Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 21(1): 41, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446098

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is an ancient grain crop that is tolerant to abiotic stress and has favorable nutritional properties. Downy mildew is the main disease of quinoa and is caused by infections of the biotrophic oomycete Peronospora variabilis Gaüm. Since the disease causes major yield losses, identifying sources of downy mildew tolerance in genetic resources and understanding its genetic basis are important goals in quinoa breeding. RESULTS: We infected 132 South American genotypes, three Danish cultivars and the weedy relative C. album with a single isolate of P. variabilis under greenhouse conditions and observed a large variation in disease traits like severity of infection, which ranged from 5 to 83%. Linear mixed models revealed a significant effect of genotypes on disease traits with high heritabilities (0.72 to 0.81). Factors like altitude at site of origin or seed saponin content did not correlate with mildew tolerance, but stomatal width was weakly correlated with severity of infection. Despite the strong genotypic effects on mildew tolerance, genome-wide association mapping with 88 genotypes failed to identify significant marker-trait associations indicating a polygenic architecture of mildew tolerance. CONCLUSIONS: The strong genetic effects on mildew tolerance allow to identify genetic resources, which are valuable sources of resistance in future quinoa breeding.


Subject(s)
Chenopodium quinoa/genetics , Chenopodium quinoa/microbiology , Genetic Variation , Peronospora/pathogenicity , Plant Diseases/microbiology , Chenopodium album/microbiology , Genome, Plant , Genome-Wide Association Study , Genotype , Host-Pathogen Interactions/genetics , Linear Models , Peronospora/isolation & purification , Plant Diseases/etiology , Plant Diseases/genetics , Saponins/analysis , Seeds/chemistry , South America , Whole Genome Sequencing
2.
Phytopathology ; 104(4): 379-86, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24224871

ABSTRACT

Quinoa (Chenopodium quinoa) is an important export of the Andean region, and its key disease is quinoa downy mildew, caused by Peronospora variabilis. P. variabilis oospores can be seedborne and rapid methods to detect seedborne P. variabilis have not been developed. In this research, a polymerase chain reaction (PCR)-based detection method was developed to detect seedborne P. variabilis and a sequencing-based method was used to validate the PCR-based method. P. variabilis was detected in 31 of 33 quinoa seed lots using the PCR-based method and in 32 of 33 quinoa seed lots using the sequencing-based method. Thirty-one of the quinoa seed lots tested in this study were sold for human consumption, with seed originating from six different countries. Internal transcribed spacer (ITS) and cytochrome c oxidase subunit 2 (COX2) phylogenies were examined to determine whether geographical differences occurred in P. variabilis populations originating from Ecuador, Bolivia, and the United States. No geographical differences were observed in the ITS-derived phylogeny but the COX2 phylogeny indicated that geographical differences existed between U.S. and South American samples. Both ITS and COX2 phylogenies supported the existence of a Peronospora sp., distinct from P. variabilis, that causes systemic-like downy mildew symptoms on quinoa in Ecuador. The results of these studies allow for a better understanding of P. variabilis populations in South America and identified a new causal agent for quinoa downy mildew. The PCR-based seed detection method allows for the development of P. variabilis-free quinoa seed, which may prove important for management of quinoa downy mildew.


Subject(s)
Chenopodium quinoa/parasitology , Genetic Variation , Peronospora/isolation & purification , Plant Diseases/parasitology , Seeds/parasitology , Base Sequence , DNA Primers/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Geography , Molecular Sequence Data , Peronospora/classification , Peronospora/genetics , Phylogeny , Sensitivity and Specificity , Sequence Analysis, DNA , South America , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL