Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.072
Filter
1.
Mar Drugs ; 22(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921547

ABSTRACT

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Subject(s)
Anti-Bacterial Agents , Penicillium , Staphylococcus aureus , Penicillium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Genomics/methods , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Sensitivity Tests , Transcriptome , Arctic Regions , Siderophores/pharmacology , Aldehyde Reductase/antagonists & inhibitors , Aldehyde Reductase/genetics
2.
Int J Food Microbiol ; 421: 110801, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38924974

ABSTRACT

Blue cheeses, including renowned mold-ripened varieties such as Roquefort (France), Gorgonzola (Italy), Stilton (UK), Danablue (Denmark), and Cabrales (Spain), owe their distinct blue-green color and unique flavor to the fungal species Penicillium roqueforti. In Turkey, traditional cheeses similar to blue cheeses, namely mold-ripened Tulum and Civil, employ production techniques distinct from their European counterparts. Notably, mold-ripening in Turkish cheeses is spontaneous and does not involve starter cultures. Despite P. roqueforti being recognized for its distinct genetic populations sourced from various blue cheeses and non-cheese origins globally, the characteristics of the P. roqueforti population within Turkish cheeses remain unexplored. This study aimed to unravel the genetic characteristics and population structure of P. roqueforti from Turkish mold-ripened cheeses. Analysis of mold-ripened Civil (n = 22) and Tulum (n = 8) samples revealed 66 P. roqueforti isolates (76.6 % of total fungal isolates). Subsequently, these isolates (n = 66) and those from previous studies (Tulum n = 53, Golot n = 1) were used to assess genetic characteristics and mating genotypes. All 120 isolates harbored horizontal transfer regions (Wallaby and CheesyTer) and predominantly possessed the MAT1-2 mating genotype, similar to global blue cheese populations. However, most lacked the mpaC deletion associated with such populations. Analysis of the population with three polymorphic microsatellite markers revealed 36 haplotypes (HTs). Some cheeses contained isolates with different HTs or opposite mating genotypes, aligning with spontaneous fungal growth. Tulum and Civil isolates exhibited similar population diversity without forming distinct subgroups. Phylogenetic analysis of 20 selected isolates showed 75 % aligning with global blue cheese isolates, while 25 % formed unique clades. Overall, Turkish P. roqueforti isolates share genetic similarities with global populations but exhibit unique characteristics, suggesting potential new clades deserving further investigation. This research illuminates the characteristics of P. roqueforti isolates from Turkish cheeses, contributing to the knowledge of the global intraspecific diversity of the P. roqueforti species.


Subject(s)
Cheese , Genetic Variation , Penicillium , Cheese/microbiology , Penicillium/genetics , Penicillium/isolation & purification , Penicillium/classification , Turkey , Food Microbiology , Genotype , Phylogeny
3.
Fungal Biol ; 128(4): 1885-1897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876541

ABSTRACT

Patulin is a mycotoxin produced by several species of Penicillium sp., Aspergillus sp., and Byssochlamys sp. on apples and pears. Most studies have been focused on Penicillium expansum, a common postharvest pathogen, but little is known about the characteristics of Penicillium paneum. In the present study, we evaluated the effects of temperature, pH, and relative humidity (RH) on the growth of P. paneum OM1, which was isolated from pears, and its patulin production. The fungal strain showed the highest growth rate at 25 °C and pH 4.5 on pear puree agar medium (PPAM) under 97 % RH, while it produced the highest amount of patulin at 20 °C and pH 4.5 on PPAM under 97 % RH. Moreover, RT-qPCR analysis of relative expression levels of 5 patulin biosynthetic genes (patA, patE, patK, patL, and patN) in P. paneum OM1 exhibited that the expression of the 4 patulin biosynthetic genes except patL was up-regulated in YES medium (patulin conducive), while it was not in PDB medium (patulin non-conducive). Our data demonstrated that the 3 major environmental parameters had significant impact on the growth of P. paneum OM1 and its patulin production. These results could be exploited to prevent patulin contamination by P. paneum OM1 during pear storage.


Subject(s)
Humidity , Patulin , Penicillium , Pyrus , Temperature , Patulin/biosynthesis , Patulin/metabolism , Penicillium/metabolism , Penicillium/growth & development , Penicillium/genetics , Penicillium/isolation & purification , Pyrus/microbiology , Hydrogen-Ion Concentration , Culture Media/chemistry
4.
Food Microbiol ; 122: 104532, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839238

ABSTRACT

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Subject(s)
Genome, Fungal , Multigene Family , Mycotoxins , Penicillium , Phylogeny , Secondary Metabolism , Penicillium/genetics , Penicillium/metabolism , Mycotoxins/metabolism , Mycotoxins/genetics , Food Contamination/analysis , Patulin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nuts/microbiology , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Food Microbiology , Corylus/microbiology , Heterocyclic Compounds, 4 or More Rings , Indoles , Piperazines
5.
Environ Microbiol Rep ; 16(3): e13286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844388

ABSTRACT

Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.


Subject(s)
Fermentation , Mycelium , Penicillium , Rhizosphere , Mycelium/metabolism , Mycelium/growth & development , Penicillium/metabolism , Penicillium/genetics , Plant Roots/microbiology , Metabolome , Metabolomics , Soil Microbiology , Metabolic Networks and Pathways/genetics
6.
Arch Microbiol ; 206(7): 327, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922442

ABSTRACT

Lignocellulose biomass raw materials have a high value in energy conversion. Recently, there has been growing interest in using microorganisms to secret a series of enzymes for converting low-cost biomass into high-value products such as biofuels. We previously isolated a strain of Penicillium oxalicun 5-18 with promising lignocellulose-degrading capability. However, the mechanisms of lignocellulosic degradation of this fungus on various substrates are still unclear. In this study, we performed transcriptome-wide profiling and comparative analysis of strain 5-18 cultivated in liquid media with glucose (Glu), xylan (Xyl) or wheat bran (WB) as sole carbon source. In comparison to Glu culture, the number of differentially expressed genes (DEGs) induced by WB and Xyl was 4134 and 1484, respectively, with 1176 and 868 genes upregulated. Identified DEGs were enriched in many of the same pathways in both comparison groups (WB vs. Glu and Xly vs. Glu). Specially, 118 and 82 CAZyme coding genes were highly upregulated in WB and Xyl cultures, respectively. Some specific pathways including (Hemi)cellulose metabolic processes were enriched in both comparison groups. The high upregulation of these genes also confirmed the ability of strain 5-18 to degrade lignocellulose. Co-expression and co-upregulated of genes encoding CE and AA CAZy families, as well as other (hemi)cellulase revealed a complex degradation strategy in this strain. Our findings provide new insights into critical genes, key pathways and enzyme arsenal involved in the biomass degradation of P. oxalicum 5-18.


Subject(s)
Gene Expression Profiling , Lignin , Penicillium , Transcriptome , Xylans , Penicillium/genetics , Penicillium/metabolism , Lignin/metabolism , Xylans/metabolism , Biomass , Glucose/metabolism , Dietary Fiber/metabolism , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism
7.
Appl Environ Microbiol ; 90(6): e0029924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38786360

ABSTRACT

Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE: Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.


Subject(s)
Carboxylic Ester Hydrolases , Erwinia amylovora , Malus , Patulin , Patulin/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Malus/microbiology , Erwinia amylovora/genetics , Erwinia amylovora/drug effects , Erwinia amylovora/enzymology , Erwinia amylovora/metabolism , Plant Diseases/microbiology , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions , Quorum Sensing , Lactones/metabolism , Lactones/pharmacology
8.
World J Microbiol Biotechnol ; 40(7): 215, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802663

ABSTRACT

Withanolides are steroidal lactones with diverse bioactive potential and their production from plant sources varies with genotype, age, culture conditions, and geographical region. Endophytic fungi serve as an alternative source to produce withanolides, like their host plant, Withania somnifera (L.) Dunal. The present study aimed to isolate endophytic fungi capable of producing withanolides, characterization and investigation of biological activities of these molecules. The methanolic fungal crude extract of one of the fungal isolates WSE16 showed maximum withanolide production (219 mg/L). The fungal isolate WSE16 was identified as Penicillium oxalicum based on its morphological and internal transcribed spacer (ITS) sequence analysis and submitted in NCBI (accession number OR888725). The methanolic crude extract of P. oxalicum was further purified by column chromatography, and collected fractions were assessed for the presence of withanolides. Fractions F3 and F4 showed a higher content of withanolides (51.8 and 59.1 mg/L, respectively) than other fractions. Fractions F3 and F4 exhibited antibacterial activity against Staphylococcus aureus with an IC50 of 23.52 and 17.39 µg/ml, respectively. These fractions also showed antioxidant activity (DPPH assay with IC50 of 39.42 and 38.71 µg/ml, superoxide anion scavenging assay with IC50 of 41.10 and 38.84 µg/ml, and reducing power assay with IC50 of 42.61 and 41.40 µg/ml, respectively) and acetylcholinesterase inhibitory activity (IC50 of 30.34 and 22.05 µg/ml, respectively). The withanolides present in fraction 3 and fraction 4 were identified as (20S, 22R)-1a-Acetoxy-27-hydroxywitha-5, 24-dienolide-3b-(O-b-D-glucopyranoside) and withanamide A, respectively, using UV, FTIR, HRMS, and NMR analysis. These results suggest that P. oxalicum, an endophytic fungus isolated from W. somnifera, is a potential source for producing bioactive withanolides.


Subject(s)
Endophytes , Penicillium , Withania , Withanolides , Withania/microbiology , Withania/chemistry , Withanolides/metabolism , Withanolides/isolation & purification , Withanolides/pharmacology , Penicillium/metabolism , Penicillium/genetics , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/classification , Antioxidants/pharmacology , Antioxidants/metabolism , Antioxidants/isolation & purification , Antioxidants/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Phylogeny , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Microbial Sensitivity Tests
9.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668807

ABSTRACT

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Glycoside Hydrolases , Histones , Lysine , Multigene Family , Penicillium , Secondary Metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Histones/genetics , Lysine/metabolism , Lysine/biosynthesis , Methylation , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Penicillium/growth & development , Protein Processing, Post-Translational , Reproduction, Asexual/genetics , Secondary Metabolism/genetics
10.
Enzyme Microb Technol ; 178: 110441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38574421

ABSTRACT

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.


Subject(s)
Citrus , Computational Biology , Fungal Proteins , Glucans , Glycoside Hydrolases , Penicillium , Xylans , Penicillium/enzymology , Penicillium/genetics , Citrus/microbiology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Xylans/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity , Amino Acid Sequence , Enzyme Stability , Temperature , Hydrolysis
11.
Int J Biol Macromol ; 266(Pt 1): 131236, 2024 May.
Article in English | MEDLINE | ID: mdl-38554901

ABSTRACT

Antifungal proteins (AFPs) from filamentous fungi have enormous potential as novel biomolecules for the control of fungal diseases. However, little is known about the biological roles of AFPs beyond their antifungal action. Penicillium expansum encodes three phylogenetically different AFPs (PeAfpA, PeAfpB and PeAfpC) with diverse profiles of antifungal activity. PeAfpA stands out as a highly active AFP that is naturally produced at high yields. Here, we provide new data about the function of PeAfpA in P. expansum through phenotypical characterization and transcriptomic studies of null mutants of the corresponding afpA gene. Mutation of afpA did not affect axenic growth, conidiation, virulence, stress responses or sensitivity towards P. expansum AFPs. However, RNA sequencing evidenced a massive transcriptomic change linked to the onset of PeAfpA production. We identified two large gene expression clusters putatively involved in PeAfpA function, which correspond to genes induced or repressed with the production of PeAfpA. Functional enrichment analysis unveiled significant changes in genes related to fungal cell wall remodeling, mobilization of carbohydrates and plasma membrane transporters. This study also shows a putative co-regulation between the three afp genes. Overall, our transcriptomic analyses provide valuable insights for further understanding the biological functions of AFPs.


Subject(s)
Antifungal Agents , Fungal Proteins , Gene Expression Profiling , Gene Expression Regulation, Fungal , Penicillium , Penicillium/genetics , Penicillium/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Antifungal Agents/pharmacology , Gene Expression Regulation, Fungal/drug effects , Transcriptome , Mutation , Virulence/genetics , Phylogeny
12.
G3 (Bethesda) ; 14(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38507596

ABSTRACT

Fungi biosynthesize diverse secondary metabolites, small organic bioactive molecules with key roles in fungal ecology. Fungal secondary metabolites are often encoded by physically clustered genes known as biosynthetic gene clusters (BGCs). Fungi in the genus Penicillium produce a cadre of secondary metabolites, some of which are useful (e.g. the antibiotic penicillin and the cholesterol-lowering drug mevastatin) and others harmful (e.g. the mycotoxin patulin and the immunosuppressant gliotoxin) to human affairs. Fungal genomes often also encode resistance genes that confer protection against toxic secondary metabolites. Some Penicillium species, such as Penicillium decumbens, are known to produce gliotoxin, a secondary metabolite with known immunosuppressant activity. To investigate the evolutionary conservation of homologs of the gliotoxin BGC and of genes involved in gliotoxin resistance in Penicillium, we analyzed 35 Penicillium genomes from 23 species. Homologous, lesser fragmented gliotoxin BGCs were found in 12 genomes, mostly fragmented remnants of the gliotoxin BGC were found in 21 genomes, whereas the remaining 2 Penicillium genomes lacked the gliotoxin BGC altogether. In contrast, broad conservation of homologs of resistance genes that reside outside the BGC across Penicillium genomes was observed. Evolutionary rate analysis revealed that BGCs with higher numbers of genes evolve slower than BGCs with few genes, suggestive of constraint and potential functional significance or more recent decay. Gene tree-species tree reconciliation analyses suggested that the history of homologs in the gliotoxin BGC across the genus Penicillium likely involved multiple duplications, losses, and horizontal gene transfers. Our analyses suggest that genes encoded in BGCs can have complex evolutionary histories and be retained in genomes long after the loss of secondary metabolite biosynthesis.


Subject(s)
Evolution, Molecular , Gliotoxin , Multigene Family , Penicillium , Phylogeny , Penicillium/genetics , Gliotoxin/biosynthesis , Biosynthetic Pathways/genetics , Genome, Fungal
13.
J Microorg Control ; 29(1): 17-26, 2024.
Article in English | MEDLINE | ID: mdl-38508758

ABSTRACT

The species diversity of xerophilic and halophilic fungi distributed in marine surface water was studied at four local sites located in two geographically distant regions in Japan. At each site, 5-10 samples were collected and isolated using an osmophilic medium. Species identification was conducted based on nucleotide sequence of calmodulin or ß -tubulin and morphological characteristics for Aspergillus, Penicillium, and Talaromyces, and on the sequences of rRNA internal transcribed spacer for the other taxa. Overall, 231 strains were isolated from all sites and classified into 85 species belonged to 12 orders and 33 genera. The isolates that showed better mycelial growth than the control(no NaCl added) in the halotolerance test were defined as halophilic fungi, and only 22 species(10 Aspergillus species and 12 Penicillium species) were halophilic. Comparison of the halophilic fungal flora of the two regions revealed that four species common to both regions were isolated for Aspergillus, but no such species were isolated for Penicillium. Given that 15 halophilic species(10 Aspergillus and 5 Penicillium species) are known to be xerophilic species distributed in indoor environments, it can be inferred that indoor xerophilic species are likely to be widely distributed in marine surface water.


Subject(s)
Penicillium , Penicillium/genetics , Aspergillus/genetics , Sodium Chloride , Water , Japan
14.
Gene ; 910: 148315, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38417689

ABSTRACT

Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.


Subject(s)
Genome, Mitochondrial , Penicillium , Phylogeny , Base Sequence , Penicillium/genetics
15.
Arch Microbiol ; 206(3): 97, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349544

ABSTRACT

Cordyceps militaris is a well-known medicinal mushroom in Asian countries. This edible fungus has been widely exploited for traditional medicine and functional food production. C. militaris is a heterothallic fungus that requires both the mating-type loci, MAT1-1 and MAT1-2, for fruiting body formation. However, recent studies also indicated two groups of C. militaris, including monokaryotic strains carrying only MAT1-1 in their genomes and heterokaryotic strains harboring both MAT1-1 and MAT1-2. These strain groups are able to produce fruiting bodies under suitable cultivating conditions. In previous work, we showed that monokaryotic strains are more stable than heterokaryotic strains in fruiting body formation through successive culturing generations. In this study, we report a high cordycepin-producing monokaryotic C. militaris strain (HL8) collected in Vietnam. This strain could form normal fruiting bodies with high biological efficiency and contain a cordycepin content of 14.43 mg/g lyophilized fruiting body biomass. The ethanol extraction of the HL8 fruiting bodies resulted in a crude extract with a cordycepin content of 69.15 mg/g. Assays of cytotoxic activity on six human cancer cell lines showed that the extract inhibited the growth of all these cell lines with the IC50 values of 6.41-11.51 µg/mL. Notably, the extract significantly reduced cell proliferation and promoted apoptosis of breast cancer cells. Furthermore, the extract also exhibited strong antifungal activity against Malassezia skin yeasts and the citrus postharvest pathogen Penicillium digitatum. Our work provides a promising monokaryotic C. militaris strain as a bioresource for medicine, cosmetics, and fruit preservation.


Subject(s)
Antineoplastic Agents , Cordyceps , Neoplasms , Penicillium , Humans , Penicillium/genetics , Fruiting Bodies, Fungal
16.
PLoS One ; 19(1): e0296499, 2024.
Article in English | MEDLINE | ID: mdl-38165907

ABSTRACT

Fungi associated with the marine echinoderm, Holothuria scabra, produces extracellular enzymes and bioactive metabolites, and mycoviruses that could be used for biotechnological and pharmaceutical applications. The species identification based on molecular and morphological characteristics classified the culturable fungi into twenty-three genera belonging to eight orders, Chaetothyriales, Eurotiales, Hypocreales, Mucorales, Mycosphaerellales, Onygenales, Pleosporales and Venturiales, from four classes, Eurotiomycetes, Dothideomycetes, Mucoromycetes and Sordariomycetes of the two phyla Ascomycota and Mucoromycota. The most frequent genera were Aspergillus (relative frequency, 45.30%) and Penicillium (relative frequency, 22.68%). The Menhinick species richness and Shannon species diversity indices were 1.64 and 2.36, respectively, indicating a high diversity of fungi. An enzymatic production test revealed that sixteen isolates could produce proteases and amylases at different levels. The presence of mycoviruses was detected in eight isolates with different genomic profiles. Thirty-two of the 55 isolates produced antimicrobial metabolites which had an inhibitory effect on various microbial pathogens. Most of these active isolates were identified as Aspergillus, Penicillium and Trichoderma. Notably, Aspergillus terreus F10M7, Trichoderma harzianum F31M4 and T. harzianum F31M5 showed the most potent activity against both Gram-positive and Gram-negative bacteria and human pathogenic fungi. Our study represents the first report of the mycobiota associated with the marine echinoderm Holothuria scabra.


Subject(s)
Ascomycota , Holothuria , Penicillium , Sea Cucumbers , Animals , Humans , Holothuria/microbiology , Anti-Bacterial Agents/metabolism , Gram-Negative Bacteria , Gram-Positive Bacteria , Fungi , Ascomycota/genetics , Penicillium/genetics , Phylogeny
17.
Fungal Genet Biol ; 171: 103862, 2024 03.
Article in English | MEDLINE | ID: mdl-38218228

ABSTRACT

Although Penicillium molds can have significant impacts on agricultural, industrial, and biomedical systems, the ecological roles of Penicillium species in many microbiomes are not well characterized. Here we utilized a collection of 35 Penicillium strains isolated from cheese rinds to broadly investigate the genomic potential for secondary metabolism in cheese-associated Penicillium species, the impact of Penicillium on bacterial community assembly, and mechanisms of Penicillium-bacteria interactions. Using antiSMASH, we identified 1558 biosynthetic gene clusters, 406 of which were mapped to known pathways, including several mycotoxins and antimicrobial compounds. By measuring bacterial abundance and fungal mRNA expression when culturing representative Penicillium strains with a cheese rind bacterial community, we observed divergent impacts of different Penicillium strains, from strong inhibitors of bacterial growth to those with no impact on bacterial growth or community composition. Through differential mRNA expression analyses, Penicillium strains demonstrated limited differential gene expression in response to the bacterial community. We identified a few shared responses between the eight tested Penicillium strains, primarily upregulation of nutrient metabolic pathways, but we did not identify a conserved fungal response to growth in a multispecies community. These results in tandem suggest high variation among cheese-associated Penicillium species in their ability to shape bacterial community development and highlight important ecological diversity within this iconic genus.


Subject(s)
Cheese , Microbiota , Penicillium , Cheese/microbiology , Penicillium/genetics , Gene Expression Profiling , Microbiota/genetics , Genomics , Bacteria , RNA, Messenger/metabolism
18.
J Struct Biol ; 216(1): 108060, 2024 03.
Article in English | MEDLINE | ID: mdl-38184156

ABSTRACT

Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.


Subject(s)
Alkyl and Aryl Transferases , Dimethylallyltranstransferase , Penicillium , Humans , Dimethylallyltranstransferase/genetics , Penicillium/genetics , Plant Proteins/genetics
19.
J Agric Food Chem ; 72(2): 1025-1034, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181197

ABSTRACT

In this study, the role of WSC1 in the infection of pear fruit by Penicillium expansum was investigated. The WSC1 gene was knocked out and complemented by Agrobacterium-mediated homologous recombination technology. Then, the changes in growth, development, and pathogenic processes of the knockout mutant and the complement mutant were analyzed. The results indicated that deletion of WSC1 slowed the growth rate, reduced the mycelial and spore yield, and reduced the ability to produce toxins and pathogenicity of P. expansum in pear fruits. At the same time, the deletion of WSC1 reduced the tolerance of P. expansum to cell wall stress factors, enhanced antioxidant capacity, decreased hypertonic sensitivity, decreased salt stress resistance, and was more sensitive to most metal ions. Our results confirmed that WSC1 plays an important role in maintaining cell wall integrity and responding to stress, toxin production, and the pathogenicity of P. expansum.


Subject(s)
Patulin , Penicillium , Pyrus , Fruit , Penicillium/genetics , Penicillium/pathogenicity , Virulence
20.
Toxins (Basel) ; 16(1)2024 01 17.
Article in English | MEDLINE | ID: mdl-38251268

ABSTRACT

Penicillium expansum is one the major postharvest pathogens of pome fruit during postharvest handling and storage. This fungus also produces patulin, which is a highly toxic mycotoxin that can contaminate infected fruits and their derived products and whose levels are regulated in many countries. In this study, we investigated the biocontrol potential of non-mycotoxigenic strains of Penicillium expansum against a mycotoxigenic strain. We analyzed the competitive behavior of two knockout mutants that were unable to produce patulin. The first mutant (∆patK) involved the deletion of the patK gene, which is the initial gene in patulin biosynthesis. The second mutant (∆veA) involved the deletion of veA, which is a global regulator of primary and secondary metabolism. At the phenotypic level, the ∆patK mutant exhibited similar phenotypic characteristics to the wild-type strain. In contrast, the ∆veA mutant displayed altered growth characteristics compared with the wild type, including reduced conidiation and abnormal conidiophores. Neither mutant produced patulin under the tested conditions. Under various stress conditions, the ∆veA mutants exhibited reduced growth and conidiation when exposed to stressors, including cell membrane stress, oxidative stress, osmotic stress, and different pH values. However, no significant changes were observed in the ∆patK mutant. In competitive growth experiments, the presence of non-mycotoxigenic strains reduced the population of the wild-type strain during in vitro growth. Furthermore, the addition of either of the non-mycotoxigenic strains resulted in a significant decrease in patulin levels. Overall, our results suggest the potential use of non-mycotoxigenic mutants, particularly ∆patK mutants, as biocontrol agents to reduce patulin contamination in food and feed.


Subject(s)
Patulin , Penicillium , Patulin/toxicity , Penicillium/genetics , Cell Membrane , Fruit
SELECTION OF CITATIONS
SEARCH DETAIL
...