Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61.543
1.
J Cell Sci ; 137(11)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38855848

Liquid-liquid phase separation (LLPS) has increasingly been found to play pivotal roles in a number of intracellular events and reactions, and has introduced a new paradigm in cell biology to explain protein-protein and enzyme-ligand interactions beyond conventional molecular and biochemical theories. LLPS is driven by the cumulative effects of weak and promiscuous interactions, including electrostatic, hydrophobic and cation-π interactions, among polypeptides containing intrinsically disordered regions (IDRs) and describes the macroscopic behaviours of IDR-containing proteins in an intracellular milieu. Recent studies have revealed that interactions between 'charge blocks' - clusters of like charges along the polypeptide chain - strongly induce LLPS and play fundamental roles in its spatiotemporal regulation. Introducing a new parameter, termed 'charge blockiness', into physicochemical models of disordered polypeptides has yielded a better understanding of how the intrinsic amino acid sequence of a polypeptide determines the spatiotemporal occurrence of LLPS within a cell. Charge blockiness might also explain why some post-translational modifications segregate within IDRs and how they regulate LLPS. In this Review, we summarise recent progress towards understanding the mechanism and biological roles of charge block-driven LLPS and discuss how this new characteristic parameter of polypeptides offers new possibilities in the fields of structural biology and cell biology.


Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Humans , Protein Processing, Post-Translational , Animals , Static Electricity , Peptides/metabolism , Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Liquid-Liquid Extraction/methods , Phase Separation
2.
Exp Oncol ; 46(1): 3-12, 2024 May 31.
Article En | MEDLINE | ID: mdl-38852058

Oncolytic peptides are derived from natural host defense peptides/antimicrobial peptides produced in a wide variety of life forms. Over the past two decades, they have attracted much attention in both basic research and clinical applications. Oncolytic peptides were expected to act primarily on tumor cells and also trigger the immunogenic cell death. Their ability in the tumor microenvironment remodeling and potentiating the anticancer immunity has long been ignored. Despite the promising results, clinical application of oncolytic peptides is still hindered by their unsatisfactory bioactivity and toxicity to normal cells. To ensure safer therapy, various approaches are being developed. The idea of the Ukrainian research group was to equip peptide molecules with a "molecular photoswitch" - a diarylethene fragment capable of photoisomerization, allowing for the localized photoactivation of peptides within tumors reducing side effects. Such oncolytic peptides that may induce the membrane lysis-mediated cancer cell death and subsequent anticancer immune responses in combination with the low toxicity to normal cells have provided a new paradigm for cancer therapy. This review gives an overview of the broad effects and perspectives of oncolytic peptides in anticancer immunity highlighting the potential issues related to the use of oncolytic peptides in cancer immunotherapy. We summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including immune checkpoint inhibitors, chemotherapy, and targeted therapy.


Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Peptides/therapeutic use , Peptides/immunology , Peptides/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Oncolytic Virotherapy/methods , Tumor Microenvironment/immunology
3.
Brief Bioinform ; 25(4)2024 May 23.
Article En | MEDLINE | ID: mdl-38842509

Peptide- and protein-based therapeutics are becoming a promising treatment regimen for myriad diseases. Toxicity of proteins is the primary hurdle for protein-based therapies. Thus, there is an urgent need for accurate in silico methods for determining toxic proteins to filter the pool of potential candidates. At the same time, it is imperative to precisely identify non-toxic proteins to expand the possibilities for protein-based biologics. To address this challenge, we proposed an ensemble framework, called VISH-Pred, comprising models built by fine-tuning ESM2 transformer models on a large, experimentally validated, curated dataset of protein and peptide toxicities. The primary steps in the VISH-Pred framework are to efficiently estimate protein toxicities taking just the protein sequence as input, employing an under sampling technique to handle the humongous class-imbalance in the data and learning representations from fine-tuned ESM2 protein language models which are then fed to machine learning techniques such as Lightgbm and XGBoost. The VISH-Pred framework is able to correctly identify both peptides/proteins with potential toxicity and non-toxic proteins, achieving a Matthews correlation coefficient of 0.737, 0.716 and 0.322 and F1-score of 0.759, 0.696 and 0.713 on three non-redundant blind tests, respectively, outperforming other methods by over $10\%$ on these quality metrics. Moreover, VISH-Pred achieved the best accuracy and area under receiver operating curve scores on these independent test sets, highlighting the robustness and generalization capability of the framework. By making VISH-Pred available as an easy-to-use web server, we expect it to serve as a valuable asset for future endeavors aimed at discerning the toxicity of peptides and enabling efficient protein-based therapeutics.


Proteins , Proteins/metabolism , Proteins/chemistry , Machine Learning , Databases, Protein , Computational Biology/methods , Humans , Peptides/toxicity , Peptides/chemistry , Computer Simulation , Algorithms , Software
4.
Commun Biol ; 7(1): 684, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834836

Identifying interactions between T-cell receptors (TCRs) and immunogenic peptides holds profound implications across diverse research domains and clinical scenarios. Unsupervised clustering models (UCMs) cannot predict peptide-TCR binding directly, while supervised predictive models (SPMs) often face challenges in identifying antigens previously unencountered by the immune system or possessing limited TCR binding repertoires. Therefore, we propose HeteroTCR, an SPM based on Heterogeneous Graph Neural Network (GNN), to accurately predict peptide-TCR binding probabilities. HeteroTCR captures within-type (TCR-TCR or peptide-peptide) similarity information and between-type (peptide-TCR) interaction insights for predictions on unseen peptides and TCRs, surpassing limitations of existing SPMs. Our evaluation shows HeteroTCR outperforms state-of-the-art models on independent datasets. Ablation studies and visual interpretation underscore the Heterogeneous GNN module's critical role in enhancing HeteroTCR's performance by capturing pivotal binding process features. We further demonstrate the robustness and reliability of HeteroTCR through validation using single-cell datasets, aligning with the expectation that pMHC-TCR complexes with higher predicted binding probabilities correspond to increased binding fractions.


Neural Networks, Computer , Peptides , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/chemistry , Peptides/chemistry , Peptides/metabolism , Peptides/immunology , Protein Binding , Humans , Computational Biology/methods
5.
Proc Natl Acad Sci U S A ; 121(24): e2316401121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838016

The accurate prediction of binding between T cell receptors (TCR) and their cognate epitopes is key to understanding the adaptive immune response and developing immunotherapies. Current methods face two significant limitations: the shortage of comprehensive high-quality data and the bias introduced by the selection of the negative training data commonly used in the supervised learning approaches. We propose a method, Transformer-based Unsupervised Language model for Interacting Peptides and T cell receptors (TULIP), that addresses both limitations by leveraging incomplete data and unsupervised learning and using the transformer architecture of language models. Our model is flexible and integrates all possible data sources, regardless of their quality or completeness. We demonstrate the existence of a bias introduced by the sampling procedure used in previous supervised approaches, emphasizing the need for an unsupervised approach. TULIP recognizes the specific TCRs binding an epitope, performing well on unseen epitopes. Our model outperforms state-of-the-art models and offers a promising direction for the development of more accurate TCR epitope recognition models.


Peptides , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Peptides/immunology , Peptides/chemistry , Peptides/metabolism , Humans , Epitopes/immunology , Protein Binding , Epitopes, T-Lymphocyte/immunology , Unsupervised Machine Learning
6.
Amino Acids ; 56(1): 40, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847939

Pelodiscus sinensis meat is a nutritional food and tonic with angiotensin-converting enzyme (ACE) inhibitory activities. To identify the bioactive substances responsible, several bioinformatics methods were integrated to enable a virtual screening for bioactive peptides in proteins identified within a water-soluble protein fraction of Pelodiscus sinensis meat by Shotgun proteomics. The peptides were generated from the identified proteins by in silico proteolysis using six proteases. A comparison of the numbers of proteins suitable for digestion with each enzyme and the iBAQ (intensity-based absolute quantification) values for these proteins revealed that bromelain and papain were the most suitable proteases for this sample. Next, the water solubility, toxicity, and ADMET (absorption/distribution/metabolism/excretion/toxicity) properties of these peptides were evaluated in silico. Finally, a novel ACE inhibitory peptide IEWEF with an IC50 value of 41.33 µM was identified. The activity of the synthesized peptide was verified in vitro, and it was shown to be a non-competitive ACE inhibitor. Molecular docking revealed that IEWEF could tightly bind to C-ACE, and N-ACE with energies less than 0 kJ mol-1, and the peptide IEWEF can form hydrogen bonds with C-ACE and N-ACE respectively. These results provide evidence that bioactive peptides in the water-soluble protein fraction account for (at least) some of the ACE inhibitory activities observed in Pelodiscus sinensis meat. Furthermore, our research provides a workflow for the efficient identification of novel ACE inhibitory peptides from complex protein mixtures.


Angiotensin-Converting Enzyme Inhibitors , Molecular Docking Simulation , Peptides , Protein Hydrolysates , Solubility , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Protein Hydrolysates/chemistry , Protein Hydrolysates/metabolism , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Water/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Papain/metabolism , Papain/antagonists & inhibitors , Papain/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 121(25): e2322572121, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38875148

Shear forces affect self-assembly processes ranging from crystallization to fiber formation. Here, the effect of mild agitation on amyloid fibril formation was explored for four peptides and investigated in detail for A[Formula: see text]42, which is associated with Alzheimer's disease. To gain mechanistic insights into the effect of mild agitation, nonseeded and seeded aggregation reactions were set up at various peptide concentrations with and without an inhibitor. First, an effect on fibril fragmentation was excluded by comparing the monomer-concentration dependence of aggregation kinetics under idle and agitated conditions. Second, using a secondary nucleation inhibitor, Brichos, the agitation effect on primary nucleation was decoupled from secondary nucleation. Third, an effect on secondary nucleation was established in the absence of inhibitor. Fourth, an effect on elongation was excluded by comparing the seeding potency of fibrils formed under idle or agitated conditions. We find that both primary and secondary nucleation steps are accelerated by gentle agitation. The increased shear forces facilitate both the detachment of newly formed aggregates from catalytic surfaces and the rate at which molecules are transported in the bulk solution to encounter nucleation sites on the fibril and other surfaces. Ultrastructural evidence obtained with cryogenic transmission electron microscopy and free-flow electrophoresis in microfluidics devices imply that agitation speeds up the detachment of nucleated species from the fibril surface. Our findings shed light on the aggregation mechanism and the role of detachment for efficient secondary nucleation. The results inform on how to modulate the relative importance of different microscopic steps in drug discovery and investigations.


Amyloid , Amyloid/metabolism , Amyloid/chemistry , Kinetics , Humans , Shear Strength , Protein Aggregates , Peptides/chemistry , Peptides/metabolism , Alzheimer Disease/metabolism
8.
Food Res Int ; 189: 114534, 2024 Aug.
Article En | MEDLINE | ID: mdl-38876604

In order to identify the peptides responsible for bitter defects and to understand the mechanism of bitterness in dry-cured ham, the peptides were identified by LC-MS/MS, and the interaction between bitter peptides and receptor proteins were evaluated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of bitter peptides was investigated using the model of HEK-293T cells by calcium imaging and transcriptomics analysis. The results of LC-MS/MS showed that 11 peptides were identified from the high bitterness fraction of defective ham; peptides PKAPPAK, VTDTTR and YIIEK derived from titin showed the highest bitterness values compared with other peptides. The results of molecular docking showed that lower CDOCKER energy was observed in the interaction between these peptides and hT2R16 in comparison with these receptors of hT2R1, hT2R4, hT2R5, hT2R8 and hT2R14, and the interaction of hT2R16 and peptides was stabilized by hydrophobic interaction and hydrogen bond. The average RMSF values of VTDTTR were higher than that of YIIEK and PKAPPAK, while EC50 values of VTDTTR were lower compared with PKAPPAK and YIIEK. Transcriptomics analysis showed that 529 differentially expressed genes were identified in HEK-293T cells during the stimulating by VTDTTR and were mainly enriched into neuroactive ligand-receptor interaction, MAPK pathway, cAMP pathway and calcium signaling pathway, which were mainly responsible for the bitter signal transduction of VTDTTR. These results could provide evidence for understanding the bitter defects of dry-cured ham and the taste mechanism of bitter peptide.


Molecular Docking Simulation , Peptides , Taste , Humans , HEK293 Cells , Peptides/chemistry , Peptides/genetics , Animals , Swine , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tandem Mass Spectrometry , Gene Expression Profiling , Transcriptome , Signal Transduction , Pork Meat/analysis , Molecular Dynamics Simulation , Chromatography, Liquid
9.
Pestic Biochem Physiol ; 202: 105963, 2024 Jun.
Article En | MEDLINE | ID: mdl-38879311

The long-term use of pesticides in the field, and the high fertility and adaptability of phytophagous mites have led to resistance problems; consequently, novel safe and efficient active substances are necessary to broaden the tools of pest mite control. Natural enemies of arthropods typically secrete substances with paralytic or lethal effects on their prey, and those substances are a resource for future biopesticides. In this study, two putative venom peptide genes were identified in a parasitic mite Neoseiulus barkeri transcriptome. Recombinant venom NbSP2 peptide injected into Tetranychus cinnabarinus mites was significantly more lethal than recombinant NBSP1. NbSP2 was also lethal to Spodoptera litura when injected but not when fed to third instar larvae. The interaction proteins of NbSP2 in T. cinnabarinus and S. litura were identified by affinity chromatography. Among these proteins, ATP synthase subunit ß (ATP SSß) was deduced as a potential target. Four binding sites were predicted between NBSP2 and ATP SSß of T. cinnabarinus and S. litura. In conclusion, we identified a venom peptide with activity against T. cinnabarinus and S. litura. This study provides a novel component for development of a new biological pesticide.


Peptides , Spider Venoms , Animals , Spider Venoms/chemistry , Spider Venoms/genetics , Peptides/pharmacology , Peptides/chemistry , Mites/drug effects , Spodoptera/drug effects , Tetranychidae/drug effects , Tetranychidae/genetics , Pest Control, Biological/methods , Amino Acid Sequence , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Arthropod Proteins/chemistry , Predatory Behavior/drug effects
10.
Biol Pharm Bull ; 47(6): 1072-1078, 2024.
Article En | MEDLINE | ID: mdl-38825460

In previous studies, my group developed cell-adhesive peptide-polysaccharide complexes as biomaterials for tissue engineering. Having a wide variety of cell-adhesive peptides is important as the biological functions of peptide-polysaccharide complexes are highly dependent on the biological activity of peptides. This paper reviews the biological activities of two types of recently characterized cell-adhesive peptides. The first is peptides rich in basic amino acids originating from octaarginine. We analyzed the relationships between the amino acid composition of basic peptides and cell adhesion, elongation, and proliferation and identified the most suitable peptide for cell culture. The second was arginine-glycine-aspartic acid (RGD)-containing peptides that promote the adhesion of induced pluripotent stem cells (iPSCs). We identified the RGD-surrounding sequences necessary for iPSC adhesion, clarified the underlying mechanism, and improved cell adhesion by modifying the structure-activity relationships. The novel cell-adhesive peptides identified in our previous studies may aid in the development of novel peptide-based biomaterials.


Biocompatible Materials , Cell Adhesion , Peptides , Cell Adhesion/drug effects , Biocompatible Materials/chemistry , Humans , Peptides/pharmacology , Peptides/chemistry , Animals , Oligopeptides/chemistry , Oligopeptides/pharmacology , Tissue Engineering/methods , Induced Pluripotent Stem Cells/cytology
11.
Food Res Int ; 188: 114473, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823837

Oral delivery of larger bioactive peptides (>20 amino acids) to the small intestine remains a challenge due to their sensitivity to proteolytic degradation and chemical denaturation during gastrointestinal transit. In this study, we investigated the capacity of crosslinked alginate microcapsules (CLAMs) formed by spray drying to protect Plantaricin EF (PlnEF) (C-EF) in gastric conditions and to dissolve and release PlnEF in the small intestine. PlnEF is an unmodified, two-peptide (PlnE: 33 amino acids; PlnF: 34 amino acids) bacteriocin produced by Lactiplantibacillus plantarum with antimicrobial and gut barrier protective properties. After 2 h incubation in simulated gastric fluid (SGF) (pH 1.5), 43.39 % ± 8.27 % intact PlnEF was liberated from the CLAMs encapsulates, as determined by an antimicrobial activity assay. Transfer of the undissolved fraction to simulated intestinal fluid (SIF) (pH 7) for another 2 h incubation resulted in an additional release of 16.13 % ± 4.33 %. No active PlnEF was found during SGF or sequential SIF incubations when pepsin (2,000 U/ml) was added to the SGF. To test PlnEF release in C-EF contained in a food matrix, C-EF was mixed in peanut butter (PB) (0.15 g C-EF in 1.5 g PB). A total of 12.52 % ± 9.09 % active PlnEF was detected after incubation of PB + C-EF in SGF without pepsin, whereas no activity was found when pepsin was included. Transfer of the remaining PB + C-EF fractions to SIF yielded the recovery of 46.67 % ± 13.09 % and 39.42 % ± 11.53 % active PlnEF in the SIF following exposure to SGF and to SGF with pepsin, respectively. Upon accounting for the undissolved fraction after SIF incubation, PlnEF was fully protected in the CLAMs-PB mixture and there was not a significant reduction in active PlnEF when pepsin was present. These results show that CLAMs alone do not guard PlnEF bacteriocin peptides from gastric conditions, however, mixing them in PB protected against proteolysis and improved intestinal release.


Alginates , Bacteriocins , Capsules , Alginates/chemistry , Peptides/chemistry , Intestine, Small/metabolism , Lactobacillus plantarum/metabolism , Hydrogen-Ion Concentration , Cross-Linking Reagents/chemistry , Pepsin A/metabolism
12.
Nat Commun ; 15(1): 4687, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824166

Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.


Receptor, Parathyroid Hormone, Type 1 , Receptors, G-Protein-Coupled , Signal Transduction , Single-Domain Antibodies , Ligands , Humans , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 1/agonists , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , HEK293 Cells , Signal Transduction/drug effects , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Protein Binding , Animals , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism
13.
J Am Chem Soc ; 146(23): 15941-15954, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38832917

The pathogen Staphylococcus epidermidis uses a chemical signaling process, i.e., quorum sensing (QS), to form robust biofilms and cause human infection. Many questions remain about QS in S. epidermidis, as it uses this intercellular communication pathway to both negatively and positively regulate virulence traits. Herein, we report synthetic multigroup agonists and antagonists of the S. epidermidis accessory gene regulator (agr) QS system capable of potent superactivation and complete inhibition, respectively. These macrocyclic peptides maintain full efficacy across the three major agr specificity groups, and their activity can be "mode-switched" from agonist to antagonist via subtle residue-specific structural changes. We describe the design and synthesis of these non-native peptides and demonstrate that they can appreciably decrease biofilm formation on abiotic surfaces, underscoring the potential for agr agonism as a route to block S. epidermidis virulence. Additionally, we show that both the S. epidermidis agonists and antagonists are active in S. aureus, another common pathogen with a related agr system, yet only as antagonists. This result not only revealed one of the most potent agr inhibitors known in S. aureus but also highlighted differences in the mechanisms of agr agonism and antagonism between these related bacteria. Finally, our investigations reveal unexpected inhibitory behavior for certain S. epidermidis agr agonists at sub-activating concentrations, an observation that can be leveraged for the design of future probes with enhanced potencies. Together, these peptides provide a powerful tool set to interrogate the role of QS in S. epidermidis infections and in Staphylococcal pathogenicity in general.


Biofilms , Quorum Sensing , Staphylococcus epidermidis , Quorum Sensing/drug effects , Biofilms/drug effects , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/physiology , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis
14.
Compr Rev Food Sci Food Saf ; 23(4): e13386, 2024 Jul.
Article En | MEDLINE | ID: mdl-38847753

Glutamine, the most abundant amino acid in the body, plays a critical role in preserving immune function, nitrogen balance, intestinal integrity, and resistance to infection. However, its limited solubility and instability present challenges for its use a functional nutrient. Consequently, there is a preference for utilizing glutamine-derived peptides as an alternative to achieve enhanced functionality. This article aims to review the applications of glutamine monomers in clinical, sports, and enteral nutrition. It compares the functional effectiveness of monomers and glutamine-derived peptides and provides a comprehensive assessment of glutamine-derived peptides in terms of their classification, preparation, mechanism of absorption, and biological activity. Furthermore, this study explores the potential integration of artificial intelligence (AI)-based peptidomics and synthetic biology in the de novo design and large-scale production of these peptides. The findings reveal that glutamine-derived peptides possess significant structure-related bioactivities, with the smaller molecular weight fraction serving as the primary active ingredient. These peptides possess the ability to promote intestinal homeostasis, exert hypotensive and hypoglycemic effects, and display antioxidant properties. However, our understanding of the structure-function relationships of glutamine-derived peptides remains largely exploratory at current stage. The combination of AI based peptidomics and synthetic biology presents an opportunity to explore the untapped resources of glutamine-derived peptides as functional food ingredients. Additionally, the utilization and bioavailability of these peptides can be enhanced through the use of delivery systems in vivo. This review serves as a valuable reference for future investigations of and developments in the discovery, functional validation, and biomanufacturing of glutamine-derived peptides in food science.


Glutamine , Peptides , Glutamine/chemistry , Peptides/chemistry , Humans , Animals
15.
J Cell Mol Med ; 28(11): e18477, 2024 Jun.
Article En | MEDLINE | ID: mdl-38853458

Given the pathological role of Tau aggregation in Alzheimer's disease (AD), our laboratory previously developed the novel Tau aggregation inhibitor peptide, RI-AG03. As Tau aggregates accumulate intracellularly, it is essential that the peptide can traverse the cell membrane. Here we examine the cellular uptake and intracellular trafficking of RI-AG03, in both a free and liposome-conjugated form. We also characterize the impact of adding the cell-penetrating peptide (CPP) sequences, polyarginine (polyR) or transactivator of transcription (TAT), to RI-AG03. Our data show that liposome conjugation of CPP containing RI-AG03 peptides, with either the polyR or TAT sequence, increased cellular liposome association three-fold. Inhibition of macropinocytosis modestly reduced the uptake of unconjugated and RI-AG03-polyR-linked liposomes, while having no effect on RI-AG03-TAT-conjugated liposome uptake. Further supporting macropinocytosis-mediated internalization, a 'fair' co-localisation of the free and liposome-conjugated RI-AG03-polyR peptide with macropinosomes and lysosomes was observed. Interestingly, we also demonstrate that RI-AG03-polyR detaches from liposomes following cellular uptake, thereby largely evading organellar entrapment. Collectively, our data indicate that direct membrane penetration and macropinocytosis are key routes for the internalization of liposomes conjugated with CPP containing RI-AG03. Our study also demonstrates that peptide-liposomes are suitable nanocarriers for the cellular delivery of RI-AG03, furthering their potential use in targeting Tau pathology in AD.


Cell-Penetrating Peptides , Liposomes , Nanoparticles , Pinocytosis , tau Proteins , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Liposomes/chemistry , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Nanoparticles/chemistry , Pinocytosis/drug effects , Peptides/chemistry , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Lysosomes/metabolism , Drug Delivery Systems/methods
16.
Brief Bioinform ; 25(4)2024 May 23.
Article En | MEDLINE | ID: mdl-38856172

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.


Artificial Intelligence , Drug Discovery , Peptides , Peptides/chemistry , Peptides/therapeutic use , Peptides/pharmacology , Drug Discovery/methods , Humans , Drug Design , Machine Learning , Computational Biology/methods
17.
Sci Rep ; 14(1): 12935, 2024 06 05.
Article En | MEDLINE | ID: mdl-38839973

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Peptides , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Mice , Peptides/pharmacology , Peptides/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Molecular Docking Simulation , A549 Cells , Molecular Dynamics Simulation , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Male , Antirheumatic Agents/pharmacology , Antirheumatic Agents/chemistry , Antirheumatic Agents/therapeutic use , Protein Binding , Disease Models, Animal
18.
Se Pu ; 42(6): 555-563, 2024 Jun.
Article Zh | MEDLINE | ID: mdl-38845516

Mitochondria perform various metabolic processes that significantly affect cell differentiation, proliferation, signal transduction, and programmed cell death. The disruption of mitochondrial bioenergetic and metabolic functions is closely related to many disorders. The specific isolation and purification of intact, high-purity, and functional mitochondria are central to the understanding of their mechanism of action but remain challenging tasks. In this study, a mitochondrial penetrating peptide (MPP) with the sequence FrFKFrFK(Ac) was used as a mitochondrial recognition motif to construct a peptide-guided affinity separation material. The multiple aromatic phenylalanine (F) residues in this amphiphilic peptide can confer lipophilicity to the mitochondrial membrane, whereas the basic residues (D-arginine and lysine) render the MPP surface positively charged, thereby promoting the binding of negatively charged mitochondria. After the derivatization of the N terminal of MPP with an oligoglycine spacer, the peptide ligands were conjugated to matrix beads (MB) with surface aldehyde functional groups. Peptide functionalization was performed via a condensation reaction between the amino group in the peptide ligand and the aldehyde group on the beads. The generated Schiff bases were reduced, affording stable covalent bonds. The dense and stable functionalization of the beads with the mitochondria-targeting peptides was demonstrated using high performance liquid chromatography (HPLC), zeta potential assay, and scanning electron microscopy (SEM). The immobilization efficiency of the peptide ligands was 1.47 µmol/g, and the surface potential of MB@MPP was 11 mV. MB@MPP was used for the direct isolation of mitochondria after cell homogenization. As observed by SEM, mitochondria with a cross-sectional diameter of 500 nm were efficiently captured on the MB@MPP surface. Because the mitochondrial membrane potential is an important marker of mitochondrial function and the driving force behind the staining of mitochondria with Mito Tracker dyes, the specific binding and separation of fluorescent mitochondria from the cell samples revealed that the proposed MB@MPP-based isolation approach can keep mitochondria intact and retain their functions. Western blot assays were employed to characterize the protein markers of the mitochondria (citrate synthase (CS) and voltage-dependent anion channel protein (VDAC)) and cytoplasmic protein (vinculin), and examine the integrity and purity of the captured mitochondria. The results showed that the lysates released from MB@MPP had high CS and VDAC contents. By contrast, vinculin, which is highly abundant in whole-cell lysates, was barely detected in the lysates from MB@MPP. These results suggest that MB@MPP isolates mitochondria with high affinity, specificity, and antifouling ability by using the targeting peptide as the capture handle. A comparison with a commercial mitochondrial isolation kit demonstrated that MB@MPP can separate mitochondria with higher CS and VDAC abundance and purity. Given the superior separation performance of MB@MPP, the molecular profiles of the isolated mitochondria under stress were subjected to further analysis of their molecular profiles under stress. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established to detect tryptophan (Trp) and riboflavin in the mitochondria. Quantification was performed in multiple-reaction monitoring (MRM) mode. Owing to the high purity of the mitochondria, the Trp and riboflavin contents were determined to be 265 and 0.67 nmol/mg, respectively. The metabolic response of mitochondria to external stimuli was further examined using acadesine, an adenosine 5'-monophosphate (AMP)-activated protein kinase activator with a wide range of metabolic effects, to treat cells. After cell homogenization, MB@MPP was used to separate the mitochondria from the cell samples with and without acadesine treatment, followed by LC-MS/MS analysis. The quantification results demonstrated that acadesine induced a 14% upregulation of Trp content in the mitochondria. By contrast, the riboflavin content decreased to 0.48 nmol/mg, which is 72% of that in untreated mitochondria. The changes in Trp and riboflavin contents could influence their metabolic pathways and, thus, the levels of their metabolites, such as nicotinamide adenine dinucleotide, flavin mononucleotide, and flavin adenine dinucleotide, which are essential coenzymes in mitochondria. Peptide-functionalized affinity microbeads with high affinity and specificity for mitochondria are promising for the efficient isolation of high-quality mitochondria, and offer a useful tool for understanding the complicated functions and dynamics of this unique organelle.


Mitochondria , Peptides , Mitochondria/metabolism , Peptides/chemistry , Peptides/isolation & purification , Animals , Chromatography, Affinity
19.
Curr Protoc ; 4(6): e1056, 2024 Jun.
Article En | MEDLINE | ID: mdl-38856995

Sequence changes in viral genomes generate protein sequence diversity that enables viruses to evade the host immune system, hindering the development of effective preventive and therapeutic interventions. The massive proliferation of sequence data provides unprecedented opportunities to study viral adaptation and evolution. An alignment-free approach removes various restrictions posed by an alignment-dependent approach for studying sequence diversity. The publicly available tool, UNIQmin, offers an alignment-free approach for studying viral sequence diversity at any given rank of taxonomy lineage and is big data ready. The tool performs an exhaustive search to determine the minimal set of sequences required to capture the peptidome diversity within a given dataset. This compression is possible through the removal of identical sequences and unique sequences that do not contribute effectively to the peptidome diversity pool. Herein, we describe a detailed four-part protocol utilizing UNIQmin to generate the minimal set for the purpose of viral diversity analyses, alignment-free at any rank of the taxonomy lineage, using the recent global public health threat Monkeypox virus (MPX) sequence data as a case study. The protocol enables a systematic bioinformatics approach to study sequence diversity across taxonomic lineages, which is crucial for our future preparedness against viral epidemics. This is particularly important when data are abundant, freely available, and alignment is not an option. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Tool installation and input file preparation Basic Protocol 2: Generation of a minimal set of sequences for a given dataset Basic Protocol 3: Comparative minimal set analysis across taxonomic lineage ranks Basic Protocol 4: Factors affecting the minimal set of sequences.


Computational Biology , Computational Biology/methods , Viral Proteins/genetics , Genome, Viral/genetics , Software , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Peptides/chemistry
20.
Planta Med ; 90(7-08): 627-630, 2024 Jun.
Article En | MEDLINE | ID: mdl-38843800

Peptides have emerged as key regulators in various physiological processes, including growth, development, stress, and defense responses within plants as well as ecological interactions of plants with microbes and animals. Understanding and harnessing plant peptides can lead to the development of innovative strategies for crop improvement, increasing agricultural productivity, and enhancing resilience to environmental challenges such as drought, pests, and diseases. Moreover, some plant peptides have shown promise in human health applications, with potential therapeutic benefits as ingredients in herbal medicines as well as novel drug leads. The exploration of plant peptides is essential for unraveling the mysteries of plant biology and advancing peptide drug discovery. This short personal commentary provides a very brief overview about the field of plant-derived peptides and a personal word of motivation to increase the number of scientists in pharmacognosy working with these fascinating biomolecules.


Biological Products , Drug Discovery , Peptides , Biological Products/pharmacology , Biological Products/chemistry , Peptides/pharmacology , Peptides/chemistry , Humans , Plant Proteins/chemistry , Plants/chemistry , Animals
...