Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.520
1.
PLoS One ; 19(6): e0301223, 2024.
Article En | MEDLINE | ID: mdl-38837964

New immune checkpoints are emerging in a bid to improve response rates to immunotherapeutic drugs. The adenosine A2A receptor (A2AR) has been proposed as a target for immunotherapeutic development due to its participation in immunosuppression of the tumor microenvironment. Blockade of A2AR could restore tumor immunity and, consequently, improve patient outcomes. Here, we describe the discovery of a potent, selective, and tumor-suppressing antibody antagonist of human A2AR (hA2AR) by phage display. We constructed and screened four single-chain variable fragment (scFv) libraries-two synthetic and two immunized-against hA2AR and antagonist-stabilized hA2AR. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate. Lead candidate TB206-001 displayed nanomolar binding of hA2AR-overexpressing HEK293 cells; cross-reactivity with mouse and cynomolgus A2AR but not human A1, A2B, or A3 receptors; functional antagonism of hA2AR in hA2AR-overexpressing HEK293 cells and peripheral blood mononuclear cells (PBMCs); and tumor-suppressing activity in colon tumor-bearing HuCD34-NCG mice. Given its therapeutic properties, TB206-001 is a good candidate for incorporation into next-generation bispecific immunotherapeutics.


Adenosine A2 Receptor Antagonists , Receptor, Adenosine A2A , Humans , Animals , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2A/immunology , HEK293 Cells , Mice , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/therapeutic use , Single-Chain Antibodies/immunology , Single-Chain Antibodies/pharmacology , Macaca fascicularis , Peptide Library
2.
Front Immunol ; 15: 1380694, 2024.
Article En | MEDLINE | ID: mdl-38779676

Background: Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is one of the most potent known toxins. Moreover, BoNT is classified as one of the most important biological warfare agents that threatens the biosafety of the world. Currently, the approved treatment for botulism in humans is the use of polyvalent horse serum antitoxins. However, they are greatly limited because of insufficient supply and adverse reactions. Thus, treatment of human botulism requires the development of effective toxin-neutralizing antibodies. Considering their advantages, neutralizing nanobodies will play an increasing role as BoNTs therapeutics. Methods: Herein, neutralizing nanobodies binding to the heavy chain (Hc) domain of BoNT/B (BHc) were screened from a phage display library. Then, BoNT/B-specific clones were identified and fused with the human Fc fragment (hFc) to form chimeric heavy chain antibodies. Finally, the affinity, specificity, and neutralizing activity of antibodies against BoNT/B in vivo were evaluated. Results: The B5-hFc, B9-hFc and B12-hFc antibodies demonstrated high affinity for BHc in the nanomolar range. The three antibodies were proven to have potent neutralizing activity against BoNT/B in vivo. Conclusion: The results demonstrate that inhibiting toxin binding to the host receptor is an efficient strategy and the three antibodies could be used as candidates for the further development of drugs to prevent and treat botulism.


Antibodies, Neutralizing , Botulinum Toxins, Type A , Botulism , Antibodies, Neutralizing/immunology , Animals , Botulinum Toxins, Type A/immunology , Humans , Botulism/immunology , Mice , Single-Domain Antibodies/immunology , Immunoglobulin Heavy Chains/immunology , Antibody Affinity , Peptide Library , Female , Antibodies, Bacterial/immunology
3.
Antiviral Res ; 226: 105898, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692413

SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Sharks , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Animals , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Humans , Sharks/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Binding Sites , Protein Binding , Peptide Library , HEK293 Cells , Mutation
4.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791363

Protein farnesylation is a post-translational modification where a 15-carbon farnesyl isoprenoid is appended to the C-terminal end of a protein by farnesyltransferase (FTase). This process often causes proteins to associate with the membrane and participate in signal transduction pathways. The most common substrates of FTase are proteins that have C-terminal tetrapeptide CaaX box sequences where the cysteine is the site of modification. However, recent work has shown that five amino acid sequences can also be recognized, including the pentapeptides CMIIM and CSLMQ. In this work, peptide libraries were initially used to systematically vary the residues in those two parental sequences using an assay based on Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). In addition, 192 pentapeptide sequences from the human proteome were screened using that assay to discover additional extended CaaaX-box motifs. Selected hits from that screening effort were rescreened using an in vivo yeast reporter protein assay. The X-ray crystal structure of CMIIM bound to FTase was also solved, showing that the C-terminal tripeptide of that sequence interacted with the enzyme in a similar manner as the C-terminal tripeptide of CVVM, suggesting that the tripeptide comprises a common structural element for substrate recognition in both tetrapeptide and pentapeptide sequences. Molecular dynamics simulation of CMIIM bound to FTase further shed light on the molecular interactions involved, showing that a putative catalytically competent Zn(II)-thiolate species was able to form. Bioinformatic predictions of tetrapeptide (CaaX-box) reactivity correlated well with the reactivity of pentapeptides obtained from in vivo analysis, reinforcing the importance of the C-terminal tripeptide motif. This analysis provides a structural framework for understanding the reactivity of extended CaaaX-box motifs and a method that may be useful for predicting the reactivity of additional FTase substrates bearing CaaaX-box sequences.


Computational Biology , Peptide Library , Humans , Computational Biology/methods , Substrate Specificity , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/chemistry , Oligopeptides/chemistry , Oligopeptides/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Protein Binding
5.
Sci Rep ; 14(1): 12177, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806609

Heart failure remains a leading cause of mortality. Therapeutic intervention for heart failure would benefit from targeted delivery to the damaged heart tissue. Here, we applied in vivo peptide phage display coupled with high-throughput Next-Generation Sequencing (NGS) and identified peptides specifically targeting damaged cardiac tissue. We established a bioinformatics pipeline for the identification of cardiac targeting peptides. Hit peptides demonstrated preferential uptake by human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and immortalized mouse HL1 cardiomyocytes, without substantial uptake in human liver HepG2 cells. These novel peptides hold promise for use in targeted drug delivery and regenerative strategies and open new avenues in cardiovascular research and clinical practice.


Induced Pluripotent Stem Cells , Myocytes, Cardiac , Peptides , Humans , Animals , Mice , Myocytes, Cardiac/metabolism , Peptides/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Peptide Library , Hep G2 Cells , Cell Surface Display Techniques/methods , Drug Delivery Systems , High-Throughput Nucleotide Sequencing , Heart Failure/metabolism , Heart Failure/therapy
6.
Food Chem ; 452: 139522, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38723568

ß-lactoglobulin (ß-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting ß-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using ß-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to ß-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for ß-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with ß-Lg. Therefore, this peptide can be used for the recognition of ß-Lg, becoming a new recognition element for detecting ß-Lg.


Lactoglobulins , Molecular Docking Simulation , Peptides , Lactoglobulins/chemistry , Peptides/chemistry , Animals , Protein Binding , Peptide Library , Cattle , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Allergens/chemistry , Allergens/immunology , Humans
7.
Food Chem ; 452: 139540, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38723570

Angiotensin-converting enzyme (ACE), consisting of N-domain and C-domain, is a key regulator of blood pressure. The use of cACE-specific inhibitors helps minimize side effects in clinical applications. Legumes are a good source of proteins containing ACE inhibitory peptides; however, no studies have reported the identification of cACE-specific inhibitory peptides from Fabaceae. In this study, thermal hydrolysates from seeds, sprouts, pods, seedlings, and flowers of legumes were analyzed. Flowers of legumes exhibited a C-domain-preference ACE inhibition and anti-hypertensive effect in rats. Screening the legume peptide library identified a novel cACE inhibitory peptide, SJ-1. This study reported the first identification of cACE inhibitory peptide from Fabaceae foods. SJ-1, identified from the legume flowers, interacted with active site residues of cACE, leading to the inhibition of ACE activity, downregulation of bradykinin levels, and reduction of blood pressure. These findings also suggested the potential of legume proteins as a source of cACE inhibitory peptides.


Angiotensin-Converting Enzyme Inhibitors , Fabaceae , Peptide Library , Peptides , Peptidyl-Dipeptidase A , Plant Proteins , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Fabaceae/chemistry , Animals , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptides/chemistry , Peptides/pharmacology , Rats , Plant Proteins/chemistry , Male , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Humans , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/metabolism , Rats, Sprague-Dawley
8.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732011

Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.


Camelids, New World , Peptide Library , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Animals , Camelids, New World/immunology , High-Throughput Nucleotide Sequencing , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , High-Throughput Screening Assays/methods , Antibody Affinity , Cell Surface Display Techniques/methods
9.
ACS Chem Biol ; 19(5): 1194-1205, 2024 May 17.
Article En | MEDLINE | ID: mdl-38695546

Immunogenicity is a major caveat of protein therapeutics. In particular, the long-term administration of protein therapeutic agents leads to the generation of antidrug antibodies (ADAs), which reduce drug efficacy while eliciting adverse events. One promising solution to this issue is the use of mirror-image proteins consisting of d-amino acids, which are resistant to proteolytic degradation in immune cells. We have recently reported the chemical synthesis of the enantiomeric form of the variable domain of the antibody heavy chain (d-VHH). However, identifying mirror-image antibodies capable of binding to natural ligands remains challenging. In this study, we developed a novel screening platform to identify a d-VHH specific for vascular endothelial growth factor A (VEGF-A). We performed mirror-image screening of two newly constructed synthetic VHH libraries displayed on T7 phage and identified VHH sequences that effectively bound to the mirror-image VEGF-A target (d-VEGF-A). We subsequently synthesized a d-VHH candidate that preferentially bound the native VEGF-A (l-VEGF-A) with submicromolar affinity. Furthermore, immunization studies in mice demonstrated that this d-VHH elicited no ADAs, unlike its corresponding l-VHH. Our findings highlight the utility of this novel d-VHH screening platform in the development of protein therapeutics exhibiting both reduced immunogenicity and improved efficacy.


Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor A/immunology , Animals , Mice , Humans , Protein Engineering/methods , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Peptide Library
10.
Viruses ; 16(5)2024 04 26.
Article En | MEDLINE | ID: mdl-38793567

Directed evolution is a pivotal strategy for new antibody discovery, which allowed the generation of high-affinity Fabs against gliadin from two antibody libraries in our previous studies. One of the libraries was exclusively derived from celiac patients' mRNA (immune library) while the other was obtained through a protein engineering approach (semi-immune library). Recent advances in high-throughput DNA sequencing techniques are revolutionizing research across genomics, epigenomics, and transcriptomics. In the present work, an Oxford Nanopore in-lab sequencing device was used to comprehensively characterize the composition of the constructed libraries, both at the beginning and throughout the phage-mediated selection processes against gliadin. A customized analysis pipeline was used to select high-quality reads, annotate chain distribution, perform sequence analysis, and conduct statistical comparisons between the different selection rounds. Some immunological attributes of the most representative phage variants after the selection process were also determined. Sequencing results revealed the successful transfer of the celiac immune response features to the immune library and the antibodies derived from it, suggesting the crucial role of these features in guiding the selection of high-affinity recombinant Fabs against gliadin. In summary, high-throughput DNA sequencing has improved our understanding of the selection processes aimed at generating molecular binders against gliadin.


Gliadin , High-Throughput Nucleotide Sequencing , Immunoglobulin Fab Fragments , Nanopore Sequencing , Peptide Library , Gliadin/immunology , Gliadin/genetics , Humans , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Celiac Disease/immunology , Celiac Disease/genetics , Cell Surface Display Techniques/methods
11.
Nat Commun ; 15(1): 4359, 2024 May 22.
Article En | MEDLINE | ID: mdl-38777835

Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.


Catalytic Domain , High-Temperature Requirement A Serine Peptidase 1 , Peptides , High-Temperature Requirement A Serine Peptidase 1/metabolism , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Peptide Library , Crystallography, X-Ray , Protein Binding , Cystine/chemistry , Cystine/metabolism , Models, Molecular
12.
Sci Data ; 11(1): 541, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796630

With the discovery of the therapeutic activity of peptides, they have emerged as a promising class of anti-cancer agents due to their specific targeting, low toxicity, and potential for high selectivity. In particular, as peptide-drug conjugates enter clinical, the coupling of targeted peptides with traditional chemotherapy drugs or cytotoxic agents will become a new direction in cancer treatment. To facilitate the drug development of cancer therapy peptides, we have constructed DCTPep, a novel, open, and comprehensive database for cancer therapy peptides. In addition to traditional anticancer peptides (ACPs), the peptide library also includes peptides related to cancer therapy. These data were collected manually from published research articles, patents, and other protein or peptide databases. Data on drug library include clinically investigated and/or approved peptide drugs related to cancer therapy, which mainly come from the portal websites of drug regulatory authorities and organisations in different countries and regions. DCTPep has a total of 6214 entries, we believe that DCTPep will contribute to the design and screening of future cancer therapy peptides.


Antineoplastic Agents , Neoplasms , Peptides , Peptides/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Neoplasms/drug therapy , Humans , Peptide Library , Databases, Protein
13.
J Proteome Res ; 23(6): 2067-2077, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38776430

Engineered macromolecules offer compelling means for the therapy of conventionally undruggable interactions in human disease. However, their efficacy is limited by barriers to tissue and intracellular delivery. Inspired by recent advances in molecular barcoding and evolution, we developed BarcodeBabel, a generalized method for the design of libraries of peptide barcodes suitable for high-throughput mass spectrometry proteomics. Combined with PeptideBabel, a Monte Carlo sampling algorithm for the design of peptides with evolvable physicochemical properties and sequence complexity, we developed a barcoded library of cell penetrating peptides (CPPs) with distinct physicochemical features. Using quantitative targeted mass spectrometry, we identified CPPS with improved nuclear and cytoplasmic delivery exceeding hundreds of millions of molecules per human cell while maintaining minimal membrane disruption and negligible toxicity in vitro. These studies provide a proof of concept for peptide barcoding as a homogeneous high-throughput method for macromolecular screening and delivery. BarcodeBabel and PeptideBabel are available open-source from https://github.com/kentsisresearchgroup/.


Cell-Penetrating Peptides , Proteomics , Humans , Proteomics/methods , Cell-Penetrating Peptides/chemistry , Algorithms , Mass Spectrometry/methods , Peptide Library , High-Throughput Screening Assays/methods , Macromolecular Substances/chemistry , Macromolecular Substances/analysis
14.
Sci Rep ; 14(1): 10608, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719911

Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.


Antibodies, Monoclonal , Antibody Affinity , Peptide Library , Humans , Antibodies, Monoclonal/immunology , Mutagenesis
15.
Biotechnol Lett ; 46(3): 385-398, 2024 Jun.
Article En | MEDLINE | ID: mdl-38607601

BACKGROUND: Diphtheria can be prevented by vaccination, but some epidemics occur in several places, and diphtheria's threat is considerable. Administration of diphtheria antitoxin (DAT) produced from hyperimmunized animals is the most common treatment. Recombinant human antibody fragments such as single-chain variable fragments (scFv) produced by phage display library may introduce an interesting approach to overcome the limitations of the traditional antibody therapy. In the present study, B cells of immunized volunteers were used to construct a human single-chain fragment (HuscFv) library. MATERIALS AND METHODS: The library was constructed with the maximum combination of heavy and light chains. As an antigen, Diphtheria toxoid (DTd) was used in four-round phage bio-panning to select phage clones that display DTd bound HuscFv from the library. After panning, individual scFv clones were selected. Clones that were able to detect DTd in an initial screening assay were transferred to Escherichia coli HB2151 to express the scFvs and purification was followed by Ni metal ion affinity chromatography. Toxin neutralization test was performed on Vero cells. The reactivity of the soluble scFv with diphtheria toxin were done and affinity calculation based on Beatty method was calculated. RESULTS: The size of the constructed scFv library was calculated to be 1.3 × 106 members. Following four rounds of selection, 40 antibody clones were isolated which showed positive reactivity with DTd in an ELISA assay. Five clones were able to neutralize DTd in Vero cell assay. These neutralizing clones were used for soluble expression and purification of scFv fragments. Some of these soluble scFv fragments show neutralizing activity ranging from 0.6 to 1.2 µg against twofold cytotoxic dose of diphtheria toxin. The affinity constant of the selected scFv antibody was determined almost 107 M-1. CONCLUSION: This study describes the prosperous construction and isolation of scFv from the immune library, which specifically neutralizes diphtheria toxin. The HuscFv produced in this study can be a potential candidate to substitute the animal antibody for treating diphtheria and detecting toxins.


Antibodies, Neutralizing , Diphtheria Toxin , Single-Chain Antibodies , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/isolation & purification , Animals , Humans , Vero Cells , Diphtheria Toxin/immunology , Diphtheria Toxin/genetics , Antibodies, Neutralizing/immunology , Cell Surface Display Techniques , Peptide Library , Chlorocebus aethiops , Escherichia coli/genetics , Escherichia coli/metabolism
16.
Microb Biotechnol ; 17(4): e14471, 2024 Apr.
Article En | MEDLINE | ID: mdl-38646975

Proliferating cell nuclear antigen (PCNA) is an essential factor for DNA metabolism. The influence of PCNA on DNA replication and repair, combined with the high expression rate of PCNA in various tumours renders PCNA a promising target for cancer therapy. In this context, an autodisplay-based screening method was developed to identify peptidic PCNA interaction inhibitors. A 12-mer randomized peptide library consisting of 2.54 × 106 colony-forming units was constructed and displayed at the surface of Escherichia coli BL21 (DE3) cells by autodisplay. Cells exhibiting an enhanced binding to fluorescent mScarlet-I-PCNA were enriched in four sorting rounds by flow cytometry. This led to the discovery of five peptide variants with affinity to mScarlet-I-PCNA. Among these, P3 (TCPLRWITHDHP) exhibited the highest binding signal. Subsequent flow cytometric analysis revealed a dissociation constant of 0.62 µM for PCNA-P3 interaction. Furthermore, the inhibition of PCNA interactions was investigated using p15, a PIP-box containing protein involved in DNA replication and repair. P3 inhibited the PCNA-p1551-70 interaction with a half maximal inhibitory activity of 16.2 µM, characterizing P3 as a potent inhibitor of the PCNA-p15 interaction.


Escherichia coli , Peptide Library , Proliferating Cell Nuclear Antigen , Protein Binding , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Flow Cytometry , Drug Evaluation, Preclinical/methods , Cell Surface Display Techniques/methods , Humans , Peptides/metabolism , Peptides/genetics , Peptides/chemistry , Peptides/pharmacology
17.
J Proteome Res ; 23(5): 1768-1778, 2024 May 03.
Article En | MEDLINE | ID: mdl-38580319

Biofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes. We then searched the DIA data against urine spectral libraries generated using common library generation approaches or a library-free method. We show that DIA-MS doubles the sample throughput compared to standard DDA-MS with minimal losses to peptide detection. We further demonstrate that using a sample-specific spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that can streamline future biomarker discovery studies of prostate cancer using DIA-MS.


Prostatic Neoplasms , Proteome , Proteomics , Humans , Male , Prostatic Neoplasms/urine , Prostatic Neoplasms/diagnosis , Proteome/analysis , Proteomics/methods , Prostate/metabolism , Prostate/pathology , Peptide Library , Biomarkers, Tumor/urine , Tandem Mass Spectrometry/methods , Workflow
18.
Protein Expr Purif ; 219: 106485, 2024 Jul.
Article En | MEDLINE | ID: mdl-38642863

BACKGROUND: Rational design of synthetic phage-displayed libraries requires the identification of the most appropriate positions for randomization using defined amino acid sets to recapitulate the natural occurrence. The present study uses position-specific scoring matrixes (PSSMs) for identifying and randomizing Camelidae nanobody (VHH) CDR3. The functionality of a synthetic VHH repertoire designed by this method was tested for discovering new VHH binders to recombinant coagulation factor VII (rfVII). METHODS: Based on PSSM analysis, the CDR3 of cAbBCII10 VHH framework was identified, and a set of amino acids for the substitution of each PSSM-CDR3 position was defined. Using the Rosetta design SwiftLib tool, the final repertoire was back-translated to a degenerate nucleotide sequence. A synthetic phage-displayed library was constructed based on this repertoire and screened for anti-rfVII binders. RESULTS: A synthetic phage-displayed VHH library with 1 × 108 variants was constructed. Three VHH binders to rfVII were isolated from this library with estimated dissociation constants (KD) of 1 × 10-8 M, 5.8 × 10-8 M and 2.6 × 10-7 M. CONCLUSION: PSSM analysis is a simple and efficient way to design synthetic phage-displayed libraries.


Computational Biology , Peptide Library , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Animals , Camelidae/genetics , Camelidae/immunology , Factor VII/genetics , Factor VII/chemistry , Factor VII/immunology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Amino Acid Sequence
19.
Proc Natl Acad Sci U S A ; 121(19): e2317307121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683990

Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.


Epitopes , Epitopes/immunology , Humans , Proteolysis , Protein Binding , Protein Engineering/methods , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/immunology , Antibodies/immunology , Peptide Library
20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38612548

Protein phosphorylation is a prevalent translational modification, and its dysregulation has been implicated in various diseases, including cancer. Despite its significance, there is a lack of specific inhibitors of the FCP/SCP-type Ser/Thr protein phosphatase Scp1, characterized by high specificity and affinity. In this study, we focused on adnectin, an antibody-mimetic protein, aiming to identify Scp1-specific binding molecules with a broad binding surface that target the substrate-recognition site of Scp1. Biopanning of Scp1 was performed using an adnectin-presenting phage library with a randomized FG loop. We succeeded in identifying FG-1Adn, which showed high affinity and specificity for Scp1. Ala scanning analysis of the Scp1-binding sequence in relation to the FG-1 peptide revealed that hydrophobic residues, including aromatic amino acids, play important roles in Scp1 recognition. Furthermore, FG-1Adn was found to co-localize with Scp1 in cells, especially on the plasma membrane. In addition, Western blotting analysis showed that FG-1Adn increased the phosphorylation level of the target protein of Scp1 in cells, indicating that FG-1Adn can inhibit the function of Scp1. These results suggest that FG-1Adn can be used as a specific inhibitor of Scp1.


Antibodies , Fibronectin Type III Domain , Recombinant Proteins , Amino Acids, Aromatic , Phosphoprotein Phosphatases , Peptide Library
...