Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.534
Filter
1.
World J Gastroenterol ; 30(32): 3739-3742, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39221070

ABSTRACT

Gallbladder cancer (GBC) is a rare disease with a poor prognosis. Simple cholecystectomy may be an adequate treatment only for very early disease (Tis, T1a), whereas reoperation is recommended for more advanced disease (T1b and T2). Radical cholecystectomy should have two fundamental objectives: To radically resect the liver parenchyma and to achieve adequate clearance of the lymph nodes. However, recent studies have shown that compared with lymph node dissection alone, liver resection does not improve survival outcomes. The oncological roles of lymphadenectomy and liver resection is distinct. Therefore, for patients with incidental GBC without liver invasion, hepatic resection is not always mandatory.


Subject(s)
Cholecystectomy , Gallbladder Neoplasms , Hepatectomy , Lymph Node Excision , Humans , Cholecystectomy/adverse effects , Cholecystectomy/methods , Gallbladder Neoplasms/surgery , Gallbladder Neoplasms/pathology , Hepatectomy/methods , Hepatectomy/adverse effects , Incidental Findings , Liver/surgery , Liver/pathology , Liver/diagnostic imaging , Lymph Node Excision/methods , Lymph Node Excision/adverse effects , Lymphatic Metastasis , Neoplasm Staging , Peritoneum/surgery , Peritoneum/pathology , Treatment Outcome
2.
Radiographics ; 44(8): e230216, 2024 08.
Article in English | MEDLINE | ID: mdl-39088361

ABSTRACT

Disease spread in the abdomen and pelvis generally occurs in a predictable pattern in relation to anatomic landmarks and fascial planes. Anatomically, the abdominopelvic cavity is subdivided into several smaller spaces or compartments by key ligaments and fascial planes. The abdominal cavity has been traditionally divided into peritoneal, retroperitoneal, and pelvic extraperitoneal spaces. Recently, more clinically relevant classifications have evolved. Many pathologic conditions affect the abdominal cavity, including traumatic, inflammatory, infectious, and neoplastic processes. These abnormalities can extend beyond their sites of origin through various pathways. Identifying the origin of a disease process is the first step in formulating a differential diagnosis and ultimately reaching a final diagnosis. Pathologic conditions differ in terms of pathways of disease spread. For example, simple fluid tracks along fascial planes, respecting anatomic boundaries, while fluid from acute necrotizing pancreatitis can destroy fascial planes, resulting in transfascial spread without regard for anatomic landmarks. Furthermore, neoplastic processes can spread through multiple pathways, with a propensity for spread to noncontiguous sites. When the origin of a disease process is not readily apparent, recognizing the spread pattern can allow the radiologist to work backward and ultimately arrive at the site or source of pathogenesis. As such, a cohesive understanding of the peritoneal anatomy, the typical organ or site of origin for a disease process, and the corresponding pattern of disease spread is critical not only for initial diagnosis but also for establishing a road map for staging, anticipating further disease spread, guiding search patterns and report checklists, determining prognosis, and tailoring appropriate follow-up imaging studies. ©RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Peritoneal Diseases , Peritoneum , Humans , Peritoneum/diagnostic imaging , Peritoneum/pathology , Peritoneum/anatomy & histology , Peritoneal Diseases/diagnostic imaging , Diagnosis, Differential
3.
Ren Fail ; 46(2): 2394635, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39192609

ABSTRACT

BACKGROUND: The quality of life of patients receiving long-term peritoneal dialysis (PD) is significantly impacted by the onset of peritoneal fibrosis (PF), and one of the pathological changes is mesothelial-mesenchymal transition (MMT). In this study, we investigated the potential roles of miR-454-3p and signal transducer and activator of transcription 3 (STAT3) in the progression of peritoneal MMT and the underlying mechanisms. METHODS: Peritoneums were collected to detect morphology via hematoxylin-eosin staining and differentially expressed miRNAs were detected via RT-qPCR. PD effluent-derived cell populations in the peritoneal cavity were isolated from the effluents of 20 PD patients to determine miR-454-3p, STAT3, and MMT markers via Western blotting and RT-qPCR. The relationship between miR-454-3p and STAT3 was examined via a dual-luciferase reporter assay. Western blotting and RT-qPCR were utilized to evaluate the expression of STAT3, MMT markers, and glycolytic enzymes. Immunofluorescence staining revealed the localization and expression of MMT markers and STAT3. RESULTS: MiR-454-3p was downregulated in the peritoneums and PD effluent-derived cell populations of long-term PD patients. High glucose (HG) treatment promoted HMrSV5 cell MMT and glycolysis. MiR-454-3p overexpression alleviated HG-induced MMT and suppressed the expression of STAT3 and glycolytic enzymes. In contrast, the miR-454-3p inhibitor exacerbated HG-induced MMT and promoted the expression of glycolytic enzymes and STAT3. Moreover, STAT3 was the target of miR-454-3p. CONCLUSIONS: This study demonstrated the protective role of miR-454-3p in HG-induced MMT and glycolysis in HMrSv5 cells, suggesting that miR-454-3p may prevent MMT by suppressing glycolytic enzymes via the STAT3/PFKFB3 pathway in the HG environment.


Subject(s)
Epithelial-Mesenchymal Transition , Glucose , Glycolysis , MicroRNAs , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , STAT3 Transcription Factor , MicroRNAs/metabolism , MicroRNAs/genetics , STAT3 Transcription Factor/metabolism , Humans , Epithelial-Mesenchymal Transition/drug effects , Glucose/metabolism , Glucose/pharmacology , Glycolysis/drug effects , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/genetics , Peritoneum/pathology , Peritoneum/metabolism , Male , Female , Middle Aged , Cell Line , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/drug effects
4.
Front Immunol ; 15: 1396000, 2024.
Article in English | MEDLINE | ID: mdl-39192982

ABSTRACT

Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.


Subject(s)
Endometriosis , GATA6 Transcription Factor , Macrophages, Peritoneal , Animals , Female , Mice , Cytokines/metabolism , Disease Models, Animal , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/immunology , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Hyperalgesia/etiology , Hyperalgesia/metabolism , Hyperalgesia/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice, Inbred C57BL , Mice, Knockout , Peritoneum/pathology , Peritoneum/immunology , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics
5.
Pathol Res Pract ; 262: 155538, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191196

ABSTRACT

The mesothelium is a non-adhesive protective surface that lines the serosal cavities and organs within the body. The glycocalyx is a complex structure that coats the outer layer of the mesothelium. However, due to the limitations of conventional fixation techniques, studies on glycans are limited. In this study, lectin staining of frozen tissues was performed to investigate the diversity of glycans in the glycocalyx of mesothelial cells in mice. Datura stramonium lectin (DSL), which recognizes lactosamine and binds to Galectin-3 and -1, was broadly bound to the mesothelial cells of the visceral and parietal peritoneum but not to the pancreas, liver, intestine, or heart. Furthermore, human mesothelial cells in the omentum and parietal peritoneum were positive for DSL. Erythrina cristagalli lectin binding was specific to mesothelial cells in the parietal peritoneum, that is, the pleura, diaphragm, and peritoneum. Intriguingly, surface sialylation, the key element in reducing peritoneal dissemination and implantation, and promoting ascites formation by ovarian carcinoma cells, was much higher in the parietal peritoneum than in the omentum. These findings revealed slight differences in the glycans of mesothelial cells of different organs, which may be related to clinical diseases. These results also suggest that there may be differences in the functions of parietal and visceral mesothelial cells.


Subject(s)
Glycocalyx , Lectins , Glycocalyx/metabolism , Animals , Mice , Lectins/metabolism , Epithelium/metabolism , Humans , Peritoneum/metabolism , Peritoneum/pathology , Female , Staining and Labeling/methods , Omentum/metabolism , Omentum/pathology
6.
Int J Mol Sci ; 25(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39201294

ABSTRACT

The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-ß and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-ß expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-ß-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.


Subject(s)
Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , Humans , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/metabolism , Peritoneum/pathology , Peritoneum/metabolism , Transforming Growth Factor beta/metabolism , Animals , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A/metabolism , Peritonitis/etiology , Peritonitis/pathology , Peritonitis/metabolism
7.
Ren Fail ; 46(2): 2392849, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39165231

ABSTRACT

AIMS: To investigate the effects and mechanisms of LCZ696, an angiotensin receptor-neprilysin inhibitor (ARNI), on epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells and on macrophage M2 polarization. METHODS: We examined the effects of LCZ696 in a 4.25% high glucose peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis (PF) mouse model, and explored the mechanisms of LCZ696 on human peritoneal mesothelial cells (HPMCs) stimulated by TGF-ß1 (5 ng/mL) and on Raw264.7 cells stimulated by IL-4 (10 ng/mL). To further elucidate the mechanism, we treated HPMCs with the conditioned medium of Raw264.7 cells. RESULTS: LCZ696 effectively improved PF and inhibited the process of EMT in PDF mice. In vitro, LCZ696 also significantly alleviated the EMT of TGF-ß1 induced HPMCs, although there was no statistically significant difference when compared to the Valsartan treatment group. Moreover, LCZ696 ameliorates the increased expression of Snail and Slug, two nuclear transcription factors that drive the EMT. Mechanistically, TGF-ß1 increased the expression of TGFßRI, p-Smad3, p-PDGFRß and p-EGFR, while treatment with LCZ696 abrogated the activation of TGF-ß/Smad3, PDGFRß and EGFR signaling pathways. Additionally, exposure of Raw264.7 to IL-4 results in increasing expression of Arginase-1, CD163 and p-STAT6. Treatment with LCZ696 inhibited IL-4-elicited M2 macrophage polarization by inactivating the STAT6 signaling pathway. Furthermore, we observed that LCZ696 inhibits EMT by blocking TGF-ß1 secretion from M2 macrophages. CONCLUSION: Our study demonstrated that LCZ696 improves PF and ameliorates TGF-ß1-induced EMT of HPMCs by blocking TGF-ß/Smad3, PDGFRß and EGFR pathways. Meanwhile, LCZ696 also inhibits M2 macrophage polarization by regulating STAT6 pathway.


Subject(s)
Angiotensin Receptor Antagonists , Biphenyl Compounds , Epithelial-Mesenchymal Transition , Macrophages , Peritoneal Fibrosis , Tetrazoles , Valsartan , Epithelial-Mesenchymal Transition/drug effects , Mice , Animals , Valsartan/pharmacology , Biphenyl Compounds/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/prevention & control , Humans , Tetrazoles/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Aminobutyrates/pharmacology , RAW 264.7 Cells , Disease Models, Animal , Drug Combinations , Neprilysin/antagonists & inhibitors , Neprilysin/metabolism , Male , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Transforming Growth Factor beta1/metabolism , STAT6 Transcription Factor/metabolism , Peritoneum/pathology , Peritoneum/cytology , Peritoneum/drug effects , Signal Transduction/drug effects , Mice, Inbred C57BL
8.
Am J Physiol Renal Physiol ; 327(3): F363-F372, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38961839

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is considered as one of the senescence processes; reportedly, antisenescence therapies effectively reduce EMT. Some models have shown antisenescence effects with the use of sodium-glucose cotransporter 2 (SGLT2) inhibitor. Therefore, our study investigated the antisenescence effects of empagliflozin as an SGLT2 inhibitor in a peritoneal fibrosis model and their impact on EMT inhibition. For in vitro study, human peritoneal mesothelial cells (HPMCs) were isolated and grown in a 96-well plate. The cell media were exchanged with serum-free M199 medium with d-glucose, with or without empagliflozin. All animal experiments were carried out in male mice. Mice were randomly classified into three treatment groups based on peritoneal dialysis (PD) or empagliflozin. We evaluated changes in senescence and EMT markers in HPMCs and PD model. HPMCs treated with glucose transformed from cobblestone to spindle shape, resulting in EMT. Empagliflozin attenuated these morphological changes. Reactive oxygen species production, DNA damage, senescence, and EMT markers were increased by glucose treatment; however, cotreatment with glucose and empagliflozin attenuated these changes. For the mice with PD, an increase in thickness, collagen deposition, staining for senescence, or EMT markers of the parietal peritoneum was observed, which, however, was attenuated by cotreatment with empagliflozin. p53, p21, and p16 increased in mice with PD compared with those in the control group; however, these changes were decreased by empagliflozin. In conclusion, empagliflozin effectively attenuated glucose-induced EMT in HPMCs through a decrease in senescence. Cotreatment with empagliflozin improved peritoneal thickness and fibrosis in PD.NEW & NOTEWORTHY Epithelial-to-mesenchymal transition (EMT) is considered one of the senescence processes. Antisenescence therapies may effectively reduce EMT in peritoneal dialysis models. Human peritoneal mesothelial cells treated with glucose show an increase in senescence and EMT markers; however, empagliflozin attenuates these changes. Mice undergoing peritoneal dialysis exhibit increased senescence and EMT markers, which are decreased by empagliflozin. These findings suggest that empagliflozin may emerge as a novel strategy for prevention or treatment of peritoneal fibrosis.


Subject(s)
Benzhydryl Compounds , Cellular Senescence , Epithelial-Mesenchymal Transition , Glucosides , Peritoneal Dialysis , Peritoneal Fibrosis , Sodium-Glucose Transporter 2 Inhibitors , Animals , Epithelial-Mesenchymal Transition/drug effects , Glucosides/pharmacology , Benzhydryl Compounds/pharmacology , Peritoneal Dialysis/adverse effects , Cellular Senescence/drug effects , Male , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Mice , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glucose/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Cells, Cultured , DNA Damage/drug effects
9.
Surgery ; 176(4): 1256-1262, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39034213

ABSTRACT

BACKGROUND: In this study, we aimed to establish a stable and standardized animal model of peritoneal adhesions. METHODS: Forty-eight male Sprague-Dawley rats were randomly divided (n = 12 each) into blank control, classic cecum sidewall, ischemic button, and cecum-sidewall suture groups. The modified American Fertility Society adhesion score was used on postoperative day 7 to evaluate adhesions. Sixty male Sprague-Dawley rats were used to dynamically observe the adhesion characteristics of cecum-sidewall ischemic injury suture model at different time points (n = 60, randomly divided into groups a-e with 12 rats each). The modified American Fertility Society and Zühlke histologic scoring systems, hematoxylin-eosin staining, Masson staining, and computed tomography of the abdomen were used to evaluate adhesions on postoperative days 1, 3, 5, 7, and 14. RESULTS: No peritoneal adhesions were observed in the blank control group on postoperative day 7. In the classic cecum sidewall group, 8 rats had inconsistent adhesions, which had a modified American Fertility Society adhesion score of 2.25 ± 1.96. All rats in the ischemic button and cecum-sidewall suture groups developed significant adhesions with modified American Fertility Society scores of 3.08 ± 1.31 and 4.67 ± 0.78, respectively. When the modified American Fertility Society score was used, statistically significant differences were observed between the classic cecum sidewall groups and cecum-sidewall suture groups and between the ischemic button groups and cecum-sidewall suture groups. All animals in groups a-e developed adhesions; adhesion scores increased gradually with time. CONCLUSIONS: The cecum-sidewall ischemic injury suture model is a stable and standardized animal model of peritoneal adhesions.


Subject(s)
Disease Models, Animal , Peritoneal Diseases , Rats, Sprague-Dawley , Animals , Tissue Adhesions/pathology , Tissue Adhesions/etiology , Male , Rats , Peritoneal Diseases/pathology , Peritoneal Diseases/etiology , Cecum/surgery , Cecum/pathology , Cecum/injuries , Random Allocation , Suture Techniques , Peritoneum/pathology , Peritoneum/injuries , Postoperative Complications/etiology , Postoperative Complications/pathology
10.
FASEB J ; 38(13): e23819, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984942

ABSTRACT

Peritoneal dialysis is a common treatment for end-stage renal disease, but complications often force its discontinuation. Preventive treatments for peritoneal inflammation and fibrosis are currently lacking. Cyclo(His-Pro) (CHP), a naturally occurring cyclic dipeptide, has demonstrated protective effects in various fibrotic diseases, yet its potential role in peritoneal fibrosis (PF) remains uncertain. In a mouse model of induced PF, CHP was administered, and quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry was employed to identify PF-related protein signaling pathways. The results were further validated using human primary cultured mesothelial cells. This analysis revealed the involvement of histone deacetylase 3 (HDAC3) in the PF signaling pathway. CHP administration effectively mitigated PF in both peritoneal tissue and human primary cultured mesothelial cells, concurrently regulating fibrosis-related markers and HDAC3 expression. Moreover, CHP enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) while suppressing forkhead box protein M1 (FOXM1), known to inhibit Nrf2 transcription through its interaction with HDAC3. CHP also displayed an impact on spleen myeloid-derived suppressor cells, suggesting an immunomodulatory effect. Notably, CHP improved mitochondrial function in peritoneal tissue, resulting in increased mitochondrial membrane potential and adenosine triphosphate production. This study suggests that CHP can significantly prevent PF in peritoneal dialysis patients by modulating HDAC3 expression and associated signaling pathways, reducing fibrosis and inflammation markers, and improving mitochondrial function.


Subject(s)
Histone Deacetylases , Peritoneal Fibrosis , Animals , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Peritoneal Fibrosis/pathology , Mice , Humans , Male , Mice, Inbred C57BL , Signal Transduction/drug effects , Peritoneal Dialysis/adverse effects , Peritoneum/pathology , Peritoneum/metabolism
11.
Ren Fail ; 46(2): 2384586, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082695

ABSTRACT

Peritoneal dialysis (PD) is a widely used sustainable kidney replacement therapy. Prolonged use of PD fluids is associated with mesothelial-mesenchymal transition, peritoneal fibrosis, and eventual ultrafiltration (UF) failure. However, the impact of pressure on the peritoneum remains unclear. In the present study, we hypothesized increased pressure is a potential contributing factor to peritoneal fibrosis and investigated the possible mechanisms. In vitro experiments found that pressurization led to a mesenchymal phenotype, the expression of fibrotic markers and inflammatory factors in human mesothelial MeT-5A cells. Pressure also increased cell proliferation and augmented cell migration potential in MeT-5A cells. The mouse PD model and human peritoneum equilibrium test (PET) data both showed a positive association between higher pressure and increased small solute transport, along with decreased net UF. Mechanistically, we found that significant upregulation of CD44 in mesothelial cells upon pressurization. Notably, the treatment of CD44 neutralizing antibodies prevented pressure-induced phenotypic changes in mesothelial cells, while a CD44 inhibitor oligo-fucoidan ameliorated pressure-induced peritoneal thickening, fibrosis, and inflammation in PD mice. To conclude, intraperitoneal pressure results in peritoneal fibrosis in PD via CD44-mediated mesothelial changes and inflammation. CD44 blockage can be utilized as a novel preventive approach for PD-related peritoneal fibrosis and UF failure.


Subject(s)
Hyaluronan Receptors , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , Signal Transduction , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/pathology , Animals , Mice , Hyaluronan Receptors/metabolism , Humans , Peritoneum/pathology , Peritoneum/metabolism , Peritoneal Dialysis/adverse effects , Disease Models, Animal , Inflammation/metabolism , Pressure/adverse effects , Male , Cell Proliferation , Epithelial-Mesenchymal Transition , Mice, Inbred C57BL , Cell Line , Cell Movement
12.
Exp Cell Res ; 441(1): 114155, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39002689

ABSTRACT

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.


Subject(s)
Ascites , Fibrin , Fibrinogen , Integrin alpha5beta1 , Ovarian Neoplasms , Spheroids, Cellular , Tumor Microenvironment , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ascites/pathology , Ascites/metabolism , Integrin alpha5beta1/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Fibrinogen/metabolism , Fibrin/metabolism , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/pathology , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Receptors, Vitronectin/metabolism , rac1 GTP-Binding Protein/metabolism , Cell Adhesion , Peritoneum/pathology , Peritoneum/metabolism , Epithelium/metabolism , Epithelium/pathology , Cadherins/metabolism , Tumor Cells, Cultured
13.
Biomed Pharmacother ; 176: 116905, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865848

ABSTRACT

Peritoneal fibrosis, a common complication observed in long-term peritoneal dialysis patients, can gradually lead to ultrafiltration failure and the development of encapsulating peritoneal sclerosis. Although mechanisms of peritoneal fibrosis have been proposed, effective therapeutic options are unsatisfactory. Recently, several tyrosine kinase inhibitors have proven to be anti-fibrosis in rodent models. To assess the potential therapeutic effects of tyrosine kinase inhibitors on peritoneal fibrosis in the larger animal model, a novel porcine model of peritoneal fibrosis induced by 40 mM methylglyoxal in 2.5 % dialysate was established, and two different doses (20 mg/kg and 30 mg/kg) of sorafenib were given orally to evaluate their therapeutic efficacy in this study. Our results showed that sorafenib effectively reduced adhesions between peritoneal organs and significantly diminished the thickening of both the parietal and visceral peritoneum. Angiogenesis, vascular endothelial growth factor A production, myofibroblast infiltration, and decreased endothelial glycocalyx resulting from dialysate and methylglyoxal stimulations were also alleviated with sorafenib. However, therapeutic efficacy in ameliorating loss of mesothelial cells, restoring decreased ultrafiltration volume, and improving elevated small solutes transport rates was limited. In conclusion, this study demonstrated that sorafenib could potentially be used for peritoneal fibrosis treatment, but applying sorafenib alone might not be sufficient to fully rescue methylglyoxal-induced peritoneal defects.


Subject(s)
Peritoneal Fibrosis , Protein Kinase Inhibitors , Pyruvaldehyde , Sorafenib , Animals , Sorafenib/pharmacology , Pyruvaldehyde/metabolism , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/chemically induced , Peritoneal Fibrosis/metabolism , Protein Kinase Inhibitors/pharmacology , Swine , Female , Disease Models, Animal , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism
14.
Medicina (Kaunas) ; 60(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38792916

ABSTRACT

Background and Objectives: The impact of positive peritoneal cytology has been a matter of controversy in early-stage endometrial cancer for several years. The latest staging systems do not take into consideration its presence; however, emerging evidence about its potential harmful effect on patient survival outcomes suggests otherwise. In the present systematic review and meta-analysis, we sought to accumulate current evidence. Materials and Methods: Medline, Scopus, the Cochrane Central Register of Controlled Trials CENTRAL, Google Scholar and Clinicaltrials.gov databases were searched for relevant articles. Effect sizes were calculated in Rstudio using the meta function. A sensitivity analysis was carried out to evaluate the possibility of small-study effects and p-hacking. Trial sequential analysis was used to evaluate the adequacy of the sample size. The methodological quality of the included studies was assessed using the Newcastle-Ottawa scale. Results: Fifteen articles were finally included in the present systematic review that involved 19,255 women with early-stage endometrial cancer. The Newcastle-Ottawa scale indicated that the majority of included studies had a moderate risk of bias in their selection of participants, a moderate risk of bias in terms of the comparability of groups (positive peritoneal cytology vs. negative peritoneal cytology) and a low risk of bias concerning the assessment of the outcome. The results of the meta-analysis indicated that women with early-stage endometrial cancer and positive peritoneal cytology had significantly lower 5-year recurrence-free survival (RFS) (hazards ratio (HR) 0.26, 95% CI 0.09, 0.71). As a result of the decreased recurrence-free survival, patients with positive peritoneal cytology also exhibited reduced 5-year overall survival outcomes (HR 0.50, 95% CI 0.27, 0.92). The overall survival of the included patients was considerably higher among those that did not have positive peritoneal cytology (HR 12.76, 95% CI 2.78, 58.51). Conclusions: Positive peritoneal cytology seems to be a negative prognostic indicator of survival outcomes of patients with endometrial cancer. Considering the absence of data related to the molecular profile of patients, further research is needed to evaluate if this factor should be reinstituted in future staging systems.


Subject(s)
Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Survival Rate , Neoplasm Staging , Peritoneum/pathology , Cytodiagnosis/methods , Cytology
15.
Cell Death Dis ; 15(5): 365, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806451

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-ß1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-ß1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-ß1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 µM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-ß1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 µM) downregulated TGF-ß1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-ß1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-ß1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.


Subject(s)
Autophagy , Epithelial Cells , Epithelial-Mesenchymal Transition , NADPH Oxidase 4 , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Transforming Growth Factor beta1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Autophagy/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Signal Transduction/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Peritoneum/pathology , Pyrazolones , Pyridones
16.
Int J Med Sci ; 21(6): 1049-1063, 2024.
Article in English | MEDLINE | ID: mdl-38774747

ABSTRACT

Peritoneal dialysis (PD), hemodialysis and kidney transplantation are the three therapies to treat uremia. However, PD is discontinued for peritoneal membrane fibrosis (PMF) and loss of peritoneal transport function (PTF) due to damage from high concentrations of glucose in PD fluids (PDFs). The mechanism behind PMF is unclear, and there are no available biomarkers for the evaluation of PMF and PTF. Using microarray screening, we found that a new long noncoding RNA (lncRNA), RPL29P2, was upregulated in the PM (peritoneal membrane) of long-term PD patients, and its expression level was correlated with PMF severity and the PTF loss. In vitro and rat model assays suggested that lncRNA RPL29P2 targets miR-1184 and induces the expression of collagen type I alpha 1 chain (COL1A1). Silencing RPL29P2 in the PD rat model might suppress the HG-induced phenotypic transition of Human peritoneal mesothelial cells (HPMCs), alleviate HG-induced fibrosis and prevent the loss of PTF. Overall, our findings revealed that lncRNA RPL29P2, which targets miR-1184 and collagen, may represent a useful marker and therapeutic target of PMF in PD patients.


Subject(s)
Collagen Type I, alpha 1 Chain , MicroRNAs , Peritoneal Dialysis , Peritoneal Fibrosis , Peritoneum , RNA, Long Noncoding , Animals , Female , Humans , Middle Aged , Rats , Collagen Type I, alpha 1 Chain/genetics , Disease Models, Animal , Glucose/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/genetics , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneal Fibrosis/etiology , Peritoneum/pathology , Rats, Sprague-Dawley , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
Front Immunol ; 15: 1387292, 2024.
Article in English | MEDLINE | ID: mdl-38779674

ABSTRACT

Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.


Subject(s)
Cell Communication , Peritoneal Dialysis , Peritoneum , Stromal Cells , Humans , Peritoneal Dialysis/adverse effects , Peritoneum/pathology , Peritoneum/immunology , Animals , Stromal Cells/immunology , Cell Communication/immunology , Inflammation/immunology , Peritonitis/immunology
18.
Sci Rep ; 14(1): 11077, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745015

ABSTRACT

Postoperative intra-abdominal adhesions represent a significant post-surgical problem. Its complications can cause a considerable clinical and cost burden. Herein, our study aimed to investigate the effect of Everolimus on peritoneal adhesion formation after inducing adhesions in rats. In this experimental study, adhesion bands were induced by intraperitoneal injection of 3 ml of 10% sterile talc solution in 64 male albino rats. The first group served as the control group. The second one received oral Prednisolone (1 mg/kg/day), the third received Everolimus (0.1 mg/kg/day), and group four received both drugs with similar dosages for four consecutive weeks. The formation of adhesion bands was qualitatively graded according to the Nair classification. The rats in the control group had extensive adhesions between the abdominal wall and the organs. Regarding substantial adhesion formation, 50% (8/16) of animals in the control group had substantial adhesions, while this rate in the groups receiving Prednisolone, Everolimus, and combination treatment was 31%, 31%, and 31%, respectively. Also, 68.75% (5/11) of the Prednisolone recipients had insubstantial adhesions, the same as Everolimus recipients, while in the combination group, 66.66% (10/15) rats had insubstantial adhesions. Everolimus demonstrated satisfactory results in reducing the rates of induced peritoneal adhesion in an experimental model, similar to Prednisolone and superior to a combination regime.


Subject(s)
Everolimus , Prednisolone , Animals , Everolimus/pharmacology , Everolimus/administration & dosage , Tissue Adhesions/drug therapy , Tissue Adhesions/prevention & control , Tissue Adhesions/pathology , Prednisolone/pharmacology , Prednisolone/administration & dosage , Rats , Male , Drug Therapy, Combination , Disease Models, Animal , Peritoneum/pathology , Peritoneum/drug effects , Peritoneal Diseases/drug therapy , Peritoneal Diseases/pathology , Peritoneal Diseases/prevention & control , Peritoneal Diseases/etiology , Postoperative Complications/prevention & control , Postoperative Complications/drug therapy
19.
Genes (Basel) ; 15(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38790182

ABSTRACT

INTRODUCTION: Cell-free nucleic acids (cf-NAs) represent a promising biomarker of various pathological and physiological conditions. Since its discovery in 1948, cf-NAs gained prognostic value in oncology, immunology, and other relevant fields. In peritoneal dialysis (PD), blood purification is performed by exposing the peritoneal membrane. Relevant sections: Complications of PD such as acute peritonitis and peritoneal membrane aging are often critical in PD patient management. In this review, we focused on bacterial DNA, cell-free DNA, mitochondrial DNA (mtDNA), microRNA (miRNA), and their potential uses as biomarkers for monitoring PD and its complications. For instance, the isolation of bacterial DNA in early acute peritonitis allows bacterial identification and subsequent therapy implementation. Cell-free DNA in peritoneal dialysis effluent (PDE) represents a marker of stress of the peritoneal membrane in both acute and chronic PD complications. Moreover, miRNA are promising hallmarks of peritoneal membrane remodeling and aging, even before its manifestation. In this scenario, with multiple cytokines involved, mtDNA could be considered equally meaningful to determine tissue inflammation. CONCLUSIONS: This review explores the relevance of cf-NAs in PD, demonstrating its promising role for both diagnosis and treatment. Further studies are necessary to implement the use of cf-NAs in PD clinical practice.


Subject(s)
Cell-Free Nucleic Acids , DNA, Mitochondrial , Peritoneal Dialysis , Humans , Peritoneal Dialysis/adverse effects , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/genetics , Biomarkers , MicroRNAs/genetics , DNA, Bacterial/genetics , Peritonitis/genetics , Peritoneum/metabolism , Peritoneum/pathology
20.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Article in English | MEDLINE | ID: mdl-38780509

ABSTRACT

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Subject(s)
Aminosalicylic Acids , Fibroblasts , Peritoneal Fibrosis , Phenotype , STAT3 Transcription Factor , Signal Transduction , Animals , Humans , Male , Mice , Aminosalicylic Acids/pharmacology , Benzenesulfonates/pharmacology , Chlorhexidine/analogs & derivatives , Chlorhexidine/pharmacology , Disease Models, Animal , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Interleukin-6/metabolism , Mice, Inbred C57BL , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/drug therapy , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/pathology , Peritoneum/pathology , Peritoneum/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL