Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.437
Filter
1.
Nat Commun ; 15(1): 6630, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103337

ABSTRACT

Unfavourable conditions, such as prolonged drought and high salinity, pose a threat to the survival and agricultural yield of plants. The phytohormone ABA plays a key role in the regulation of plant stress adaptation and is often maintained at high levels for extended periods. While much is known about ABA signal perception and activation in the early signalling stage, the molecular mechanism underlying desensitization of ABA signalling remains largely unknown. Here we demonstrate that in the endoplasmic reticulum (ER)-Golgi network, the key regulators of ABA signalling, SnRK2.2/2.3, undergo N-glycosylation, which promotes their redistribution from the nucleus to the peroxisomes in Arabidopsis roots and influences the transcriptional response in the nucleus during prolonged ABA signalling. On the peroxisomal membrane, SnRK2s can interact with glucose-6-phosphate (G6P)/phosphate translocator 1 (GPT1) to maintain NADPH homeostasis through increased activity of the peroxisomal oxidative pentose phosphate pathway (OPPP). The resulting maintenance of NADPH is essential for the modulation of hydrogen peroxide (H2O2) accumulation, thereby relieving ABA-induced root growth inhibition. The subcellular dynamics of SnRK2s, mediated by N-glycosylation suggest that ABA responses transition from transcriptional regulation in the nucleus to metabolic processes in the peroxisomes, aiding plants in adapting to long-term environmental stress.


Subject(s)
Abscisic Acid , Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , NADP , Peroxisomes , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis/genetics , Peroxisomes/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Glycosylation , Abscisic Acid/metabolism , NADP/metabolism , Hydrogen Peroxide/metabolism , Endoplasmic Reticulum/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Cell Nucleus/metabolism , Golgi Apparatus/metabolism , Pentose Phosphate Pathway , Plant Growth Regulators/metabolism
2.
Cell Death Dis ; 15(7): 541, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080260

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) possesses a poor prognosis and treatment outcome. Dysregulated metabolism contributes to unrestricted growth of multiple cancers. However, abnormal metabolism, such as highly activated pentose phosphate pathway (PPP) in the progression of ESCC remains largely unknown. Herein, we report that high-mobility group AT-hook 1 (HMGA1), a structural transcriptional factor involved in chromatin remodeling, promoted the development of ESCC by upregulating the PPP. We found that HMGA1 was highly expressed in ESCC. Elevated HMGA1 promoted the malignant phenotype of ESCC cells. Conditional knockout of HMGA1 markedly reduced 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumorigenesis in mice. Through the metabolomic analysis and the validation assay, we found that HMGA1 upregulated the non-oxidative PPP. With the transcriptome sequencing, we identified that HMGA1 upregulated the expression of transketolase (TKT), which catalyzes the reversible reaction in non-oxidative PPP to exchange metabolites with glycolytic pathway. HMGA1 knockdown suppressed the PPP by downregulating TKT, resulting in the reduction of nucleotides in ESCC cells. Overexpression of HMGA1 upregulated PPP and promoted the survival of ESCC cells by activating TKT. We further characterized that HMGA1 promoted the transcription of TKT by interacting with and enhancing the binding of transcription factor SP1 to the promoter of TKT. Therapeutics targeting TKT with an inhibitor, oxythiamine, reduced HMGA1-induced ESCC cell proliferation and tumor growth. Together, in this study, we identified a new role of HMGA1 in ESCCs by upregulating TKT-mediated activation of PPP. Our results provided a new insight into the role of HMGA1/TKT/PPP in ESCC tumorigenesis and targeted therapy.


Subject(s)
Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , Pentose Phosphate Pathway , Transketolase , Up-Regulation , Humans , Animals , Transketolase/metabolism , Transketolase/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Mice , Up-Regulation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Mice, Nude , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics
3.
Nat Commun ; 15(1): 5857, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997257

ABSTRACT

Cancer cells depend on nicotinamide adenine dinucleotide phosphate (NADPH) to combat oxidative stress and support reductive biosynthesis. One major NADPH production route is the oxidative pentose phosphate pathway (committed step: glucose-6-phosphate dehydrogenase, G6PD). Alternatives exist and can compensate in some tumors. Here, using genetically-engineered lung cancer mouse models, we show that G6PD ablation significantly suppresses KrasG12D/+;Lkb1-/- (KL) but not KrasG12D/+;P53-/- (KP) lung tumorigenesis. In vivo isotope tracing and metabolomics reveal that G6PD ablation significantly impairs NADPH generation, redox balance, and de novo lipogenesis in KL but not KP lung tumors. Mechanistically, in KL tumors, G6PD ablation activates p53, suppressing tumor growth. As tumors progress, G6PD-deficient KL tumors increase an alternative NADPH source from serine-driven one carbon metabolism, rendering associated tumor-derived cell lines sensitive to serine/glycine depletion. Thus, oncogenic driver mutations determine lung cancer dependence on G6PD, whose targeting is a potential therapeutic strategy for tumors harboring KRAS and LKB1 co-mutations.


Subject(s)
Glucosephosphate Dehydrogenase , Homeostasis , Lung Neoplasms , NADP , Oxidation-Reduction , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins p21(ras) , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/genetics , Animals , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , NADP/metabolism , Mice , Humans , Cell Line, Tumor , Lipogenesis/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , Pentose Phosphate Pathway/genetics , AMP-Activated Protein Kinases/metabolism , Male , Mice, Knockout , Female , Mutation
4.
Biomed Pharmacother ; 176: 116935, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876050

ABSTRACT

Breast cancer is one of the most common malignant tumors in women and is a serious threat to women's health. The pentose phosphate pathway (PPP) is a mode of oxidative breakdown of glucose that can be divided into oxidative (oxPPP) and non-oxidative (non-oxPPP) stages and is necessary for cell and body survival. However, abnormal activation of PPP often leads to proliferation, migration, invasion, and chemotherapy resistance in breast cancer. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in PPP oxidation. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) produced by G6PD is the raw material for cholesterol and lipid synthesis and can resist the production of oxygen species (ROS) and reduce oxidative stress damage to tumor cells. Transketolase (TKT) is a key enzyme in non-oxPPP. Ribose 5-phosphate (R5P), produced by TKT, is a raw material for DNA and RNA synthesis, and is essential for tumor cell proliferation and DNA damage repair. In this review, we describe the role and specific mechanism of the PPP and the two most important enzymes of the PPP, G6PD and TKT, in the malignant progression of breast cancer, providing strategies for future clinical treatment of breast cancer and a theoretical basis for breast cancer research.


Subject(s)
Breast Neoplasms , Disease Progression , Glucosephosphate Dehydrogenase , Pentose Phosphate Pathway , Transketolase , Transketolase/metabolism , Humans , Breast Neoplasms/pathology , Breast Neoplasms/enzymology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway/drug effects , Animals
5.
BMC Plant Biol ; 24(1): 513, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849759

ABSTRACT

BACKGROUND: The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS: In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS: Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.


Subject(s)
Light , Phaseolus , Phaseolus/physiology , Phaseolus/metabolism , Phaseolus/enzymology , Phosphorylation , Thylakoids/metabolism , Photosystem I Protein Complex/metabolism , Cold Temperature , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Starch/metabolism , Pentose Phosphate Pathway/physiology , Enzyme Activation , Photosynthesis/physiology , Stress, Physiological , Protein Serine-Threonine Kinases/metabolism
6.
Sci Rep ; 14(1): 13670, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871968

ABSTRACT

Cervical cancer, one of the most common gynecological cancers, is primarily caused by human papillomavirus (HPV) infection. The development of resistance to chemotherapy is a significant hurdle in treatment. In this study, we investigated the mechanisms underlying chemoresistance in cervical cancer by focusing on the roles of glycogen metabolism and the pentose phosphate pathway (PPP). We employed the cervical cancer cell lines HCC94 and CaSki by manipulating the expression of key enzymes PCK1, PYGL, and GYS1, which are involved in glycogen metabolism, through siRNA transfection. Our analysis included measuring glycogen levels, intermediates of PPP, NADPH/NADP+ ratio, and the ability of cells to clear reactive oxygen species (ROS) using biochemical assays and liquid chromatography-mass spectrometry (LC-MS). Furthermore, we assessed chemoresistance by evaluating cell viability and tumor growth in NSG mice. Our findings revealed that in drug-resistant tumor stem cells, the enzyme PCK1 enhances the phosphorylation of PYGL, leading to increased glycogen breakdown. This process shifts glucose metabolism towards PPP, generating NADPH. This, in turn, facilitates ROS clearance, promotes cell survival, and contributes to the development of chemoresistance. These insights suggest that targeting aberrant glycogen metabolism or PPP could be a promising strategy for overcoming chemoresistance in cervical cancer. Understanding these molecular mechanisms opens new avenues for the development of more effective treatments for this challenging malignancy.


Subject(s)
Drug Resistance, Neoplasm , Glycogen , Neoplastic Stem Cells , Phosphoenolpyruvate Carboxykinase (GTP) , Reactive Oxygen Species , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Reactive Oxygen Species/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Animals , Mice , Cell Line, Tumor , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Glycogen/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Glycogenolysis , Pentose Phosphate Pathway/drug effects , Cell Survival/drug effects
7.
Cell Metab ; 36(7): 1504-1520.e9, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38876105

ABSTRACT

Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.


Subject(s)
Mitochondria , Purines , Humans , Purines/metabolism , Purines/pharmacology , Mitochondria/metabolism , Electron Transport , Hypoxanthine Phosphoribosyltransferase/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Pentose Phosphate Pathway , Fibroblasts/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cell Line, Tumor , Animals , Biological Transport
8.
Int J Biol Macromol ; 273(Pt 2): 132867, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838892

ABSTRACT

Mounting an active immune response is energy intensive and demands the reallocation of nutrients to maintain the body's resistance and tolerance against infections. Central to this metabolic adaptation is Glucose-6-phosphate dehydrogenase (G6PDH), a housekeeping enzyme involve in pentose phosphate pathway (PPP). PPP play an essential role in generating ribose, which is critical for nicotinamide adenine dinucleotide phosphate (NADPH). It is vital for physiological and cellular processes such as generating nucleotides, fatty acids and reducing oxidative stress. The G6PDH is extremely conserved enzyme across species in PP shunt. The deficiency of enzymes leads to serious consequences on organism, particularly on adaptation and development. Acute deficiency can lead to impaired cell development, halted embryonic growth, reduce sensitivity to insulin, hypertension and increase inflammation. Historically, research focusing on G6PDH and PPP have primarily targeted diseases on mammalian. However, our review has investigated the unique functions of the G6PDH enzyme in insects and greatly improved mechanistic understanding of its operations. This review explore how G6PDH in insects plays a crucial role in managing the redox balance and immune related metabolism. This study aims to investigate the enzyme's role in different metabolic adaptations.


Subject(s)
Glucosephosphate Dehydrogenase , Insecta , Oxidation-Reduction , Animals , Glucosephosphate Dehydrogenase/metabolism , Pentose Phosphate Pathway , Oxidative Stress
9.
Front Immunol ; 15: 1393213, 2024.
Article in English | MEDLINE | ID: mdl-38938571

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Humans , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/immunology , Glucosephosphate Dehydrogenase Deficiency/metabolism , Animals , Reactive Oxygen Species/metabolism , Pentose Phosphate Pathway , Immunity , Infections/immunology , Inflammation/immunology , Inflammation/metabolism
10.
J Proteome Res ; 23(8): 3383-3392, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38943617

ABSTRACT

Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.


Subject(s)
Astrocytes , Brain , Glutamic Acid , Glutamine , Neurons , Tumor Necrosis Factor-alpha , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Tumor Necrosis Factor-alpha/metabolism , Neurons/metabolism , Neurons/drug effects , Brain/metabolism , Brain/drug effects , Glutamic Acid/metabolism , Glutamine/metabolism , Rats , Carbon-13 Magnetic Resonance Spectroscopy/methods , Lactic Acid/metabolism , Glucose/metabolism , Male , Citric Acid Cycle/drug effects , Carbon Isotopes , Glycolysis/drug effects , Acetates/pharmacology , Acetates/metabolism , Pyruvate Carboxylase/metabolism , Pentose Phosphate Pathway/drug effects
11.
Photosynth Res ; 161(3): 177-189, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38874662

ABSTRACT

Balancing the ATP: NADPH demand from plant metabolism with supply from photosynthesis is essential for preventing photodamage and operating efficiently, so understanding its drivers is important for integrating metabolism with the light reactions of photosynthesis and for bioengineering efforts that may radically change this demand. It is often assumed that the C3 cycle and photorespiration consume the largest amount of ATP and reductant in illuminated leaves and as a result mostly determine the ATP: NADPH demand. However, the quantitative extent to which other energy consuming metabolic processes contribute in large ways to overall ATP: NADPH demand remains unknown. Here, we used the metabolic flux networks of numerous recently published isotopically non-stationary metabolic flux analyses (INST-MFA) to evaluate flux through the C3 cycle, photorespiration, the oxidative pentose phosphate pathway, the tricarboxylic acid cycle, and starch/sucrose synthesis and characterize broad trends in the demand of energy across different pathways and compartments as well as in the overall ATP:NADPH demand. These data sets include a variety of species including Arabidopsis thaliana, Nicotiana tabacum, and Camelina sativa as well as varying environmental factors including high/low light, day length, and photorespiratory levels. Examining these datasets in aggregate reveals that ultimately the bulk of the energy flux occurred in the C3 cycle and photorespiration, however, the energy demand from these pathways did not determine the ATP: NADPH demand alone. Instead, a notable contribution was revealed from starch and sucrose synthesis which might counterbalance photorespiratory demand and result in fewer adjustments in mechanisms which balance the ATP deficit.


Subject(s)
Adenosine Triphosphate , Arabidopsis , Light , Metabolic Flux Analysis , Metabolic Networks and Pathways , NADP , NADP/metabolism , Adenosine Triphosphate/metabolism , Arabidopsis/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plants/metabolism , Plants/radiation effects , Nicotiana/metabolism , Pentose Phosphate Pathway
12.
J Clin Invest ; 134(15)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869951

ABSTRACT

Neutrophil hyperactivity and neutrophil extracellular trap release (NETosis) appear to play important roles in the pathogenesis of the thromboinflammatory autoimmune disease known as antiphospholipid syndrome (APS). The understanding of neutrophil metabolism has advanced tremendously in the past decade, and accumulating evidence suggests that a variety of metabolic pathways guide neutrophil activities in health and disease. Our previous work characterizing the transcriptome of APS neutrophils revealed that genes related to glycolysis, glycogenolysis, and the pentose phosphate pathway (PPP) were significantly upregulated. Here, we found that neutrophils from patients with APS used glycolysis more avidly than neutrophils from people in the healthy control group, especially when the neutrophils were from patients with APS with a history of microvascular disease. In vitro, inhibiting either glycolysis or the PPP tempered phorbol myristate acetate- and APS IgG-induced NETosis, but not NETosis triggered by a calcium ionophore. In mice, inhibiting either glycolysis or the PPP reduced neutrophil reactive oxygen species production and suppressed APS IgG-induced NETosis ex vivo. When APS-associated thrombosis was evaluated in mice, inhibiting either glycolysis or the PPP markedly suppressed thrombosis and circulating NET remnants. In summary, these data identify a potential role for restraining neutrophil glucose flux in the treatment of APS.


Subject(s)
Antiphospholipid Syndrome , Extracellular Traps , Glucose , Glycolysis , Neutrophils , Pentose Phosphate Pathway , Neutrophils/metabolism , Neutrophils/immunology , Humans , Animals , Mice , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/metabolism , Antiphospholipid Syndrome/drug therapy , Extracellular Traps/metabolism , Extracellular Traps/immunology , Male , Female , Glucose/metabolism , Thrombosis/metabolism , Thrombosis/immunology , Thrombosis/pathology , Thrombosis/genetics , Adult , Reactive Oxygen Species/metabolism , Middle Aged
13.
Arch Biochem Biophys ; 756: 110021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697344

ABSTRACT

The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.


Subject(s)
Energy Metabolism , Fermentation , Fructose , Glucose , Glycolysis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Fructose/metabolism , Glucose/metabolism , Pentose Phosphate Pathway
14.
PLoS Biol ; 22(5): e3002299, 2024 May.
Article in English | MEDLINE | ID: mdl-38713712

ABSTRACT

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Subject(s)
Glucose , Hemocytes , Pentose Phosphate Pathway , Trehalose , Animals , Trehalose/metabolism , Glucose/metabolism , Hemocytes/metabolism , Larva/metabolism , Larva/parasitology , Drosophila melanogaster/metabolism , Drosophila melanogaster/parasitology , Disease Resistance , Glycolysis , Host-Parasite Interactions , Wasps/metabolism , Wasps/physiology , Cell Differentiation , Drosophila/metabolism , Drosophila/parasitology
15.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725068

ABSTRACT

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Subject(s)
Amino Acids , Glycolysis , Pentose Phosphate Pathway , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Amino Acids/metabolism , Metabolic Engineering/methods , Nostoc/metabolism , Nostoc/genetics , Sugar Phosphates/metabolism , Glycine/metabolism , Glycine/analogs & derivatives , Cyclohexylamines
16.
J Agric Food Chem ; 72(21): 12219-12228, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747135

ABSTRACT

Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.


Subject(s)
Corynebacterium glutamicum , Metabolic Engineering , Phycobilins , Phycocyanin , Corynebacterium glutamicum/metabolism , Corynebacterium glutamicum/genetics , Phycocyanin/metabolism , Phycocyanin/genetics , Phycobilins/metabolism , Phycobilins/genetics , Fermentation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Pentose Phosphate Pathway/genetics , Bioreactors/microbiology
17.
Phytomedicine ; 129: 155657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692076

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Subject(s)
Lung Neoplasms , Pentose Phosphate Pathway , Xanthones , Xanthones/pharmacology , Animals , Pentose Phosphate Pathway/drug effects , Lung Neoplasms/drug therapy , Mice , Humans , Phosphogluconate Dehydrogenase/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Disease Models, Animal
18.
Yeast ; 41(6): 401-417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708451

ABSTRACT

To develop a cost-effective microbial cell factory for the production of biofuels and biochemicals, an understanding of tolerant mechanisms is vital for the construction of robust host strains. Here, we characterized a new function of a key metabolic transcription factor named Znf1 and its involvement in stress response in Saccharomyces cerevisiae to enhance tolerance to advanced biofuel, isobutanol. RNA-sequencing analysis of the wild-type versus the znf1Δ deletion strains in glucose revealed a new role for transcription factor Znf1 in the pentose phosphate pathway (PPP) and energy generation. The gene expression analysis confirmed that isobutanol induces an adaptive cell response, resulting in activation of ATP1-3 and COX6 expression. These genes were Znf1 targets that belong to the electron transport chain, important to produce ATPs. Znf1 also activated PPP genes, required for the generation of key amino acids, cellular metabolites, and maintenance of NADP/NADPH redox balance. In glucose, Znf1 also mediated the upregulation of valine biosynthetic genes of the Ehrlich pathway, namely ILV3, ILV5, and ARO10, associated with the generation of key intermediates for isobutanol production. Using S. cerevisiae knockout collection strains, cells with deleted transcriptional regulatory gene ZNF1 or its targets displayed hypersensitivity to isobutanol and acid inhibitors; in contrast, overexpression of ZNF1 enhanced cell survival. Thus, the transcription factor Znf1 functions in the maintenance of energy homeostasis and redox balance at various checkpoints of yeast metabolic pathways. It ensures the rapid unwiring of gene transcription in response to toxic products/by-products generated during biofuel production. Importantly, we provide a new approach to enhance strain tolerance during the conversion of glucose to biofuels.


Subject(s)
Adenosine Triphosphate , Butanols , Gene Expression Regulation, Fungal , Pentose Phosphate Pathway , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Pentose Phosphate Pathway/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Butanols/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Adenosine Triphosphate/metabolism , Glucose/metabolism , Biofuels
19.
ACS Infect Dis ; 10(6): 1896-1903, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38735064

ABSTRACT

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Glucose , Microbial Sensitivity Tests , Reactive Oxygen Species , Glucose/metabolism , Reactive Oxygen Species/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Humans , Microbial Viability/drug effects , Pentose Phosphate Pathway/drug effects , Fructosediphosphates/pharmacology , Fructosediphosphates/metabolism
20.
Biochem Biophys Res Commun ; 722: 150162, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38801802

ABSTRACT

Extracellular fatty acids (FAs) play an important role in regulating cellular functions such as cell proliferation, survival, and migration. The effects of oleic acid (OA) on cancer cells vary depending on the cell type. Our prior study showed that two distinct ovarian cancer cell lines, RMG-1 and HNOA, proliferate in response to OA, but they differ with respect to glucose utilization. Here, we aimed to elucidate the mechanism(s) by which OA stimulates proliferation of RMG-1 cells. We found that OA stimulates RMG-1 proliferation by activating the FA transporter CD36. OA also increases uptake of glucose and glutamine, which subsequently activate the pentose phosphate pathway (PPP) and glutamine metabolism, respectively. Given that ribose 5-phosphate derived from the PPP is utilized for glutamine metabolism and the subsequent de novo nucleotide synthesis, our findings suggest that OA affects the PPP associated with Gln metabolism, rather than glycolysis associated with glutaminolysis; this leads ultimately to activation of DNA synthesis, which is required for cell proliferation. This selective activation by OA contrasts with the mechanisms observed in HNOA cells, in which OA-induced cell proliferation is driven by transcriptional regulation of the GLUT gene. The diverse responses of cancer cells to OA may be attributed to distinct mechanisms of OA reception and/or different metabolic pathways activated by OA.


Subject(s)
Cell Proliferation , Glutamine , Oleic Acid , Ovarian Neoplasms , Pentose Phosphate Pathway , Glutamine/metabolism , Pentose Phosphate Pathway/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Cell Line, Tumor , Female , Oleic Acid/pharmacology , Oleic Acid/metabolism , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL