Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.818
Filter
1.
Sci Adv ; 10(28): eadn0960, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996025

ABSTRACT

Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.


Subject(s)
Adenosine Triphosphate , Pentacyclic Triterpenes , Prodrugs , Reactive Oxygen Species , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Adenosine Triphosphate/metabolism , Humans , Animals , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Triterpenes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/drug effects , Drug Liberation , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Ferric Compounds/chemistry
2.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3204-3211, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041081

ABSTRACT

Ursolic acid has gradually attracted much attention due to its unique pharmacological activities and valuable market value in recent years. Currently, ursolic acid is mostly extracted from loquat leaves, but the plant extraction method has low yield and high cost, and chemical synthesis is not readily available, so the biosynthesis method provides a new source for ursolic acid. α-amyrin acts as the main precursor for the synthesis of ursolic acid, and its yield is positively correlated with ursolic acid yield. Oxidosqualene cyclase(OSC) belongs to a multigene family which can catalyze the common precursor 2,3-oxidosqualene to generate different types of triterpene backbones, and plays a decisive role in the synthesis of triterpenoids. However, there are fewer reported key genes catalyzing the synthesis of α-amyrin in medicinal plants, and the yield and proportion of α-amyrin in the catalyzed products have always been a focus of research. In this study, ItOSC2, MdOSC1, AaOSC2 and CrAS, four enzymes capable of catalyzing the production of α-amyrin from 2,3-oxidosqualene, were cloned from Iris tectorum, Malus domestica, Artemisia annua and Catharanthus roseus, subject to sequence alignment and phylogenetic tree analyses, and transformed into Saccharomyces cerevisiae as plasmids. After 7 days of fermentation, the yield and proportions of α-amyrin, ß-amyrin and ergosterol were measured. Finally, AaOSC2 with the best ability to catalyze the generation of α-amyrin was filtered out, providing a key gene element for the later construction of engineered yeast strains with high production of α-amyrin and ursolic acid.


Subject(s)
Intramolecular Transferases , Oleanolic Acid , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Oleanolic Acid/chemistry , Oleanolic Acid/biosynthesis , Cloning, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Triterpenes/metabolism , Triterpenes/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Phylogeny , Pentacyclic Triterpenes
3.
J Cell Mol Med ; 28(14): e18375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039796

ABSTRACT

Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1ß, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.


Subject(s)
Cytokines , Cytoskeletal Proteins , Dermatitis, Atopic , Mice, Inbred BALB C , Mitochondrial Dynamics , Pentacyclic Triterpenes , Triterpenes , Animals , Mitochondrial Dynamics/drug effects , Pentacyclic Triterpenes/pharmacology , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Humans , Triterpenes/pharmacology , Mice , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Thymic Stromal Lymphopoietin , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , HaCaT Cells , Phosphorylation/drug effects
4.
J Nanobiotechnology ; 22(1): 437, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061092

ABSTRACT

BACKGROUND: The oral administration of drugs for treating ulcerative colitis (UC) is hindered by several factors, including inadequate gastrointestinal stability, insufficient accumulation in colonic lesions, and uncontrolled drug release. METHODS: A multiple sensitive nano-delivery system comprising ß-cyclodextrin (CD) and 4-(hydroxymethyl)phenylboronic acid (PAPE) with enzyme/reactive oxygen species (ROS) sensitivity was developed to load celastrol (Cel) as a comprehensive treatment for UC. RESULTS: Owing to the positive charge in the site of inflamed colonic mucosa, the negatively charged nanomedicine (Cel/NPs) could efficiently accumulate. Expectedly, Cel/NPs showed excellent localization ability to colon in vitro and in vivo tests. The elevated concentration of ROS and intestinal enzymes in the colon microenvironment quickly break the CD, resulting in Cel release partially to rebalance microbiota and recover the intestinal barrier. The accompanying cellular internalization of residual Cel/NPs, along with the high concentration of cellular ROS to trigger Cel burst release, could decrease the expression of inflammatory cytokines, inhibit colonic cell apoptosis, promote the macrophage polarization, scavenge ROS, and regulate the TLR4/NF-κB signaling pathway, which certified that Cel/NPs possessed a notably anti-UC therapy outcome. CONCLUSIONS: We provide a promising strategy for addressing UC symptoms via an enzyme/ROS-sensitive oral platform capable of releasing drugs on demand.


Subject(s)
Colitis, Ulcerative , Pentacyclic Triterpenes , Reactive Oxygen Species , Colitis, Ulcerative/drug therapy , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/therapeutic use , Animals , Reactive Oxygen Species/metabolism , Mice , Humans , Nanoparticles/chemistry , beta-Cyclodextrins/chemistry , Male , RAW 264.7 Cells , Inflammation/drug therapy , Gastrointestinal Microbiome/drug effects , Colon/metabolism , Colon/drug effects , Drug Liberation , Mice, Inbred C57BL , Triterpenes/pharmacology , Triterpenes/chemistry , Nanoparticle Drug Delivery System/chemistry , Intestinal Mucosa/metabolism
5.
Molecules ; 29(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39064977

ABSTRACT

Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 µM) and NCI-H460 cells (IC50 of 30.74 µM). BA's fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications.


Subject(s)
Betulinic Acid , Breast Neoplasms , Esters , Liposomes , Pentacyclic Triterpenes , Triterpenes , Humans , Liposomes/chemistry , Pentacyclic Triterpenes/pharmacology , Esters/chemistry , Esters/pharmacology , Triterpenes/pharmacology , Triterpenes/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , HT29 Cells , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Apoptosis/drug effects , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Fatty Acids/chemistry , Female , Cell Proliferation/drug effects
6.
Toxicon ; 247: 107838, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38971473

ABSTRACT

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.


Subject(s)
Molecular Docking Simulation , Pentacyclic Triterpenes , Phospholipases A2 , Phytochemicals , Plant Leaves , Vernonia , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Leaves/chemistry , Animals , Vernonia/chemistry , Phospholipases A2/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Naja , Coumarins/pharmacology , Coumarins/chemistry , Phospholipase A2 Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Computer Simulation , Lupanes
7.
Biomed Pharmacother ; 177: 117121, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002443

ABSTRACT

OBJECTIVES: Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS: Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS: Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS: Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1ß pathway.


Subject(s)
Anti-Arrhythmia Agents , Arrhythmias, Cardiac , Caspase 1 , Heart Failure , Interleukin-1beta , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Pentacyclic Triterpenes , Rats, Sprague-Dawley , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pentacyclic Triterpenes/pharmacology , Caspase 1/metabolism , Anti-Arrhythmia Agents/pharmacology , Signal Transduction/drug effects , Male , Rats , Interleukin-1beta/metabolism , Arrhythmias, Cardiac/drug therapy , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Triterpenes/pharmacology , Chronic Disease , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Heart Rate/drug effects , Disease Models, Animal
8.
Oncol Res ; 32(7): 1231-1237, 2024.
Article in English | MEDLINE | ID: mdl-38948023

ABSTRACT

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Subject(s)
Apoptosis , Cell Proliferation , Drug Synergism , Fluorouracil , Pentacyclic Triterpenes , Stomach Neoplasms , Triterpenes , Humans , Pentacyclic Triterpenes/pharmacology , Fluorouracil/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Triterpenes/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle/drug effects
9.
Int Immunopharmacol ; 138: 112604, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38968863

ABSTRACT

Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1ß, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.


Subject(s)
Betulinic Acid , Brain , Neuroprotective Agents , Oxidative Stress , Pentacyclic Triterpenes , Titanium , Zebrafish , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pentacyclic Triterpenes/pharmacology , Titanium/toxicity , Oxidative Stress/drug effects , Brain/drug effects , Brain/pathology , Brain/metabolism , Neurotoxicity Syndromes/drug therapy , Triterpenes/pharmacology , Triterpenes/therapeutic use , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Cytokines/metabolism , Nanoparticles , Behavior, Animal/drug effects , Metal Nanoparticles/toxicity , Male , Neurons/drug effects , Neurons/pathology
10.
Ann Parasitol ; 70(2): 0, 2024.
Article in English | MEDLINE | ID: mdl-39044604

ABSTRACT

Leishmaniosis is a tropical neglected parasitic disease that is endemic in many countries, including Middle East, with no existing effective vaccines. The bite of female sand-fly transmits the causative agent, Leishmania spp., to humans. High toxicity, resistance and treatment failure of the available chemotherapy against visceral leishmaniosis demands the investigation of new anti-leishmanial compounds. Lupeol is a form of triterpene isolated from several medicinal plants and possesses an antimicrobial property. In this study, cytotoxic effect of lupeol was screened against the mammalian amastigotes form and insect promastigote form of Leishmania donovani, following three cycles of incubation at different concentrations by MTT assay. Results revealed the in vitro anti-leishmanial effect of lupeol on both forms of the parasite where significant decline in promastigotes and amastigotes growth was observed. This was conducted along three times of follow up (24, 48, 72) hours, in comparison to the classical sodium stibogluconate treatment. Cell viability was calculated and the minimum IC50 was detected after 48 hours for amastigotes and 24 hours for promastigotes, 12.125 µM, 102.78 µM, respectively. Given the severity of visceral leishmaniosis and the toxicity of conventional chemotherapies, the anti-leishmanial activity of lupeol suggested a promising compound for additional clinical trials.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Pentacyclic Triterpenes , Pentacyclic Triterpenes/pharmacology , Leishmania donovani/drug effects , Antiprotozoal Agents/pharmacology , Animals , Dose-Response Relationship, Drug , Lupanes
11.
Drug Des Devel Ther ; 18: 3121-3141, 2024.
Article in English | MEDLINE | ID: mdl-39071814

ABSTRACT

Background: As a traditional Chinese medicine monomer derived from Tripterygium wilfordii Hook.f. with potential anticancer activity, celastrol can induce ferroptosis in hepatic stellate cells and inhibit their activation to alleviate liver fibrosis. Activation of ferroptosis can effectively inhibit Hepatocellular carcinoma (HCC). Whether celastrol inhibits HCC by inducing ferroptosis remains to be studied. Purpose: To explore the potential targets of celastrol against HCC through ferroptosis based on network pharmacology and to verify the anticancer effect of celastrol on HepG2 cells. Methods: We collected celastrol targets, HCC, and ferroptosis-related genes through online databases, and got their intersection targets. Subsequently, we obtained a protein-protein interaction (PPI) network, and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to gain key genes for further study. They were verified in vitro and were performed molecular docking. The changes in cell proliferation and ferroptosis characteristics of HepG2 cells after celastrol treatment were detected. Results: 31 core target genes were screened for PPI network and enrichment analysis. The most significantly related KEGG pathway was chemical carcinogenesis-reactive oxygen species. The mRNA and protein levels of GSTM1 were significantly decreased after celastrol treatment. Molecular docking demonstrated the interaction between celastrol and GSTM1. Ferroptosis was induced and cell proliferation was inhibited by celastrol in HCC cells. Conclusion: Celastrol induces ferroptosis in HCC via regulating GSTM1 expression and may serve as a novel therapeutic compound with clinical potential in HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Liver Neoplasms , Network Pharmacology , Pentacyclic Triterpenes , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Ferroptosis/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Cell Proliferation/drug effects , Hep G2 Cells , Molecular Docking Simulation , Triterpenes/pharmacology , Triterpenes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Drug Screening Assays, Antitumor , Protein Interaction Maps/drug effects , Dose-Response Relationship, Drug
12.
Int J Nanomedicine ; 19: 5707-5718, 2024.
Article in English | MEDLINE | ID: mdl-38882540

ABSTRACT

Background: Rheumatoid Arthritis (RA) involves prolonged inflammation of the synovium, damaging joints and causing stiffness and deformity. Celastrol (Cel), derived from the Chinese herbal medicine Tripterygium wilfordii Hook F, offers immunosuppressive effects for RA treatment but is limited by poor solubility and bioavailability. Purpose: In this study, long-circulating Cel-loaded liposomes (Cel-LPs) were used to increase the pharmacokinetics of Cel, thereby improving drug delivery and efficacy for the treatment of RA. Methods: Cel-LPs were prepared and administered orally and intravenously to compare the elimination half-life of drugs and bioavailability of Cel. Cel-LPs were prepared using the lipid thin-layer-hydration-extrusion method. Human rheumatoid arthritis synovial (MH7A) cells were used to investigate the compatibility of Cel-LPs. The pharmacokinetic studies were performed on male Sprague-Dawley (SD) rats. Results: The Cel-LPs had an average size of 72.20 ± 27.99 nm, a PDI of 0.267, a zeta potential of -31.60 ± 6.81 mV, 78.77 ± 5.69% drug entrapment efficiency and sustained release (5.83 ± 0.42% drug loading). The cytotoxicity test showed that liposomes had excellent biocompatibility and the fluorescence microscope diagram indicated that liposome entrapment increased intracellular accumulation of Rhodamine B by MH7A cells. Furthermore, the results exhibited that Cel-LPs improved the pharmacokinetics of Cel by increasing the elimination half-life (t1/2) to 11.71 hr, mean residence time (MRT(0-∞)) to 7.98 hr and apparent volume of distribution (Vz/F) to 44.63 L/kg in rats, compared to the Cel solution. Conclusion: In this study, liposomes were demonstrated to be effective in optimizing the delivery of Cel, enabling the formulation of Cel-LPs with prolonged blood circulation and sustained release characteristics. This formulation enhanced the intravenous solubility and bioavailability of Cel, developing a foundation for its clinical application in RA and providing insights on poorly soluble drug management.


Subject(s)
Liposomes , Pentacyclic Triterpenes , Rats, Sprague-Dawley , Triterpenes , Pentacyclic Triterpenes/pharmacokinetics , Pentacyclic Triterpenes/administration & dosage , Animals , Liposomes/chemistry , Liposomes/pharmacokinetics , Triterpenes/pharmacokinetics , Triterpenes/chemistry , Triterpenes/administration & dosage , Male , Humans , Administration, Intravenous , Rats , Biological Availability , Cell Line , Arthritis, Rheumatoid/drug therapy , Particle Size , Cell Survival/drug effects , Drug Delivery Systems/methods
13.
Nanotechnology ; 35(33)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829163

ABSTRACT

Dry eye disease (DED) is a major global eye disease leading to severe eye discomfort and even vision impairment. The incidence of DED has been gradually increasing with the high frequency of use of electronic devices. It has been demonstrated that celastrol (Cel) has excellent therapeutic efficacy in ocular disorders. However, the poor water solubility and short half-life of Cel limit its further therapeutic applications. In this work, a reactive oxygen species (ROS) sensitive polymeric micelle was fabricated for Cel delivery. The micelles improve the solubility of Cel, and the resulting Cel loaded micelles exhibit an enhanced intervention effect for DED. Thein vitroresults demonstrated that Cel-nanomedicine had a marked ROS responsive release behavior. The results ofin vitroandin vivoexperiments demonstrated that Cel has excellent biological activities to alleviate inflammation in DED by inhibiting TLR4 signaling activation and reducing pro-inflammatory cytokine expression. Therefore, the Cel nanomedicine can effectively eliminate ocular inflammation, promote corneal epithelial repair, and restore the number of goblet cells and tear secretion, providing a new option for the treatment of DED.


Subject(s)
Dry Eye Syndromes , Micelles , Nanomedicine , Pentacyclic Triterpenes , Reactive Oxygen Species , Triterpenes , Dry Eye Syndromes/drug therapy , Pentacyclic Triterpenes/pharmacology , Animals , Reactive Oxygen Species/metabolism , Mice , Nanomedicine/methods , Triterpenes/pharmacology , Triterpenes/chemistry , Inflammation/drug therapy , Toll-Like Receptor 4/metabolism , Humans , Tears/metabolism , Tears/drug effects
14.
J Nanobiotechnology ; 22(1): 305, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822364

ABSTRACT

BACKGROUND: Renal fibrosis is a progressive process associated with chronic kidney disease (CKD), contributing to impaired kidney function. Active constituents in traditional Chinese herbs, such as emodin (EMO) and asiatic acid (AA), exhibit potent anti-fibrotic properties. However, the oral administration of EMO and AA results in low bioavailability and limited kidney accumulation. Additionally, while oral probiotics have been accepted for CKD treatment through gut microbiota modulation, a significant challenge lies in ensuring their viability upon administration. Therefore, our study aims to address both renal fibrosis and gut microbiota imbalance through innovative co-delivery strategies. RESULTS: In this study, we developed yeast cell wall particles (YCWPs) encapsulating EMO and AA self-assembled nanoparticles (NPYs) and embedded them, along with Lactobacillus casei Zhang, in chitosan/sodium alginate (CS/SA) microgels. The developed microgels showed significant controlled release properties for the loaded NPYs and prolonged the retention time of Lactobacillus casei Zhang (L. casei Zhang) in the intestine. Furthermore, in vivo biodistribution showed that the microgel-carried NPYs significantly accumulated in the obstructed kidneys of rats, thereby substantially increasing the accumulation of EMO and AA in the impaired kidneys. More importantly, through hitchhiking delivery based on yeast cell wall and positive modulation of gut microbiota, our microgels with this synergistic strategy of therapeutic and modulatory interactions could regulate the TGF-ß/Smad signaling pathway and thus effectively ameliorate renal fibrosis in unilateral ureteral obstruction (UUO) rats. CONCLUSION: In conclusion, our work provides a new strategy for the treatment of renal fibrosis based on hitchhiking co-delivery of nanodrugs and probiotics to achieve synergistic effects of disease treatment and targeted gut flora modulation.


Subject(s)
Fibrosis , Gastrointestinal Microbiome , Kidney , Nanoparticles , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Rats , Administration, Oral , Male , Kidney/pathology , Kidney/drug effects , Nanoparticles/chemistry , Microgels/chemistry , Lacticaseibacillus casei , Probiotics/pharmacology , Renal Insufficiency, Chronic/drug therapy , Chitosan/chemistry , Alginates/chemistry , Pentacyclic Triterpenes/pharmacology , Drug Delivery Systems/methods , Tissue Distribution , Cell Wall
15.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834267

ABSTRACT

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Subject(s)
Proteolysis , Humans , Mass Spectrometry/methods , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Temperature , Pentacyclic Triterpenes/chemistry , Cyclosporine/pharmacology , Cyclosporine/chemistry , Cyclosporine/metabolism , Staurosporine/pharmacology , Staurosporine/metabolism , Ligands , Drug Discovery , Binding Sites
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 904-912, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862448

ABSTRACT

OBJECTIVE: To explore the effect of pristimerin combined with cisplatin on proliferation and apoptosis of nasopharyngeal carcinoma cells. METHODS: CCK-8 assay was used to examine the survival rate of HNE-1 and CNE-2Z cells following treatment for 24 h with different concentrations of pristimerin, cisplatin or their combination. The changes in colony formation ability, apoptosis, and intracellular reactive oxygen species (ROS) levels of the treated cells were analyzed using colony formation assay and flow cytometry. Western blotting was performed to detect the changes in protein expressions in the cells. The effects of pre-treatment with NAC on proliferation, apoptosis, and PI3K/AKT signaling pathway were observed in pristimerin- and/or cisplatin-treated cells. RESULTS: Both pristimerin and cisplatin significantly lowered the survival rate of HNE-1 and CNE-2Z cells (P < 0.05). Compared with pristimerin or cisplatin alone, their combination more strongly inhibited survival and colony formation ability of the cells, increased cell apoptosis rate and intracellular ROS levels, upregulated the protein expressions of Bax, cleaved caspase-3, and cleaved PARP, and downregulated the protein expressions of Bcl-2, Mcl-1, PARP and p-PI3K and p-AKT (P < 0.05). NAC pretreatment significantly attenuated proliferation inhibition and apoptosis-promoting effects of pristimerin combined with cisplatin, and partially restored the downregulated protein expressions of p-PI3K and p-AKT in HNE-1 and CNE-2Z cells with the combined treatment (P < 0.05). CONCLUSION: Pristimerin can enhance cisplatin-induced proliferation inhibition and apoptosis in nasopharyngeal carcinoma cells, the mechanism of which may involve ROS-mediated deactivation of the PI3K/AKT signaling pathway.


Subject(s)
Apoptosis , Cell Proliferation , Cisplatin , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , Humans , Cisplatin/pharmacology , Apoptosis/drug effects , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Cell Proliferation/drug effects , Pentacyclic Triterpenes/pharmacology , Triterpenes/pharmacology
17.
Phytomedicine ; 131: 155790, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851099

ABSTRACT

BACKGROUND: A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE: We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS: Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS: Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION: PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , PTEN Phosphohydrolase , Pentacyclic Triterpenes , Triterpenes , Cholangiocarcinoma/drug therapy , Pentacyclic Triterpenes/pharmacology , PTEN Phosphohydrolase/metabolism , Humans , Cell Line, Tumor , Bile Duct Neoplasms/drug therapy , Triterpenes/pharmacology , Molecular Docking Simulation , Tripterygium/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/drug effects , Autophagy/drug effects , Bortezomib/pharmacology
18.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892215

ABSTRACT

In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure-activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,ß-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins.


Subject(s)
Intercellular Adhesion Molecule-1 , NF-kappa B , Oleanolic Acid , Pentacyclic Triterpenes , Protein Transport , Triterpenes , Humans , Intercellular Adhesion Molecule-1/metabolism , Glycosylation , NF-kappa B/metabolism , Structure-Activity Relationship , Oleanolic Acid/pharmacology , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/chemistry , A549 Cells , Protein Transport/drug effects , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Signal Transduction/drug effects , Cell Survival/drug effects
19.
Toxicol In Vitro ; 99: 105867, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848824

ABSTRACT

Pristimerin (Pris), a bioactive triterpenoid compound extracted from the Celastraceae and Hippocrateaceae families, has been reported to exhibit an anti-cancer property on various cancers. However, the effects of Pris on esophageal cancer are poorly investigated. This current study sought to explore the activity and underlying mechanism of Pris against human esophageal squamous cell carcinoma (ESCC) cells. We demonstrated that Pris showed cytotoxicity in TE-1 and TE-10 ESCC cell lines, and significantly inhibited cell viability in a concentration dependent manner. Pris induced G0/G1 phase arrest and triggered apoptosis. It was also observed that the intracellular ROS level was remarkedly increased by Pris treatment. Besides, the function of Pris mediating the activation of ER stress and the inhibition of AKT/GSK3ß signaling pathway in TE-1 and TE-10 cells was further confirmed, which resulted in cell growth inhibition. And moreover, we revealed that all of the above pathways were regulated through ROS generation. In conclusion, our findings suggested that Pris might be considered as a novel natural compound for the developing anti-cancer drug candidate for human esophageal cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Survival , Endoplasmic Reticulum Stress , Esophageal Neoplasms , Glycogen Synthase Kinase 3 beta , Pentacyclic Triterpenes , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Triterpenes , Humans , Reactive Oxygen Species/metabolism , Pentacyclic Triterpenes/pharmacology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Endoplasmic Reticulum Stress/drug effects , Triterpenes/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism
20.
ACS Appl Mater Interfaces ; 16(27): 35447-35462, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940537

ABSTRACT

Membranous nephropathy (MN) is a common immune-mediated glomerular disease that requires the development of safe and highly effective therapies. Celastrol (CLT) has shown promise as a therapeutic molecule candidate, but its clinical use is currently limited due to off-target toxicity. Given that excess levels of reactive oxygen species (ROS) contributing to podocyte damage is a key driver of MN progression to end-stage renal disease, we rationally designed ROS-responsive cationic polymeric nanoparticles (PPS-CPNs) with a well-defined particle size and surface charge by employing poly(propylene sulfide)-polyethylene glycol (PPS-PEG) and poly(propylene sulfide)-polyethylenimine (PPS-PEI) to selectively deliver CLT to the damaged glomerulus for MN therapy. Experimental results show that PPS-CPNs successfully crossed the fenestrated endothelium, accumulated in the glomerular basement membrane (GBM), and were internalized by podocytes where rapid drug release was triggered by the overproduction of ROS, thereby outperforming nonresponsive CLT nanotherapy to alleviate subepithelial immune deposits, podocyte foot process effacement, and GBM expansion in a rat MN model. Moreover, the ROS-responsive CLT nanotherapy was associated with significantly lower toxicity to major organs than free CLT. These results suggest that encapsulating CLT into PPS-CPNs can improve efficacy and reduce toxicity as a promising treatment option for MN.


Subject(s)
Glomerulonephritis, Membranous , Nanoparticles , Pentacyclic Triterpenes , Podocytes , Reactive Oxygen Species , Animals , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Glomerulonephritis, Membranous/drug therapy , Glomerulonephritis, Membranous/pathology , Rats , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/pharmacology , Podocytes/drug effects , Podocytes/metabolism , Polyethylene Glycols/chemistry , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Rats, Sprague-Dawley , Humans , Male , Polymers/chemistry , Polymers/pharmacology , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/therapeutic use , Polyethyleneimine/chemistry , Drug Carriers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL