Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters










Publication year range
1.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806673

ABSTRACT

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Subject(s)
Carbon Cycle , Microbiota , Permafrost , Polyphenols , Soil Microbiology , Polyphenols/metabolism , Permafrost/microbiology , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/classification , Carbon/metabolism , Oxidation-Reduction , Arctic Regions , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/genetics , Soil/chemistry , Ecosystem
2.
Sci Adv ; 10(21): eadn8490, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781339

ABSTRACT

Glacier and permafrost shrinkage and land-use intensification threaten mountain wildlife and affect nature conservation strategies. Here, we present paleometagenomic records of terrestrial and aquatic taxa from the southeastern Tibetan Plateau covering the last 18,000 years to help understand the complex alpine ecosystem dynamics. We infer that steppe-meadow became woodland at 14 ka (cal BP) controlled by cryosphere loss, further driving a herbivore change from wild yak to deer. These findings weaken the hypothesis of top-down control by large herbivores in the terrestrial ecosystem. We find a turnover in the aquatic communities at 14 ka, transitioning from glacier-related (blue-green) algae to abundant nonglacier-preferring picocyanobacteria, macrophytes, fish, and otters. There is no evidence for substantial effects of livestock herding in either ecosystem. Using network analysis, we assess the stress-gradient hypothesis and reveal that root hemiparasitic and cushion plants are keystone taxa. With ongoing cryosphere loss, the protection of their habitats is likely to be of conservation benefit on the Tibetan Plateau.


Subject(s)
Ecosystem , Geologic Sediments , Metagenomics , Tibet , Animals , Metagenomics/methods , Geologic Sediments/microbiology , Ice Cover/microbiology , Herbivory , Permafrost/microbiology
3.
New Phytol ; 242(4): 1704-1716, 2024 May.
Article in English | MEDLINE | ID: mdl-38273466

ABSTRACT

Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.


Subject(s)
Mycorrhizae , Nitrogen , Permafrost , Plant Roots , Tundra , Nitrogen/metabolism , Plant Roots/microbiology , Permafrost/microbiology , Mycorrhizae/physiology , Fungi/physiology , Quantitative Trait, Heritable , Temperature , Species Specificity
4.
FEMS Microbiol Ecol ; 99(11)2023 10 17.
Article in English | MEDLINE | ID: mdl-37796894

ABSTRACT

Permafrost soils store a substantial part of the global soil carbon and nitrogen. However, global warming causes abrupt erosion and gradual thaw, which make these stocks vulnerable to microbial decomposition into greenhouse gases. Here, we investigated the microbial response to abrupt in situ permafrost thaw. We sequenced the total RNA of a 1 m deep soil core consisting of up to 26 500-year-old permafrost material from an active abrupt erosion site. We analysed the microbial community in the active layer soil, the recently thawed, and the intact permafrost, and found maximum RNA:DNA ratios in recently thawed permafrost indicating a high microbial activity. In thawed permafrost, potentially copiotrophic Burkholderiales and Sphingobacteriales, but also microbiome predators dominated the community. Overall, both thaw-dependent and long-term soil properties significantly correlated with changes in community composition, as did microbiome predator abundance. Bacterial predators were dominated in shallower depths by Myxococcota, while protozoa, especially Cercozoa and Ciliophora, almost tripled in relative abundance in thawed layers. Our findings highlight the ecological importance of a diverse interkingdom and active microbial community highly abundant in abruptly thawing permafrost, as well as predation as potential biological control mechanism.


Subject(s)
Microbiota , Permafrost , Permafrost/microbiology , Soil , Bacteria/genetics , Carbon , RNA , Soil Microbiology
5.
mSystems ; 8(3): e0123822, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37272710

ABSTRACT

Microbial activity in Arctic soils controls the cycling of significant stores of organic carbon and nutrients. We studied in situ processes in Alaskan soils using original metaproteomic methods in order to relate important heterotrophic functions to microbial taxa and to understand the microbial response to Arctic greening. Major bacterial groups show strong metabolic specialization in organic topsoils. α-/ß-/γ-Proteobacteria specialized in the acquisition of small, soluble compounds, whereas Acidobacteria, Actinobacteria, and other detritosphere groups specialized in the degradation of plant-derived polymers. α-/ß-/γ-Proteobacteria dominated the expression of transporters for common root exudates and limiting nitrogenous compounds, supporting an ecological model of dependence upon plants for carbon and competition with plants for nitrogen. Detritosphere groups specialized in distinct substrates, with Acidobacteria producing the most enzymes for hemicellulose depolymerization. Acidobacteria was the most active group across the three plant ecotypes sampled-the largely nonvascular, lower biomass intertussock and the largely vascular, higher biomass tussock and shrub. Functional partitioning among bacterial groups was stable between plant ecotypes, but certain functions associated with α-/ß-/γ-Proteobacteria were more strongly expressed in higher biomass ecotypes. We show that refined metaproteomic approaches can elucidate soil microbial ecology as well as biogeochemical trajectories of major carbon stocks. IMPORTANCE The Arctic is warming twice as fast as the rest of the planet, and Arctic soils currently store twice as much carbon as the entire atmosphere-two facts that make understanding how Arctic soil microbial communities are responding to climate change particularly urgent. Greening of vegetation cover across the Arctic landscape is one of the most prominent climate-driven shifts in Arctic terrestrial ecology, with potentially profound effects on biogeochemical cycling by the soil microbiome. Here we use metaproteomics to document microbial metabolic functions that drive soil carbon and nutrient cycling processes in an Arctic tundra landscape. We identify functional roles among bacterial taxonomic groups that are largely stable across vegetation types, with certain functions strongly expressed by rhizosphere groups reflecting a community metabolic response to greening.


Subject(s)
Alphaproteobacteria , Betaproteobacteria , Permafrost , Permafrost/microbiology , Bacteria/genetics , Tundra , Soil/chemistry , Plants , Acidobacteria , Carbon/metabolism
6.
Glob Chang Biol ; 29(11): 3039-3053, 2023 06.
Article in English | MEDLINE | ID: mdl-36843502

ABSTRACT

Northern lakes disproportionately influence the global carbon cycle, and may do so more in the future depending on how their microbial communities respond to climate warming. Microbial communities can change because of the direct effects of climate warming on their metabolism and the indirect effects of climate warming on groundwater connectivity from thawing of surrounding permafrost, especially at lower landscape positions. Here we used shotgun metagenomics to compare the taxonomic and functional gene composition of sediment microbes in 19 peatland lakes across a 1600-km permafrost transect in boreal western Canada. We found microbes responded differently to the loss of regional permafrost cover than to increases in local groundwater connectivity. These results suggest that both the direct and indirect effects of climate warming, which were respectively associated with loss of permafrost and subsequent changes in groundwater connectivity interact to change microbial composition and function. Archaeal methanogens and genes involved in all major methanogenesis pathways were more abundant in warmer regions with less permafrost, but higher groundwater connectivity partly offset these effects. Bacterial community composition and methanotrophy genes did not vary with regional permafrost cover, and the latter changed similarly to methanogenesis with groundwater connectivity. Finally, we found an increase in sugar utilization genes in regions with less permafrost, which may further fuel methanogenesis. These results provide the microbial mechanism for observed increases in methane emissions associated with loss of permafrost cover in this region and suggest that future emissions will primarily be controlled by archaeal methanogens over methanotrophic bacteria as northern lakes warm. Our study more generally suggests that future predictions of aquatic carbon cycling will be improved by considering how climate warming exerts both direct effects associated with regional-scale permafrost thaw and indirect effects associated with local hydrology.


Subject(s)
Lakes , Permafrost , Climate , Permafrost/microbiology , Carbon Cycle , Archaea/metabolism , Carbon/metabolism
7.
Astrobiology ; 22(7): 812-828, 2022 07.
Article in English | MEDLINE | ID: mdl-35333595

ABSTRACT

This article describes a study of frozen volcanic deposits collected from volcanoes Tolbachik and Bezymianny on the Kamchatka Peninsula, Russia, and Deception Island volcano, Antarctica. In addition, we studied suprasnow ash layers deposited after the 2007 eruptions of volcanoes Shiveluch and Bezymianny on Kamchatka. The main objectives were to characterize the presence and survivability of thermophilic microorganisms in perennially frozen volcanic deposits. As opposed to permafrost from the polar regions, viable thermophiles were detected in volcanic permafrost by cultivation, microscopy, and sequencing. In the permafrost of Tolbachik volcano, we observed methane formation by both psychrophilic and thermophilic methanogenic archaea, while at 37°C, methane production was noticeably lower. Thermophilic bacteria isolated from volcanic permafrost from the Deception Island were 99.93% related to Geobacillus stearothermophilus. Our data showed biological sulfur reduction to sulfide at 85°C and even at 130°C, where hyperthermophilic archaea of the genus Thermoproteus were registered. Sequences of hyperthermophilic bacteria of the genus Caldicellulosiruptor were discovered in clone libraries from fresh volcanic ash deposited on snow. Microorganisms found in volcanic terrestrial permafrost may serve as a model for the alien inhabitants of Mars, a cryogenic planet with numerous volcanoes. Thermophiles and hyperthermophiles and their metabolic processes represent a guideline for the future exploration missions on Mars.


Subject(s)
Permafrost , Archaea/metabolism , Extraterrestrial Environment , Methane/chemistry , Permafrost/microbiology , Volcanic Eruptions
8.
Sci Rep ; 12(1): 1160, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35064149

ABSTRACT

Greenhouse gas (GHG) emissions from Arctic permafrost soils create a positive feedback loop of climate warming and further GHG emissions. Active methane uptake in these soils can reduce the impact of GHG on future Arctic warming potential. Aerobic methane oxidizers are thought to be responsible for this apparent methane sink, though Arctic representatives of these organisms have resisted culturing efforts. Here, we first used in situ gas flux measurements and qPCR to identify relative methane sink hotspots at a high Arctic cytosol site, we then labeled the active microbiome in situ using DNA Stable Isotope Probing (SIP) with heavy 13CH4 (at 100 ppm and 1000 ppm). This was followed by amplicon and metagenome sequencing to identify active organisms involved in CH4 metabolism in these high Arctic cryosols. Sequencing of 13C-labeled pmoA genes demonstrated that type II methanotrophs (Methylocapsa) were overall the dominant active methane oxidizers in these mineral cryosols, while type I methanotrophs (Methylomarinovum) were only detected in the 100 ppm SIP treatment. From the SIP-13C-labeled DNA, we retrieved nine high to intermediate quality metagenome-assembled genomes (MAGs) belonging to the Proteobacteria, Gemmatimonadetes, and Chloroflexi, with three of these MAGs containing genes associated with methanotrophy. A novel Chloroflexi MAG contained a mmoX gene along with other methane oxidation pathway genes, identifying it as a potential uncultured methane oxidizer. This MAG also contained genes for copper import, synthesis of biopolymers, mercury detoxification, and ammonia uptake, indicating that this bacterium is strongly adapted to conditions in active layer permafrost and providing new insights into methane biogeochemical cycling. In addition, Betaproteobacterial MAGs were also identified as potential cross-feeders with methanotrophs in these Arctic cryosols. Overall, in situ SIP labeling combined with metagenomics and genome binning demonstrated to be a useful tool for discovering and characterizing novel organisms related to specific microbial functions or biogeochemical cycles of interest. Our findings reveal a unique and active Arctic cryosol microbial community potentially involved in CH4 cycling.


Subject(s)
Carbon Cycle , Greenhouse Gases/metabolism , Methane/metabolism , Microbiota/genetics , Permafrost/microbiology , Arctic Regions , Carbon Isotopes , Genome, Bacterial , Methane/chemistry , Methane/isolation & purification
9.
World J Microbiol Biotechnol ; 38(2): 28, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34989908

ABSTRACT

The permafrost in the polar regions is vital for maintaining the status quo of the earth's climate by limiting greenhouse gas emissions. The present study aims to investigate the seasonal variations and the influence of physicochemical parameters on the bacterial diversity and community structure of active layer permafrost (AL) around Ny-Ålesund, Svalbard. The AL soil samples were collected from four different geographical locations around Ny-Ålesund during the winter and summer seasons. The 16S rDNA amplicon sequencing was carried out to investigate the diversity and distribution profiles of bacterial communities among the collected AL samples. Physico-chemical parameters including soil pH, moisture content, total carbon (TC), total nitrogen (TN), and trace metals concentrations were measured. Bacterial phyla, Proteobacteria (15.4%-26%) and Chloroflexi (9.6%-22.5%) were predominantly distributed across both seasons. In the winter samples, Verrucomicrobiota (14.12%-23.39%) phylum, consisting of genera Chthoniobacter and Opitutus were highly abundant (Lefse, p < 0.05), whereas in summer bacterial genera belonging to Gemmatimonadota (3.3%-13.74%) and Acidobacteriota (18.02%-28.52%) phyla were highly abundant. The bacterial richness and diversity index were not significantly different between the winter and summer seasons. Principal coordinate analysis (PCoA) has revealed a distinct grouping between two seasons (PERMANOVA, p < 0.05). Bacterial community structure was significantly varied between winter and summer seasons, whereas the physico-chemical variable, TN, influenced the community structure. About 37.8% of the total operational taxonomic units (OTUs) were shared between seasons, whereas 25.4% and 36.8% of OTUs were unique to the summer and winter seasons. The present study revealed that the conditions prevailing during winter and summer has shaped bacterial community structure in AL samples albeit the stable diversity and most of the variation was explained by TN, indicating its critical role in oligotrophic permafrost.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Nitrogen/metabolism , Permafrost/microbiology , Soil Microbiology , Biodiversity , DNA, Ribosomal/genetics , Microbiota , RNA, Ribosomal, 16S , Seasons , Soil , Svalbard
10.
Bull Exp Biol Med ; 172(3): 332-335, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35001312

ABSTRACT

The experiment was performed on male BALB/c mice with modeled skin wound. Two chromatographic fractions of secondary metabolites of permafrost bacteria Bacillus sp., that represent a mixture of polyethylene-polypropylene glycols oligomers with a molecular weight from 900 to 1350 Da were used as therapeutic agents. Application of the test substances on the wound surface and their parenteral administration significantly accelerated wound epithelialization in comparison with untreated control, activated metabolic processes, and improved humoral immunity. In in vitro experiments, the fractions activated the synthesis of IFNγ and IL-4 by human peripheral blood mononuclear cells. We conclude that polyethylene-polypropylene glycol oligomers can be a part of effector molecules that determine the repair and immunomodulatory potential of secondary metabolites of permafrost microorganisms Bacillus sp.


Subject(s)
Bacillus , Permafrost , Animals , Bacillus/metabolism , Leukocytes, Mononuclear , Male , Mice , Mice, Inbred BALB C , Molecular Weight , Permafrost/microbiology
11.
Mol Ecol ; 31(5): 1403-1415, 2022 03.
Article in English | MEDLINE | ID: mdl-34878672

ABSTRACT

Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (p = .011) within the deep organic layer (15-25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0-5, 5-15, and 45-55 cm). Warming treatment altered fungal community composition and microbial functional structure (p < .050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulphate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in subsurface soils are reduced, probably arising from enhanced thaw by warming.


Subject(s)
Permafrost , Carbon/metabolism , Carbon Cycle , Permafrost/microbiology , Soil/chemistry , Soil Microbiology , Tundra
12.
PLoS One ; 16(11): e0260299, 2021.
Article in English | MEDLINE | ID: mdl-34797889

ABSTRACT

Anthrax is a worldwide zoonotic disease. Anthrax has long been a public health and socio-economic issue in Mongolia. Presently, there is no spatial information on carcass burial sites as a potential hazard of future anthrax outbreaks and possible risk factors associated with anthrax occurrences in Mongolia. Here, we analyze retrospective data (1986-2015) on the disposal sites of livestock carcasses to describe historical spatio-temporal patterns of livestock anthrax in Khuvsgul Province, which showed the highest anthrax incidence rate in Mongolia. From the results of spatial mean and standard deviational ellipse analyses, we found that the anthrax spatial distribution in livestock did not change over the study period, indicating a localized source of exposure. The multi-distance spatial cluster analysis showed that carcass sites distributed in the study area are clustered. Using kernel density estimation analysis on carcass sites, we identified two anthrax hotspots in low-lying areas around the south and north regions. Notably, this study disclosed a new hotspot in the northern part that emerged in the last decade of the 30-year study period. The highest proportion of cases was recorded in cattle, whose prevalence per area was highest in six districts (i.e., Murun, Chandmani-Undur, Khatgal, Ikh-Uul, Tosontsengel, and Tsagaan-Uul), suggesting that vaccination should prioritize cattle in these districts. Furthermore, size of outbreaks was influenced by the annual summer mean air temperature of Khuvsgul Province, probably by affecting the permafrost freeze-thawing activity.


Subject(s)
Anthrax/etiology , Livestock/microbiology , Zoonoses/etiology , Animals , Cattle , Disease Outbreaks , Mongolia , Permafrost/microbiology , Public Health/methods , Retrospective Studies , Risk Factors , Seasons , Spatial Analysis , Temperature , Vaccination/methods
13.
Appl Environ Microbiol ; 87(20): e0133921, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34347514

ABSTRACT

Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and redeposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active-layer communities in nonmetric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits but not in younger, nonpermafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. IMPORTANCE Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found that the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to those of the floodplain active-layer samples than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.


Subject(s)
Microbiota , Permafrost/microbiology , Rivers/microbiology , Alaska , Carbon Cycle , Water Movements
14.
Sci Data ; 8(1): 221, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34413318

ABSTRACT

Thermokarst activity at permafrost sites releases considerable amounts of ancient carbon to the atmosphere. A large part of this carbon is released via thermokarst ponds, and fungi could be an important organismal group enabling its recycling. However, our knowledge about aquatic fungi in thermokarstic systems is extremely limited. In this study, we collected samples from five permafrost sites distributed across circumpolar Arctic and representing different stages of permafrost integrity. Surface water samples were taken from the ponds and, additionally, for most of the ponds also the detritus and sediment samples were taken. All the samples were extracted for total DNA, which was then amplified for the fungal ITS2 region of the ribosomal genes. These amplicons were sequenced using PacBio technology. Water samples were also collected to analyze the chemical conditions in the ponds, including nutrient status and the quality and quantity of dissolved organic carbon. This dataset gives a unique overview of the impact of the thawing permafrost on fungal communities and their potential role on carbon recycling.


Subject(s)
Fungi/classification , Mycobiome , Permafrost/microbiology , Ponds/microbiology , Arctic Regions , DNA Barcoding, Taxonomic , DNA, Fungal/genetics , DNA, Fungal/isolation & purification , DNA, Ribosomal Spacer/genetics , Freezing , Fungi/genetics , Fungi/isolation & purification , Ponds/chemistry
16.
Appl Environ Microbiol ; 87(19): e0097221, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34288700

ABSTRACT

Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly cored permafrost from the Siberian Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have been obtained previously from nonpermafrost environments and have been suggested to show adaptations to long-term energy starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had greater proportions in the Clusters of Orthologous Groups (COGs) categories of energy production and conversion and carbohydrate transport and metabolism than did their nonpermafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis, and cellulose degradation, which were less prevalent in nonpermafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high-ionic-strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA of high enough quality to assemble MAGs from microorganisms with adaptations to survive long-term freezing in this extreme environment. IMPORTANCE Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture-independent techniques can give a glimpse into how these microorganisms function under these extreme low-temperature and low-energy conditions. This will facilitate understanding how they will change with the environment. This study presents genomic data from this unique environment ∼20,000 to 1,000,000 years of age.


Subject(s)
Metagenome , Permafrost/microbiology , Adaptation, Physiological , Siberia
17.
Bull Exp Biol Med ; 171(2): 234-237, 2021 May.
Article in English | MEDLINE | ID: mdl-34173101

ABSTRACT

We studied the influence of microorganisms isolated from permafrost on the psychophysiological parameters of birds. Significant effect of the microbiota of the paleoecosystems of the cryolithozone on locomotor activity, psycho-emotional state, and psychophysiological lateralization of brain function of Gallus gallus chickens. The involvement of both the autonomic and the higher central nervous systems in this regulatory process via synthesis of neuropeptides by symbionts is discussed.


Subject(s)
Behavior, Animal/physiology , Chickens/physiology , Microbiota/physiology , Permafrost/microbiology , Animals , Bacillus/isolation & purification , Bacillus/ultrastructure , Chickens/microbiology , Ecosystem , Locomotion/physiology , Nervous System Physiological Phenomena , Paleontology
19.
Microb Genom ; 7(4)2021 04.
Article in English | MEDLINE | ID: mdl-33848236

ABSTRACT

The warming-induced thawing of permafrost promotes microbial activity, often resulting in enhanced greenhouse gas emissions. The ability of permafrost microorganisms to survive the in situ sub-zero temperatures, their energetic strategies and their metabolic versatility in using soil organic materials determine their growth and functionality upon thawing. Hence, functional characterization of the permafrost microbiome, particularly in the underexplored mid-latitudinal alpine regions, is a crucial first step in predicting its responses to the changing climate, and the consequences for soil-climate feedbacks. In this study, for the first time, the functional potential and metabolic capabilities of a temperate mountain permafrost microbiome from central Europe has been analysed using shotgun metagenomics. Permafrost and active layers from the summit of Muot da Barba Peider (MBP) [Swiss Alps, 2979 m above sea level (a.s.l.)] revealed a strikingly high functional diversity in the permafrost (north-facing soils at a depth of 160 cm). Permafrost metagenomes were enriched in stress-response genes (e.g. cold-shock genes, chaperones), as well as in genes involved in cell defence and competition (e.g. antiviral proteins, antibiotics, motility, nutrient-uptake ABC transporters), compared with active-layer metagenomes. Permafrost also showed a higher potential for the synthesis of carbohydrate-active enzymes, and an overrepresentation of genes involved in fermentation, carbon fixation, denitrification and nitrogen reduction reactions. Collectively, these findings demonstrate the potential capabilities of permafrost microorganisms to thrive in cold and oligotrophic conditions, and highlight their metabolic versatility in carbon and nitrogen cycling. Our study provides a first insight into the high functional gene diversity of the central European mountain permafrost microbiome. Our findings extend our understanding of the microbial ecology of permafrost and represent a baseline for future investigations comparing the functional profiles of permafrost microbial communities at different latitudes.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Microbiota , Permafrost/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Carbon Cycle , Metagenome , Metagenomics , Nitrogen/metabolism , Permafrost/chemistry , Phylogeny , Soil Microbiology , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...