducting patch-clamp experiments using genetically modified cell lines that express a single type of ion channel gene. However, this process relies on the continuous maintenance of cell lines to ensure an adequate supply of sample cells for patch-clamp experiments. Advancements in automated patch-clamp methods have enabled researchers to significantly increase the number of patch-clamped cells per experiment, from just a few cells to as many as 384 cells. Despite this progress, the manual task of preparing the cell samples remains a significant bottleneck in the kinetic screening of VGICs. Here we describe a method to address this challenge by generating ready-to-record (RTR) VGIC-expressing cells that can be frozen and stored separately from patch-clamp experiments. This decoupling of the cell sample preparation process from the patch-clamp experiments offers a streamlined approach to studying VGICs on manual or an automated patch-clamp system.


Subject(s)
Ion Channels , Patch-Clamp Techniques , Patch-Clamp Techniques/methods , Humans , Kinetics , Ion Channels/metabolism , Ion Channels/genetics , HEK293 Cells , Animals , Cell Line , Ion Channel Gating
18.
Methods Mol Biol ; 2796: 119-138, 2024.
Article in English | MEDLINE | ID: mdl-38856899

ABSTRACT

Ion channels comprise one of the largest targets for drug development and treatment and have been a subject of enduring fascination since first discovered in the 1950s. Over the past decades, thousands of publications have explored the cellular biology and molecular physiology of these proteins, and many channel structures have been determined since the late 1990s. Trying to connect the dots between ion channel function and structure, voltage clamp fluorometry (VCF) emerges as a powerful tool because it allows monitoring of the conformational rearrangements underlying the different functional states of the channel. This technique represents an elegant harmonization of molecular biology, electrophysiology, and fluorescence. In the following chapter, we will provide a concise guide to performing VCF on Xenopus laevis oocytes using the two-electrode voltage clamp (TEVC) modality. This is the most widely used configuration on Xenopus oocytes for its relative simplicity and demonstrated success in a number of different ion channels utilizing a variety of attached labels.


Subject(s)
Fluorometry , Ion Channels , Oocytes , Patch-Clamp Techniques , Xenopus laevis , Animals , Patch-Clamp Techniques/methods , Fluorometry/methods , Oocytes/metabolism , Ion Channels/metabolism , Ion Channel Gating
19.
Methods Mol Biol ; 2796: 211-227, 2024.
Article in English | MEDLINE | ID: mdl-38856904

ABSTRACT

The dynamic clamp technique has emerged as a powerful tool in the field of cardiac electrophysiology, enabling researchers to investigate the intricate dynamics of ion currents in cardiac cells. Potassium channels play a critical role in the functioning of cardiac cells and the overall electrical stability of the heart. This chapter provides a comprehensive overview of the methods and applications of dynamic clamp in the study of key potassium currents in cardiac cells. A step-by-step guide is presented, detailing the experimental setup and protocols required for implementing the dynamic clamp technique in cardiac cell studies. Special attention is given to the design and construction of a dynamic clamp setup with Real Time eXperimental Interface, configurations, and the incorporation of mathematical models to mimic ion channel behavior. The chapter's core focuses on applying dynamic clamp to elucidate the properties of various potassium channels in cardiac cells. It discusses how dynamic clamp can be used to investigate channel kinetics, voltage-dependent properties, and the impact of different potassium channel subtypes on cardiac electrophysiology. The chapter will also include examples of specific dynamic clamp experiments that studied potassium currents or their applications in cardiac cells.


Subject(s)
Myocytes, Cardiac , Patch-Clamp Techniques , Potassium Channels , Patch-Clamp Techniques/methods , Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Animals , Humans , Ion Channel Gating , Potassium/metabolism , Kinetics
20.
Methods Mol Biol ; 2796: 249-270, 2024.
Article in English | MEDLINE | ID: mdl-38856906

ABSTRACT

Patch-clamp technique provides a unique possibility to record the ion channels' activity. This method enables tracking the changes in their functional states at controlled conditions on a real-time scale. Kinetic parameters evaluated for the patch-clamp signals form the fundamentals of electrophysiological characteristics of the channel functioning. Nevertheless, the noisy series of ionic currents flowing through the channel protein(s) seem to be bountiful of information, and the standard data processing techniques likely unravel only its part. Rapid development of artificial intelligence (AI) techniques, especially machine learning (ML), gives new prospects for whole channelology. Here we consider the question of the AI applications in the patch-clamp signal analysis. It turns out that the AI methods may not only enable for automatizing of signal analysis, but also they can be used in finding inherent patterns of channel gating and allow the researchers to uncover the details of gating machinery, which had been never considered before. In this work, we outline the currently known AI methods that turned out to be utilizable and useful in the analysis of patch-clamp signals. This chapter can be considered an introductory guide to the application of AI methods in the analysis of the time series of channel currents (together with its advantages, disadvantages, and limitations), but we also propose new possible directions in this field.


Subject(s)
Ion Channels , Machine Learning , Patch-Clamp Techniques , Patch-Clamp Techniques/methods , Patch-Clamp Techniques/instrumentation , Ion Channels/metabolism , Humans , Ion Channel Gating/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL