Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Cardiovasc Diabetol ; 23(1): 344, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285459

ABSTRACT

Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.


Subject(s)
Diabetic Angiopathies , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Angiopathies/genetics , Diabetic Angiopathies/diagnosis , Diabetic Angiopathies/therapy , Animals , Gene Expression Regulation , Genetic Markers , Prognosis , Signal Transduction , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/therapy , Peripheral Arterial Disease/diagnosis
2.
Front Immunol ; 15: 1432041, 2024.
Article in English | MEDLINE | ID: mdl-39221259

ABSTRACT

Introduction: A growing body of research has shown a strong connection between circulating inflammatory proteins and Peripheral artery disease (PAD). However, the causal relationship between circulating inflammatory proteins and PAD is still not fully understood. To investigate this association, we conducted a bidirectional Mendelian randomization study. Materials and methods: Our study utilized genetic variation data obtained from genome-wide association studies (GWAS) datasets. Specifically, the GWAS dataset related to PAD (identifier: finn-b-I9_PAD) included 7,098 cases and 206,541 controls. Additionally, we extracted data on 91 inflammatory proteins from another GWAS dataset (identifiers: GCST90274758-GCST90274848), involving 14,824 participants. To assess the causal relationship between circulating inflammatory proteins and PAD development, we employed methodologies such as inverse variance weighting (IVW), MR Egger regression, and the weighted median approach. Furthermore, sensitivity analyses were conducted to ensure the reliability and robustness of our findings. Results: Two inflammatory proteins were found to be significantly associated with PAD risk: Natural killer cell receptor 2B4 levels (OR, 1.219; 95% CI,1.019~1.457; P=0.03), Fractalkine levels (OR, 0.755; 95% CI=0.591~0.965; P=0.025). PAD had statistically significant effects on 12 inflammatory proteins: C-C motif chemokine 19 levels (OR, 0.714; 95% CI, 0.585 to 0.872; P=0.001), T-cell surface glycoprotein CD5 levels (OR, 0.818; 95% CI, 0.713 to 0.938; P=0.004), CUB domain-containing protein 1 levels (OR, 0.889; 95% CI, 0.809 to 0.977; P=0.015), Fibroblast growth factor 23 levels (OR, 1.129; 95% CI, 1.009 to 1.264; P=0.034), Interferon gamma levels (OR, 1.124; 95% CI, (1.011 to 1.250); P=0.031),Interleukin-15 receptor subunit alpha levels (OR, 1.183; 95% CI,(1.005 to 1.392); P=0.044), Interleukin-17C levels (OR,1.186; 95% CI, (1.048 to 1.342); P=0.007), Interleukin-1-alpha levels (OR, 1.349; 95% CI, (1.032 to 1.765); P=0.029), Interleukin-5 levels (OR, 1.119; 95% CI,(1.003 to 1.248); P=0.043), Latency-associated peptide transforming growth factor beta 1 levels (OR,1.123; 95% CI, (1.020 to 1.236); P=0.018), Matrix metalloproteinase-10 levels (OR, 1.119; 95% CI,(1.015 to 1.233); P=0.024), Signaling lymphocytic activation molecule levels (OR, 0.823; 95% CI, (0.693 to 0.978); P=0.027). Conclusion: Our research expands on genetic studies exploring the strong association between circulating inflammatory proteins and PAD. This discovery has the potential to inform and shape future clinical and basic research endeavors in this area.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Peripheral Arterial Disease , Polymorphism, Single Nucleotide , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Genetic Predisposition to Disease , Chemokine CX3CL1/blood , Chemokine CX3CL1/genetics , Biomarkers/blood , Inflammation/blood , Inflammation/genetics , Male , Risk Factors
3.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120300

ABSTRACT

Peripheral artery disease (PAD), a significant health burden worldwide, affects lower extremities due to atherosclerosis in peripheral vessels. Although the mechanisms of PAD have been well studied, the molecular milieu of the plaques localized within peripheral arteries are not well understood. Thus, to identify PAD-lesion-specific gene expression profiles precluding genetic, environmental, and dietary biases, we studied the transcriptomic profile of nine plaque tissues normalized to non-plaque tissues from the same donors. A total of 296 upregulated genes, 274 downregulated genes, and 186 non-coding RNAs were identified. STAG1, SPCC3, FOXQ1, and E2F3 were key downregulated genes, and CD93 was the top upregulated gene. Autophagosome assembly, cellular response to UV, cytoskeletal organization, TCR signaling, and phosphatase activity were the key dysregulated pathways identified. Telomerase regulation and autophagy were identified as novel interacting pathways using network analysis. The plaque tissue was predominantly composed of immune cells and dedifferentiated cell populations indicated by cell-specific marker-imputed gene expression analysis. This study identifies novel genes, non-coding RNAs, associated regulatory pathways, and the cell composition of the plaque tissue in PAD patients. The autophagy and immunoregulatory genes may drive novel mechanisms, resulting in atheroma. These novel interacting networks and genes have potential for PAD-specific therapeutic applications.


Subject(s)
Autophagy , Gene Expression Profiling , Peripheral Arterial Disease , Plaque, Atherosclerotic , Transcriptome , Humans , Autophagy/genetics , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/pathology , Transcriptome/genetics , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology , Male , Female , Gene Regulatory Networks , Middle Aged , Aged , Gene Expression Regulation
4.
Ann Vasc Surg ; 108: 279-286, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38960093

ABSTRACT

BACKGROUND: Genome wide association studies (GWAS) have allowed for a rapid increase in our understanding of the underlying genetics and biology of many diseases. By capitalizing on common genetic variation between individuals, GWAS can identify DNA variants associated with diseases of interest. A variety of statistical methods can be applied to GWAS results which allows for risk factor identification, stratification, and to identify potential treatments. Peripheral artery disease (PAD) is a common vascular disease that has been shown to have a strong genetic component. This article provides a review of the modern literature and our current understanding of the role of genetics in PAD. METHODS: All available GWAS studies on PAD were reviewed. A literature search involving these studies was conducted and relevant articles applying the available GWAS data were summarized to provide a comprehensive review of our current understanding of the genetic component in PAD. RESULTS: The largest available GWAS on PAD has identified 19 genome wide significant loci, with factor V Leiden and genes responsible for circulating lipoproteins being implicated in the development of PAD. Mendelian randomization (MR) studies have identified risk factors and causal associations with smoking, diabetes, and obesity and many other traits; protein-based MR has also identified circulating lipid and clotting factor levels associated with the incidence of PAD. Polygenic risk scores may allow for improved prediction of disease incidence and allow for early identification of at-risk patients but more work needs to be done to validate this approach. CONCLUSIONS: Genetic epidemiology has allowed for an increased understanding of PAD in the past decade. Genome-wide association studies have led to improved detection of genetic contributions to PAD, and further genetic analyses have validated risk factors and may provide options for improved screening in at-risk populations. Ongoing biobank studies of chronic limb threatening ischemia patients and the increasing ancestral diversity in biobank enrollment will allow for even further exploration into the pathogenesis and progression of PAD.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Peripheral Arterial Disease , Phenotype , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/therapy , Peripheral Arterial Disease/epidemiology , Risk Factors , Risk Assessment , Prognosis , Predictive Value of Tests , Mendelian Randomization Analysis , Multifactorial Inheritance , Genetic Markers
5.
Arterioscler Thromb Vasc Biol ; 44(9): 2108-2117, 2024 09.
Article in English | MEDLINE | ID: mdl-39051123

ABSTRACT

BACKGROUND: Arterial and venous cardiovascular conditions, such as coronary artery disease (CAD), peripheral artery disease (PAD), and venous thromboembolism (VTE), are genetically correlated. Interrogating underlying mechanisms may shed light on disease mechanisms. In this study, we aimed to identify (1) epidemiological and (2) causal, genetic relationships between metabolites and CAD, PAD, and VTE. METHODS: We used metabolomic data from 95 402 individuals in the UK Biobank, excluding individuals with prevalent cardiovascular disease. Cox proportional-hazards models estimated the associations of 249 metabolites with incident disease. Bidirectional 2-sample Mendelian randomization (MR) estimated the causal effects between metabolites and outcomes using genome-wide association summary statistics for metabolites (n=118 466 from the UK Biobank), CAD (n=184 305 from CARDIoGRAMplusC4D 2015), PAD (n=243 060 from the Million Veterans Project), and VTE (n=650 119 from the Million Veterans Project). Multivariable MR was performed in subsequent analyses. RESULTS: We found that 196, 115, and 74 metabolites were associated (P<0.001) with CAD, PAD, and VTE, respectively. Further interrogation of these metabolites with MR revealed 94, 34, and 9 metabolites with potentially causal effects on CAD, PAD, and VTE, respectively. There were 21 metabolites common to CAD and PAD and 4 common to PAD and VTE. Many putatively causal metabolites included lipoprotein traits with heterogeneity across different sizes and lipid subfractions. Small VLDL (very-low-density lipoprotein) particles increased the risk for CAD while large VLDL particles decreased the risk for VTE. We identified opposing directions of CAD and PAD effects for cholesterol and triglyceride concentrations within HDLs (high-density lipoproteins). Subsequent sensitivity analyses including multivariable MR revealed several metabolites with robust, potentially causal effects of VLDL particles on CAD. CONCLUSIONS: While common vascular conditions are associated with overlapping metabolomic profiles, MR prioritized the role of specific lipoprotein species for potential pharmacological targets to maximize benefits in both arterial and venous beds.


Subject(s)
Coronary Artery Disease , Mendelian Randomization Analysis , Metabolomics , Peripheral Arterial Disease , Venous Thromboembolism , Humans , Coronary Artery Disease/epidemiology , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/diagnosis , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/genetics , Venous Thromboembolism/blood , Venous Thromboembolism/epidemiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/genetics , Male , Female , Middle Aged , Risk Factors , Aged , Risk Assessment , Genome-Wide Association Study , United Kingdom/epidemiology
6.
Ann Vasc Surg ; 108: 557-563, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39025213

ABSTRACT

BACKGROUND: This pilot study aimed to investigate the association between the single nucleotide polymorphism (SNP) rs3918226 in the promoter of the nitric oxide synthase (NOS3) gene and the risk of peripheral artery disease (PAD). METHODS: DNA samples from 1,263 unrelated subjects of Slavic origin, including 620 patients with PAD and 643 controls, were genotyped for the SNP rs3918226 using the MassArray-4 system. RESULTS: The rs3918226 polymorphism was found to be strongly associated with an increased risk of PAD regardless of coronary artery disease, hypertension, or cigarette smoking (odds ratio [OR] = 2.86; 95% confidence interval [CI] 1.89-4.32; Pperm < 0.0001). The SNP-PAD association was almost 3 times stronger in females (OR = 8.31; 95% CI 3.07-22.48) than in males (OR = 1.79; 95% CI 1.10-2.93). SNP rs3918226 was correlated with ankle-brachial index and total plasma cholesterol in patients with PAD (Рperm < 0.05). The NOS3 polymorphism was closely associated with SNPs rs7692387 and rs13139571 in guanylate cyclase soluble subunit alpha-3 (GUCY1A3) to determine the risk of PAD, suggesting that the rs3918226 polymorphism may disrupt signaling in the NO-soluble guanylyl cyclase pathway. Diplotypes with wild-type alleles, such as NOS3 rs3918226-C/C×GUCY1A1 rs7692387G/G and NOS3 rs3918226-C/C×GUCY1A1 rs13139571C/C, showed strong protection against disease risk (false discovery rate ≤ 0.001). Functional SNP annotation revealed that the allele rs3918226-T was associated with decreased expression of NOS3, most strongly in the tibial arteries than in the coronary artery or aorta. CONCLUSIONS: The present study is the first to show that the rs3918226 polymorphism of NOS3 is a novel susceptibility marker for PAD. Further research in independent populations is necessary to reproduce the association between polymorphism rs3918226 and disease risk.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Nitric Oxide Synthase Type III , Peripheral Arterial Disease , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Humans , Male , Female , Nitric Oxide Synthase Type III/genetics , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/enzymology , Peripheral Arterial Disease/diagnosis , Aged , Middle Aged , Risk Factors , Case-Control Studies , Pilot Projects , Risk Assessment , Gene Frequency , Ankle Brachial Index , Sex Factors
7.
Cardiovasc Diabetol ; 23(1): 274, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049097

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.


Subject(s)
Endothelial Cells , Macrophages , Myocytes, Smooth Muscle , Peripheral Arterial Disease , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/physiopathology , Animals , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Macrophages/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Gene Expression Regulation , Diabetic Angiopathies/genetics , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus/diagnosis , Signal Transduction , Vascular Remodeling/genetics , Epigenesis, Genetic
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167323, 2024 10.
Article in English | MEDLINE | ID: mdl-38925483

ABSTRACT

BACKGROUND: Peripheral artery disease (PAD) is an ischemic disease with a rising incidence worldwide. The lncRNA H19 (H19) is enriched in endothelial progenitor cells (EPCs), and transplantation of pyroptosis-resistant H19-overexpressed EPCs (oe-H19-EPCs) may promote vasculogenesis and blood flow recovery in PAD, especially with critical limb ischemia (CLI). METHODS: EPCs isolated from human peripheral blood was characterized using immunofluorescence and flow cytometry. Cell proliferation was determined with CCK8 and EdU assays. Cell migration was assessed by Transwell and wound healing assays. The angiogenic potential was evaluated using tube formation assay. The pyroptosis pathway-related protein in EPCs was detected by western blot. The binding sites of H19 and FADD on miR-107 were analyzed using Luciferase assays. In vivo, oe-H19-EPCs were transplanted into a mouse ischemic limb model, and blood flow was detected by laser Doppler imaging. The transcriptional landscape behind the therapeutic effects of oe-H19-EPCs on ischemic limbs were examined with whole transcriptome sequencing. RESULTS: Overexpression of H19 in EPCs led to an increase in proliferation, migration, and tube formation abilities. These effects were mediated through pyroptosis pathway, which is regulated by the H19/miR-107/FADD axis. Transplantation of oe-H19-EPCs in a mouse ischemic limb model promoted vasculogenesis and blood flow recovery. Whole transcriptome sequencing indicated significant activation of vasculogenesis pathway in the ischemic limbs following treatment with oe-H19-EPCs. CONCLUSIONS: Overexpression of H19 increases FADD level by competitively binding to miR-107, leading to enhanced proliferation, migration, vasculogenesis, and inhibition of pyroptosis in EPCs. These effects ultimately promote the recovery of blood flow in CLI.


Subject(s)
Endothelial Progenitor Cells , Fas-Associated Death Domain Protein , Ischemia , MicroRNAs , Pyroptosis , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pyroptosis/genetics , Endothelial Progenitor Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Ischemia/metabolism , Ischemia/pathology , Ischemia/genetics , Humans , Animals , Mice , Fas-Associated Death Domain Protein/metabolism , Fas-Associated Death Domain Protein/genetics , Male , Lower Extremity/blood supply , Lower Extremity/pathology , Cell Movement/genetics , Cell Proliferation , Neovascularization, Physiologic/genetics , Mice, Inbred C57BL , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/pathology , Peripheral Arterial Disease/genetics , Disease Models, Animal
9.
Curr Vasc Pharmacol ; 22(5): 342-354, 2024.
Article in English | MEDLINE | ID: mdl-38910413

ABSTRACT

BACKGROUND: Restenosis (RS) poses a significant concern, leading to recurrent ischemia and the potential for amputation following intraluminal angioplasty in the treatment of Peripheral Artery Disease (PAD). Through microRNA microarray analysis, the study detected a significant downregulation of miR-199a-5p within arterial smooth muscle cells (ASMCs) associated with RS. OBJECTIVE: This research aims to explore the possible function and the underlying mechanisms of miR-199a-5p in the context of RS. METHODS: Primary ASMCs were extracted from the femoral arteries of both healthy individuals and patients with PAD or RS. The expression levels of miR-199a-5p were assessed using both qRT-PCR and in situ hybridization techniques. To examine the impacts of miR-199a-5p, a series of experiments were performed, including flow cytometry, TUNEL assay, EdU assay, CCK8 assay, Transwell assay, and wound closure assay. A rat carotid balloon injury model was employed to elucidate the mechanism through which miR-199a-5p mitigated neointimal hyperplasia. RESULTS: MiR-199a-5p exhibited downregulation in RS patients and was predominantly expressed within ASMCs. Elevated the expression of miR-199a-5p resulted in an inhibitory effect of proliferation and migration in ASMCs. Immunohistochemistry and a dual-luciferase reporter assay uncovered that RS exhibited elevated expression levels of both HIF-1α and E2F3, and they were identified as target genes regulated by miR-199a-5p. The co-transfection of lentiviruses carrying HIF-1α and E2F3 alongside miR-199a-5p further elucidated their role in the cellular responses mediated by miR-199a-5p. In vivo, the delivery of miR-199a-5p via lentivirus led to the mitigation of neointimal formation following angioplasty, achieved by targeting HIF-1α and E2F3. CONCLUSION: MiR-199a-5p exhibits promise as a prospective therapeutic target for RS since it alleviates the condition by inhibiting the proliferation and migration of ASMCs via its regulation of HIF-1α and E2F3.


Subject(s)
Cell Movement , Cell Proliferation , Disease Models, Animal , E2F3 Transcription Factor , Hypoxia-Inducible Factor 1, alpha Subunit , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Peripheral Arterial Disease , Rats, Sprague-Dawley , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/pathology , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/therapy , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Cells, Cultured , E2F3 Transcription Factor/genetics , E2F3 Transcription Factor/metabolism , Middle Aged , Signal Transduction , Case-Control Studies , Femoral Artery/pathology , Femoral Artery/metabolism , Femoral Artery/surgery , Femoral Artery/physiopathology , Neointima , Female , Carotid Artery Injuries/genetics , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Aged , Angioplasty, Balloon/adverse effects , Apoptosis/genetics
10.
Arterioscler Thromb Vasc Biol ; 44(8): 1764-1783, 2024 08.
Article in English | MEDLINE | ID: mdl-38934117

ABSTRACT

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.


Subject(s)
Disease Models, Animal , Glycolysis , Hindlimb , Ischemia , Muscle, Skeletal , Neovascularization, Physiologic , Phosphofructokinase-2 , Regional Blood Flow , Animals , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Ischemia/metabolism , Ischemia/genetics , Ischemia/physiopathology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Male , Mice, Inbred C57BL , Humans , Peripheral Arterial Disease/metabolism , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/physiopathology , Signal Transduction , Glycogen/metabolism , Recovery of Function , Endothelial Cells/metabolism , Endothelial Cells/enzymology , Mice , Cell Hypoxia , Cells, Cultured
13.
PLoS One ; 19(5): e0303610, 2024.
Article in English | MEDLINE | ID: mdl-38758931

ABSTRACT

We have previously shown that polygenic risk scores (PRS) can improve risk stratification of peripheral artery disease (PAD) in a large, retrospective cohort. Here, we evaluate the potential of PRS in improving the detection of PAD and prediction of major adverse cardiovascular and cerebrovascular events (MACCE) and adverse events (AE) in an institutional patient cohort. We created a cohort of 278 patients (52 cases and 226 controls) and fit a PAD-specific PRS based on the weighted sum of risk alleles. We built traditional clinical risk models and machine learning (ML) models using clinical and genetic variables to detect PAD, MACCE, and AE. The models' performances were measured using the area under the curve (AUC), net reclassification index (NRI), integrated discrimination improvement (IDI), and Brier score. We also evaluated the clinical utility of our PAD model using decision curve analysis (DCA). We found a modest, but not statistically significant improvement in the PAD detection model's performance with the inclusion of PRS from 0.902 (95% CI: 0.846-0.957) (clinical variables only) to 0.909 (95% CI: 0.856-0.961) (clinical variables with PRS). The PRS inclusion significantly improved risk re-classification of PAD with an NRI of 0.07 (95% CI: 0.002-0.137), p = 0.04. For our ML model predicting MACCE, the addition of PRS did not significantly improve the AUC, however, NRI analysis demonstrated significant improvement in risk re-classification (p = 2e-05). Decision curve analysis showed higher net benefit of our combined PRS-clinical model across all thresholds of PAD detection. Including PRS to a clinical PAD-risk model was associated with improvement in risk stratification and clinical utility, although we did not see a significant change in AUC. This result underscores the potential clinical utility of incorporating PRS data into clinical risk models for prevalent PAD and the need for use of evaluation metrics that can discern the clinical impact of using new biomarkers in smaller populations.


Subject(s)
Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/diagnosis , Female , Male , Aged , Middle Aged , Risk Assessment/methods , Risk Factors , Machine Learning , Cardiovascular Diseases/genetics , Cardiovascular Diseases/diagnosis , Retrospective Studies , Multifactorial Inheritance/genetics , Case-Control Studies , Area Under Curve , Genetic Risk Score
14.
Ann Vasc Surg ; 107: 229-246, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38582204

ABSTRACT

Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.


Subject(s)
Genetic Therapy , Peripheral Arterial Disease , Humans , Genetic Therapy/adverse effects , Peripheral Arterial Disease/therapy , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/physiopathology , Animals , Diffusion of Innovation , Genomics , Treatment Outcome , Forecasting , Gene Transfer Techniques , Graft Occlusion, Vascular/therapy , Graft Occlusion, Vascular/etiology , Graft Occlusion, Vascular/genetics , Graft Occlusion, Vascular/physiopathology
15.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674087

ABSTRACT

Vascular diseases, including peripheral arterial disease (PAD), pulmonary arterial hypertension, and atherosclerosis, significantly impact global health due to their intricate relationship with vascular remodeling. This process, characterized by structural alterations in resistance vessels, is a hallmark of heightened vascular resistance seen in these disorders. The influence of environmental estrogenic endocrine disruptors (EEDs) on the vasculature suggests a potential exacerbation of these alterations. Our study employs an integrative approach, combining data mining with bioinformatics, to unravel the interactions between EEDs and vascular remodeling genes in the context of PAD. We explore the molecular dynamics by which EED exposure may alter vascular function in PAD patients. The investigation highlights the profound effect of EEDs on pivotal genes such as ID3, LY6E, FOS, PTP4A1, NAMPT, GADD45A, PDGF-BB, and NFKB, all of which play significant roles in PAD pathophysiology. The insights gained from our study enhance the understanding of genomic alterations induced by EEDs in vascular remodeling processes. Such knowledge is invaluable for developing strategies to prevent and manage vascular diseases, potentially mitigating the impact of harmful environmental pollutants like EEDs on conditions such as PAD.


Subject(s)
Computational Biology , Endocrine Disruptors , Gene Regulatory Networks , Peripheral Arterial Disease , Vascular Remodeling , Humans , Peripheral Arterial Disease/genetics , Computational Biology/methods , Vascular Remodeling/genetics , Vascular Remodeling/drug effects , Estrogens/metabolism
16.
Sci Rep ; 14(1): 8615, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616192

ABSTRACT

Diabetes mellitus (DM) is a significant risk factor for peripheral arterial disease (PAD), and PAD is an independent predictor of cardiovascular disorders (CVDs). Growing evidence suggests that long non-coding RNAs (lncRNAs) significantly contribute to disease development and underlying complications, particularly affecting smooth muscle cells (SMCs). So far, no study has focused on transcriptome analysis of lncRNAs in PAD patients with and without DM. Tissue samples were obtained from our Vascular Biobank. Due to the sample's heterogeneity, expression analysis of lncRNAs in whole tissue detected only ACTA2-AS1 with a 4.9-fold increase in PAD patients with DM. In contrast, transcriptomics of SMCs revealed 28 lncRNAs significantly differentially expressed between PAD with and without DM (FDR < 0.1). Sixteen lncRNAs were of unknown function, six were described in cancer, one connected with macrophages polarisation, and four were associated with CVDs, mainly with SMC function and phenotypic switch (NEAT1, MIR100HG, HIF1A-AS3, and MRI29B2CHG). The enrichment analysis detected additional lncRNAs H19, CARMN, FTX, and MEG3 linked with DM. Our study revealed several lncRNAs in diabetic PAD patients associated with the physiological function of SMCs. These lncRNAs might serve as potential therapeutic targets to improve the function of SMCs within the diseased tissue and, thus, the clinical outcome.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Peripheral Arterial Disease , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Peripheral Arterial Disease/genetics , Myocytes, Smooth Muscle , Gene Expression Profiling
17.
Front Endocrinol (Lausanne) ; 15: 1345605, 2024.
Article in English | MEDLINE | ID: mdl-38435749

ABSTRACT

Background: Previous observational studies have demonstrated a correlation between metabolic syndrome related diseases and an elevated susceptibility to ulcers of lower limb. It has been suggested that this causal relationship may be influenced by the presence of peripheral artery disease (PAD). Nevertheless, the precise contribution of these factors as determinants of ulcers of lower limb remains largely unexplored. Method: This research incorporated information on hypertension, BMI, hyperuricemia, type 2 diabetes, PAD, and ulcers of lower limb sourced from the GWAS database. Univariate Mendelian randomization (SVMR) and multivariate Mendelian randomization (MVMR) methods were employed to assess the association between metabolic syndrome related diseases, including hypertension, obesity, hyperuricemia, and type 2 diabetes, as well as to investigate whether this association was influenced by PAD. Results: Univariate Mendelian randomization analysis showed that genetically predicted hypertension, BMI, and type 2 diabetes were associated with an increased risk of PAD and ulcers of lower limb, and PAD was associated with an increased risk of ulcers of lower limb, but there is no causal relationship between hyperuricemia and ulcers of lower limb. The results of multivariate Mendelian randomization showed that PAD mediated the causal relationship between hypertension, obesity and ulcers of lower limb, but the relationship between type 2 diabetes and ulcers of lower limb was not mediated by PAD. Conclusion: Hypertension, BMI and type 2 diabetes can increase the risk of ulcers of lower limb, and PAD can be used as a mediator of hypertension and obesity leading to ulcers of lower limb, These findings may inform prevention and intervention strategies directed toward metabolic syndrome and ulcers of lower limb.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Hyperuricemia , Metabolic Diseases , Metabolic Syndrome , Peripheral Arterial Disease , Humans , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Mendelian Randomization Analysis , Ulcer , Hyperuricemia/complications , Hyperuricemia/epidemiology , Hyperuricemia/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/epidemiology , Peripheral Arterial Disease/genetics , Lower Extremity , Obesity
18.
Arterioscler Thromb Vasc Biol ; 44(5): 1114-1123, 2024 05.
Article in English | MEDLINE | ID: mdl-38545784

ABSTRACT

BACKGROUND: Hundreds of biomarkers for peripheral artery disease (PAD) have been reported in the literature; however, the observational nature of these studies limits causal inference due to the potential of reverse causality and residual confounding. We sought to evaluate the potential causal impact of putative PAD biomarkers identified in human observational studies through genetic causal inference methods. METHODS: Putative circulating PAD biomarkers were identified from human observational studies through a comprehensive literature search based on terms related to PAD using PubMed, Cochrane, and Embase. Genetic instruments were generated from publicly available genome-wide association studies of circulating biomarkers. Two-sample Mendelian randomization was used to test the association of genetically determined biomarker levels with PAD using summary statistics from a genome-wide association study of 31 307 individuals with and 211 753 individuals without PAD in the Veterans Affairs Million Veteran Program and replicated in data from FinnGen comprised of 11 924 individuals with and 288 638 individuals without PAD. RESULTS: We identified 204 unique circulating biomarkers for PAD from the observational literature, of which 173 were genetically instrumented using genome-wide association study results. After accounting for multiple testing (false discovery rate, <0.05), 10 of 173 (5.8%) biomarkers had significant associations with PAD. These 10 biomarkers represented categories including plasma lipoprotein regulation, lipid homeostasis, and protein-lipid complex remodeling. Observational literature highlighted different pathways including inflammatory response, negative regulation of multicellular organismal processes, and regulation of response to external stimuli. CONCLUSIONS: Integrating human observational studies and genetic causal inference highlights several key pathways in PAD pathophysiology. This work demonstrates that a substantial portion of biomarkers identified in observational studies are not well supported by human genetic evidence and emphasizes the importance of triangulating evidence to understand PAD pathophysiology. Although the identified biomarkers offer insights into atherosclerotic development in the lower limb, their specificity to PAD compared with more widespread atherosclerosis requires further study.


Subject(s)
Biomarkers , Genome-Wide Association Study , Mendelian Randomization Analysis , Peripheral Arterial Disease , Humans , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/blood , Peripheral Arterial Disease/diagnosis , Biomarkers/blood , Observational Studies as Topic , Genetic Predisposition to Disease , Risk Factors , Polymorphism, Single Nucleotide , Predictive Value of Tests
20.
Int Wound J ; 21(2): e14748, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358067

ABSTRACT

Diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN) and peripheral arterial disease (PAD) are common complications of diabetes mellitus, while diabetic peripheral neuropathy and peripheral arterial disease contribute to the pathogenesis of diabetic foot ulcers, and the pathogenic mechanisms between these three diseases still need further investigation. The keywords 'diabetic foot ulcer', 'diabetic peripheral neuropathy' and 'atherosclerosis' were used to search for related gene sets in the GEO database. Differentially expressed genes (DEGs) were screened and analysed for GO, KEGG and enrichR functional enrichment. Potential three disease biomarkers were identified by SVM-SVM-RFE and LASSO regression analysis. The results were also validated using external datasets and discriminability was measured by area under the ROC curve (AUC). Finally, biomarkers and co-upregulated genes were analysed through the GSEA and Attie Laboratories diabetes databases. A total of 11 shared genes (KRT16, CD24, SAMD9L, SRGAP2, FGL2, GPR34, DDIT4, NFE2L3, FBLN5, ANXA3 and CPA3), two biomarkers (SAMD9L and FGL2) and one co-upregulated gene (CD24) were screened. GO and KEGG pathway analysis of DEGs, enrichr enrichment analysis of shared differential genes and GSEA analysis of biomarkers showed that these significant genes were mainly focused on vasoregulatory, inflammatory-oxidative stress and immunomodulatory pathways. In this study, we used bioinformatics to investigate the intrinsic relationship and potential mechanisms of three common lower extremity complications of diabetes and identified two pivotal genes using the LASSO model and the SVM-RFE algorithm, which will further help clinicians to understand the relationship between diabetic complications, improve the diagnosis and treatment of diabetic foot problems and help doctors to identify the potential risk factors of diabetic foot.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Foot , Diabetic Neuropathies , Foot Ulcer , Peripheral Arterial Disease , Humans , Diabetic Foot/diagnosis , Diabetic Neuropathies/genetics , Diabetic Neuropathies/complications , Diabetes Mellitus, Type 2/complications , Peripheral Arterial Disease/genetics , Peripheral Arterial Disease/complications , Biomarkers , Basic-Leucine Zipper Transcription Factors , Fibrinogen , GTPase-Activating Proteins
SELECTION OF CITATIONS
SEARCH DETAIL