Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 864
Filter
1.
Methods Enzymol ; 698: 247-262, 2024.
Article in English | MEDLINE | ID: mdl-38886034

ABSTRACT

The modulation of biology utilizing foldamers has flourished over the last few decades thanks to their overwhelming promise in their applications in molecular design, catalysis, supramolecular, and rational design. However, the application of peptidomimetics is still restricted due to the limited availability of molecular frameworks and folding propensities. To broaden the scope of foldameric peptidomimetics we proposed the development of sulfonyl-γ-AApeptides-the oligomers of sulfonyl-γ-N-acylated-N-aminoethyl (AA) amino acids, a unique unnatural scaffold that possesses promising potential to modulate protein-protein interactions. In this chapter, the overall process of design, synthesis, and function of sulfonyl-γ-AApeptides is briefly reviewed for the use of unnatural foldamers to modulate PPIs.


Subject(s)
Peptides , Peptidomimetics , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptides/chemistry , Peptides/pharmacology , Humans , Protein Folding , Amino Acids/chemistry , Amino Acids/metabolism , Protein Binding
2.
Sci Rep ; 14(1): 13185, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851838

ABSTRACT

Delivery of active protein especially enzyme is one of the major therapeutic challenge. Replacing or substituted invalid/improper acting protein offer fast and effective treatment of disease. Herein, we describe the synthesis and properties of biotinylated peptidomimetics consisting of oxoacid-modified 2,3, L-diaminopropionic acid residues with guanidine groups on its side chains. Electrophoretic analysis showed that the obtained compounds interact with FITC-labeled streptavidin or a streptavidin-ß-galactosidase hybrid in an efficient manner. Complexes formed by the abovementioned molecules are able to cross the cell membranes of cancer or healthy cells and show promising compatibility with live cells. Analysis of ß-galactosidase activity inside the cells revealed surprisingly high levels of active enzyme in complex-treated cells compared to controls. This observation was confirmed by immunochemical studies in which the presence of ß-galactosidase was detected in the membrane and vesicles of the cells.


Subject(s)
beta-Alanine , beta-Galactosidase , Humans , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry , beta-Alanine/metabolism , beta-Galactosidase/metabolism , Polymers/chemistry , Peptidomimetics/chemistry , Streptavidin/chemistry , Streptavidin/metabolism , Cell Membrane/metabolism
3.
Nat Commun ; 15(1): 5275, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902227

ABSTRACT

DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.


Subject(s)
DNA , G-Quadruplexes , Peptidomimetics , Humans , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/metabolism , DNA/metabolism , DNA/chemistry , Potassium/metabolism , Potassium/chemistry , Cell Line, Tumor , Sodium/metabolism , Cell Nucleus/metabolism , Ion Channels/metabolism , Ion Channels/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry
4.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893366

ABSTRACT

The development of antimicrobial drugs with novel structures and clear mechanisms of action that are active against drug-resistant bacteria has become an urgent need of safeguarding human health due to the rise of bacterial drug resistance. The discovery of AMPs and the development of amphipathic peptidomimetics have lay the foundation for novel antimicrobial agents to combat drug resistance due to their overall strong antimicrobial activities and unique membrane-active mechanisms. To break the limitation of AMPs, researchers have invested in great endeavors through various approaches in the past years. This review summarized the recent advances including the development of antibacterial small molecule peptidomimetics and peptide-mimic cationic oligomers/polymers, as well as mechanism-of-action studies. As this exciting interdisciplinary field is continuously expanding and growing, we hope this review will benefit researchers in the rational design of novel antimicrobial peptidomimetics in the future.


Subject(s)
Peptidomimetics , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemical synthesis , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Microbial Sensitivity Tests , Bacteria/drug effects
5.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731881

ABSTRACT

Aging and age-related diseases are associated with a decline in the capacity of protein turnover. Intrinsically disordered proteins, as well as proteins misfolded and oxidatively damaged, prone to aggregation, are preferentially digested by the ubiquitin-independent proteasome system (UIPS), a major component of which is the 20S proteasome. Therefore, boosting 20S activity constitutes a promising strategy to counteract a decrease in total proteasome activity during aging. One way to enhance the proteolytic removal of unwanted proteins appears to be the use of peptide-based activators of the 20S. In this study, we synthesized a series of peptides and peptidomimetics based on the C-terminus of the Rpt5 subunit of the 19S regulatory particle. Some of them efficiently stimulated human 20S proteasome activity. The attachment of the cell-penetrating peptide TAT allowed them to penetrate the cell membrane and stimulate proteasome activity in HEK293T cells, which was demonstrated using a cell-permeable substrate of the proteasome, TAS3. Furthermore, the best activator enhanced the degradation of aggregation-prone α-synuclein and Tau-441. The obtained compounds may therefore have the potential to compensate for the unbalanced proteostasis found in aging and age-related diseases.


Subject(s)
Aging , Peptide Fragments , Proteasome Endopeptidase Complex , Humans , Aging/metabolism , alpha-Synuclein/metabolism , HEK293 Cells , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Proteolysis/drug effects , tau Proteins/metabolism , Peptide Fragments/pharmacology
6.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38716707

ABSTRACT

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Proteins , Cysteine Endopeptidases , Peptidomimetics , Small Molecule Libraries , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gram-Positive Bacteria/drug effects
7.
Protein Sci ; 33(6): e5019, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747396

ABSTRACT

AF9 (MLLT3) and its paralog ENL(MLLT1) are members of the YEATS family of proteins with important role in transcriptional and epigenetic regulatory complexes. These proteins are two common MLL fusion partners in MLL-rearranged leukemias. The oncofusion proteins MLL-AF9/ENL recruit multiple binding partners, including the histone methyltransferase DOT1L, leading to aberrant transcriptional activation and enhancing the expression of a characteristic set of genes that drive leukemogenesis. The interaction between AF9 and DOT1L is mediated by an intrinsically disordered C-terminal ANC1 homology domain (AHD) in AF9, which undergoes folding upon binding of DOT1L and other partner proteins. We have recently reported peptidomimetics that disrupt the recruitment of DOT1L by AF9 and ENL, providing a proof-of-concept for targeting AHD and assessing its druggability. Intrinsically disordered proteins, such as AF9 AHD, are difficult to study and characterize experimentally on a structural level. In this study, we present a successful protein engineering strategy to facilitate structural investigation of the intrinsically disordered AF9 AHD domain in complex with peptidomimetic inhibitors by using maltose binding protein (MBP) as a crystallization chaperone connected with linkers of varying flexibility and length. The strategic incorporation of disulfide bonds provided diffraction-quality crystals of the two disulfide-bridged MBP-AF9 AHD fusion proteins in complex with the peptidomimetics. These successfully determined first series of 2.1-2.6 Å crystal complex structures provide high-resolution insights into the interactions between AHD and its inhibitors, shedding light on the role of AHD in recruiting various binding partner proteins. We show that the overall complex structures closely resemble the reported NMR structure of AF9 AHD/DOT1L with notable difference in the conformation of the ß-hairpin region, stabilized through conserved hydrogen bonds network. These first series of AF9 AHD/peptidomimetics complex structures are providing insights of the protein-inhibitor interactions and will facilitate further development of novel inhibitors targeting the AF9/ENL AHD domain.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Peptidomimetics , Humans , Crystallography, X-Ray , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/antagonists & inhibitors , Models, Molecular , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/chemistry , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Peptidomimetics/chemistry , Peptidomimetics/metabolism , Protein Domains
8.
J Med Chem ; 67(11): 8757-8790, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38753594

ABSTRACT

Given the crucial role of the main protease (Mpro) in the replication cycle of SARS-CoV-2, this viral cysteine protease constitutes a high-profile drug target. We investigated peptidomimetic azapeptide nitriles as auspicious, irreversibly acting inhibitors of Mpro. Our systematic approach combined an Mpro active-site scanning by combinatorially assembled azanitriles with structure-based design. Encouraged by the bioactive conformation of open-chain inhibitors, we conceptualized the novel chemotype of macrocyclic azanitriles whose binding mode was elucidated by cocrystallization. This strategy provided a favorable entropic contribution to target binding and resulted in the development of the extraordinarily potent Mpro inhibitor 84 with an IC50 value of 3.23 nM and a second-order rate constant of inactivation, kinac/Ki, of 448,000 M-1s-1. The open-chain Mpro inhibitor 58, along with the macrocyclic compounds 83 and 84, a broad-spectrum anticoronaviral agent, demonstrated the highest antiviral activity with EC50 values in the single-digit micromolar range. Our findings are expected to promote the future development of peptidomimetic Mpro inhibitors as anti-SARS-CoV-2 agents.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Nitriles , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Structure-Activity Relationship , Humans , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , COVID-19 Drug Treatment , Drug Discovery , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis
9.
J Med Chem ; 67(11): 8585-8608, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38809766

ABSTRACT

The von Hippel-Lindau (VHL) protein plays a pivotal role in regulating the hypoxic stress response and has been extensively studied and utilized in the targeted protein degradation field, particularly in the context of bivalent degraders. In this study, we present a comprehensive peptidomimetic structure-activity relationship (SAR) approach, combined with cellular NanoBRET target engagement assays to enhance the existing VHL ligands. Through systematic modifications of the molecule, we identified the 1,2,3-triazole group as an optimal substitute of the left-hand side amide bond that yields 10-fold higher binding activity. Moreover, incorporating conformationally constrained alterations on the methylthiazole benzylamine moiety led to the development of highly potent VHL ligands with picomolar binding affinity and significantly improved oral bioavailability. We anticipate that our optimized VHL ligand, GNE7599, will serve as a valuable tool compound for investigating the VHL pathway and advancing the field of targeted protein degradation.


Subject(s)
Biological Availability , Peptidomimetics , Von Hippel-Lindau Tumor Suppressor Protein , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacokinetics , Peptidomimetics/pharmacology , Humans , Ligands , Structure-Activity Relationship , Administration, Oral , Animals
10.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38713071

ABSTRACT

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Subject(s)
Insect Proteins , Insecticides , Neuropeptides , Peptidomimetics , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Neuropeptides/chemistry , Neuropeptides/pharmacology , Neuropeptides/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemical synthesis , Drug Design , Juvenile Hormones/chemistry , Juvenile Hormones/pharmacology , Juvenile Hormones/metabolism , Cockroaches/drug effects , Cockroaches/chemistry
11.
Org Lett ; 26(19): 4088-4092, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38709636

ABSTRACT

Access to 1,2,3-triazolium-grafted peptoid macrocycles was developed by macrocyclization and multivalent postmodification of linear peptoid oligomers carrying an alternance of benzylic and propargyl groups as side chains. X-ray analysis and NMR studies revealed a conformational preference for constrained hairpin-shaped structures leading to the facial amphipathic character of these macrocycles. A preliminary evaluation showed the antimicrobial activities of these new cationic amphipathic architectures.


Subject(s)
Anti-Bacterial Agents , Macrocyclic Compounds , Microbial Sensitivity Tests , Peptidomimetics , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Molecular Structure , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Peptoids/chemistry , Peptoids/pharmacology , Peptoids/chemical synthesis , Crystallography, X-Ray , Bacteria/drug effects
12.
Bioorg Chem ; 147: 107316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583246

ABSTRACT

Ras GTPases and other CaaX proteins undergo multiple post-translational modifications at their carboxyl-terminus. These events initiate with prenylation of a cysteine and are followed by endoproteolytic removal of the 'aaX' tripeptide and carboxylmethylation. Some CaaX proteins are only subject to prenylation, however, due to the presence of an uncleavable sequence. In this study, uncleavable sequences were used to stage Ras isoforms in a farnesylated and uncleaved state to address the impact of CaaX proteolysis on protein localization and function. This targeted strategy is more specific than those that chemically inhibit the Rce1 CaaX protease or delete the RCE1 gene because global abrogation of CaaX proteolysis impacts the entire CaaX protein proteome and effects cannot be attributed to any specific CaaX protein of the many concurrently affected. With this targeted strategy, clear mislocalization and reduced activity of farnesylated and uncleaved Ras isoforms was observed. In addition, new peptidomimetics based on cleavable Ras CaaX sequences and the uncleavable CAHQ sequence were synthesized and tested as Rce1 inhibitors using in vitro and cell-based assays. Consistently, these non-hydrolyzable peptidomimetic Rce1 inhibitors recapitulate Ras mislocalization effects when modeled on cleavable but not uncleavable CaaX sequences. These findings indicate that a prenylated and uncleavable CaaX sequence, which can be easily applied to a wide range of mammalian CaaX proteins, can be used to probe the specific impact of CaaX proteolysis on CaaX protein properties under conditions of an otherwise normally processed CaaX protein proteome.


Subject(s)
ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemical synthesis , Proteolysis/drug effects , Molecular Structure , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , Peptidomimetics/chemical synthesis , Endopeptidases
13.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338655

ABSTRACT

Trypsin-like serine proteases are involved in many important physiological processes like blood coagulation and remodeling of the extracellular matrix. On the other hand, they are also associated with pathological conditions. The urokinase-pwlasminogen activator (uPA), which is involved in tissue remodeling, can increase the metastatic behavior of various cancer types when overexpressed and dysregulated. Another member of this protease class that received attention during the SARS-CoV 2 pandemic is TMPRSS2. It is a transmembrane serine protease, which enables cell entry of the coronavirus by processing its spike protein. A variety of different inhibitors have been published against both proteases. However, the selectivity over other trypsin-like serine proteases remains a major challenge. In the current study, we replaced the arginine moiety at the P1 site of peptidomimetic inhibitors with different bioisosteres. Enzyme inhibition studies revealed that the phenylguanidine moiety in the P1 site led to strong affinity for TMPRSS2, whereas the cyclohexylguanidine derivate potently inhibited uPA. Both inhibitors exhibited high selectivity over other structurally similar and physiologically important proteases.


Subject(s)
Peptidomimetics , Serine Proteinase Inhibitors , Urokinase-Type Plasminogen Activator , Ligands , Peptide Hydrolases , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Trypsin , Urokinase-Type Plasminogen Activator/metabolism , Serine Endopeptidases , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
14.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003529

ABSTRACT

Early detection of fatal and disabling diseases such as cancer, neurological and autoimmune dysfunctions is still desirable yet challenging to improve quality of life and longevity. Peptoids (N-substituted glycine oligomers) are a relatively new class of peptidomimetics, being highly versatile and capable of mimicking the architectures and the activities of the peptides but with a marked resistance to proteases and a propensity to cross the cellular membranes over the peptides themselves. For these properties, they have gained an ever greater interest in applications in bioengineering and biomedical fields. In particular, the present manuscript is to our knowledge the only review focused on peptoids for diagnostic applications and covers the last decade's literature regarding peptoids as tools for early diagnosis of pathologies with a great impact on human health and social behavior. The review indeed provides insights into the peptoid employment in targeted cancer imaging and blood-based screening of neurological and autoimmune diseases, and it aims to attract the scientific community's attention to continuing and sustaining the investigation of these peptidomimetics in the diagnosis field considering their promising peculiarities.


Subject(s)
Autoimmune Diseases , Neoplasms , Peptidomimetics , Peptoids , Humans , Peptoids/chemistry , Peptidomimetics/chemistry , Quality of Life , Peptides , Neoplasms/diagnosis , Autoimmune Diseases/diagnosis
15.
J Org Chem ; 88(14): 9910-9919, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37429014

ABSTRACT

The efficient transformation of hydroxyproline "doubly customizable units" into rigid hexahydropyrimidine units takes place in good global yields and generates compounds of pharmaceutical interest. In particular, the process can readily provide access to peptidomimetics and peptides with reversed sequences or with valuable turns.


Subject(s)
Peptides , Peptidomimetics , Hydroxyproline , Peptides/chemistry , Peptidomimetics/chemistry
16.
Eur J Med Chem ; 257: 115512, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37253309

ABSTRACT

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 µM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 µM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 µM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 µM) and low cytotoxicity (CC50 > 50 µM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.


Subject(s)
COVID-19 , Peptidomimetics , Animals , Mice , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , SARS-CoV-2 , Protease Inhibitors/chemistry , Ketones , Mice, Inbred ICR , Antiviral Agents/chemistry
17.
Eur J Med Chem ; 253: 115311, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37043904

ABSTRACT

Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2-P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the ß-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CLpro of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low µM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CLpro validating our design. Altogether, these results foster future work toward broad-spectrum 3CLpro inhibitors to challenge CoVs related pandemics.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Humans , SARS-CoV-2 , Protease Inhibitors/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , X-Rays , Peptide Hydrolases , Antiviral Agents/chemistry
18.
Chemistry ; 29(12): e202203476, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36454662

ABSTRACT

Small molecule-drug conjugates (SMDCs) mimicking the RGD sequence (-Arg-Gly-Asp-) with a non-peptide moiety require a pharmacophore-independent attachment site. A library of 36 sulfonamide-modified RGD mimetics with nM to pM affinity for integrin αV ß3 was synthesized and analysed via DAD mapping. The best structure of the conjugable RGD mimetic was used and a linker was attached to an aromatic ring by Negishi cross-coupling. The product retained high affinity and selectivity for integrin αV ß3 . The conjugable RGD mimetic was then attached to an enzymatically cleavable GKGEVA linker equipped with a self-immolative PABC and the antimitotic drug monomethyl auristatin E (MMAE). The resulting SMDC preferred binding to integrin αV ß3 over α5 ß1 in a ratio of 1 : 4519 (ELISA) and showed selectivity for αV ß3 -positive WM115 cells over αV ß3 -negative M21-L cells in the in vitro cell adhesion assay as well as in cell viability assays with a targeting index of 134 (M21-L/WM115).


Subject(s)
Integrin alphaVbeta3 , Peptidomimetics , Integrin alphaVbeta3/chemistry , Peptidomimetics/chemistry , Oligopeptides/chemistry
19.
Mol Divers ; 27(5): 2239-2255, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36331785

ABSTRACT

There has been considerable interest in transforming peptides into small molecules as peptide-based molecules often present poorer bioavailability and lower metabolic stability. Our studies looked into building machine learning (ML) models to investigate if ML is able to identify the 'bioactive' features of peptides and use the features to accurately discriminate between binding and non-binding small molecules. The ghrelin receptor (GR), a receptor that is implicated in various diseases, was used as an example to demonstrate whether ML models derived from a peptide library can be used to predict small molecule binders. ML models based on three different algorithms, namely random forest, support vector machine, and extreme gradient boosting, were built based on a carefully curated dataset of peptide/peptidomimetic and small molecule GR ligands. The results indicated that ML models trained with a dataset exclusively composed of peptides/peptidomimetics provide limited predictive power for small molecules, but that ML models trained with a diverse dataset composed of an array of both peptides/peptidomimetics and small molecules displayed exceptional results in terms of accuracy and false rates. The diversified models can accurately differentiate the binding small molecules from non-binding small molecules using an external validation set with new small molecules that we synthesized previously. Structural features that are the most critical contributors to binding activity were extracted and are remarkably consistent with the crystallography and mutagenesis studies.


Subject(s)
Peptidomimetics , Peptidomimetics/chemistry , Receptors, Ghrelin , Ligands , Peptides/chemistry , Machine Learning , Support Vector Machine
20.
Future Med Chem ; 14(24): 1899-1921, 2022 12.
Article in English | MEDLINE | ID: mdl-36421051

ABSTRACT

Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration  values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Peptidomimetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Peptidomimetics/pharmacology , Peptidomimetics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...