Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
1.
Future Microbiol ; 19(13): 1177-1184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39105632

ABSTRACT

Infectious diseases lead to significant morbidity and mortality. Often, resolution of the acute stage of the disease leads to microbial persistence, resulting in chronic debilitating disease. Management of persistent infections frequently requires lifelong therapy with antimicrobial agents. These infections could be chronic viral infections like HIV, hepatitis B or chronic bacterial persistent infections like prosthetic joint infections caused by multi-drug resistant organisms. Bacteriophages have been designed specifically to target recalcitrant bacterial infections, such as prosthetic joint infections with varying success. In this review, we describe the historic evolution of scenarios and risks associated with innovative therapy using infectious agents to treat other persistent infections.


[Box: see text].


Subject(s)
Persistent Infection , Humans , Phage Therapy/methods , Bacterial Infections/drug therapy , Bacterial Infections/therapy , Bacterial Infections/microbiology , Anti-Infective Agents/therapeutic use , Bacteriophages/physiology , Virus Diseases/drug therapy , Virus Diseases/therapy , Virus Diseases/virology
2.
J Med Virol ; 96(7): e29787, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988177

ABSTRACT

Chronic hepatitis C virus infection (HCV) causes liver inflammation and fibrosis, leading to the development of severe liver disease, such as cirrhosis or hepatocellular carcinoma (HCC). Approval of direct-acting antiviral drug combinations has revolutionized chronic HCV therapy, with virus eradication in >98% of the treated patients. The efficacy of these treatments is such that it is formally possible for cured patients to carry formerly infected cells that display irreversible transcriptional alterations directly caused by chronic HCV Infection. Combining differential transcriptomes from two different persistent infection models, we observed a major reversion of infection-related transcripts after complete infection elimination. However, a small number of transcripts were abnormally expressed in formerly infected cells. Comparison of the results obtained in proliferating and growth-arrested cell culture models suggest that permanent transcriptional alterations may be established by several mechanisms. Interestingly, some of these alterations were also observed in the liver biopsies of virologically cured patients. Overall, our data suggest a direct and permanent impact of persistent HCV infection on the host cell transcriptome even after virus elimination, possibly contributing to the development of HCC.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis C, Chronic , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Hepacivirus/genetics , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Transcriptome , Persistent Infection/virology , Gene Expression Profiling , Liver/virology , Liver/pathology , Carcinoma, Hepatocellular/virology , Transcription, Genetic/drug effects
3.
Virol J ; 21(1): 133, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844960

ABSTRACT

BACKGROUND: Early diagnosis and treatment of HPV persistent infection and cervical intraepithelial neoplasia, which have yet to be thoroughly characterized in Guangxi, Southwestern China, are the key preventative measures for the development of cervical cancer in women, particularly in HIV-infected women. METHODS: A retrospective study of 181 patients with HPV infection or cervical intraepithelial neoplasia who received surgical excision of lesions and were prospectively enrolled at the Fourth People's Hospital of Nanning between January 2018 and February 2023 was performed. HPV-infected patients were divided into two subgroups: HIV-infected and HIV/HPV-coinfected patients and compare differences between these groups. RESULTS: HPV16, 18, 52, and 58 were the most prevalent HPV genotypes. High-risk HPV was significantly co-infected with multiple genotypes (P = 0.0332). HIV-infected women were predisposed to HPV infection (P < 0.0001), and the development of cervical cancer at a young age (P = 0.0336) compared to HIV-uninfected women and the loop electrosurgical excision procedure (P = 0.0480) is preferred for the treatment. CONCLUSIONS: HIV infection may increase HPV prevalence and lead to cervical cancer development at a young age. The loop electrosurgical excision procedure is an efficient evaluation and treatment strategy for HIV-infected women suffering from cervical intraepithelial neoplasia.


Subject(s)
Coinfection , HIV Infections , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , HIV Infections/complications , Papillomavirus Infections/complications , Papillomavirus Infections/virology , Retrospective Studies , Adult , Middle Aged , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/surgery , Uterine Cervical Dysplasia/complications , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/surgery , Coinfection/virology , China/epidemiology , Genotype , Prevalence , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Persistent Infection/virology , Young Adult
4.
J Med Virol ; 96(6): e29753, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895800

ABSTRACT

Human papillomavirus (HPV) type 81 has recently become one of the most common low-risk HPV types; however, literature focusing on it is limited. This study aimed to analyze the reasons for the increased detection rate of HPV81 and investigate its evolving pathogenicity. We analyzed the detection rates and trends of HPV81 in 229 061 exfoliated cervical cell samples collected from 2014 to 2023; collected samples of HPV81 single infections from two different time periods; and analyzed the allele frequencies, positive selection, viral load, persistent infection capacity, and pathogenicity of E6 and E7 genotypes. We found that the detection rate of HPV81 ranked first among the low-risk types in exfoliated cervical cells and exhibited a significantly increasing trend (p < 0.001). The frequency of the E6 prototype allele of HPV81 (n = 317) was significantly increased (p = 0.018) and demonstrated the strongest adaptive capacity. The viral load and persistent infection capacity of the E6 prototype were significantly higher than those of the mutants, thus serving as key drivers for increasing the detection rate of HPV81 and enhancing its pathogenicity. The viral load was positively correlated with persistent infection capacity and pathogenicity. Persistent infection was a crucial factor in the pathogenicity of HPV81. Successful adaptive evolution of HPV81 is accompanied by enhanced pathogenicity.


Subject(s)
Genotype , Papillomavirus Infections , Persistent Infection , Polymorphism, Genetic , Viral Load , Humans , Papillomavirus Infections/virology , Female , Persistent Infection/virology , Cervix Uteri/virology , Cervix Uteri/pathology , Adult , Papillomaviridae/genetics , Papillomaviridae/pathogenicity , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Gene Frequency , Oncogene Proteins, Viral/genetics , Virulence/genetics , Alphapapillomavirus/genetics , Alphapapillomavirus/pathogenicity , Alphapapillomavirus/classification , Alphapapillomavirus/isolation & purification , Human Papillomavirus Viruses
5.
PLoS Pathog ; 20(5): e1011961, 2024 May.
Article in English | MEDLINE | ID: mdl-38701091

ABSTRACT

Noroviruses (NoVs) are a leading cause of viral gastroenteritis. Despite global clinical relevance, our understanding of how host factors, such as antiviral cytokines interferons (IFNs), modulate NoV population dynamics is limited. Murine NoV (MNoV) is a tractable in vivo model for the study of host regulation of NoV. A persistent strain of MNoV, CR6, establishes a reservoir in intestinal tuft cells for chronic viral shedding in stool. However, the influence of host innate immunity and permissive cell numbers on viral population dynamics is an open question. We generated a pool of 20 different barcoded viruses (CR6BC) by inserting 6-nucleotide barcodes at the 3' position of the NS4 gene and used this pool as our viral inoculum for in vivo infections of different mouse lines. We found that over the course of persistent CR6 infection, shed virus was predominantly colon-derived, and viral barcode richness decreased over time irrespective of host immune status, suggesting that persistent infection involves a series of reinfection events. In mice lacking the IFN-λ receptor, intestinal barcode richness was enhanced, correlating with increased viral intestinal replication. IL-4 treatment, which increases tuft cell numbers, also increased barcode richness, indicating the abundance of permissive tuft cells to be a bottleneck during CR6 infection. In mice lacking type I IFN signaling (Ifnar1-/-) or all IFN signaling (Stat1-/-), barcode diversity at extraintestinal sites was dramatically increased, implicating different IFNs as critical bottlenecks at specific tissue sites. Of interest, extraintestinal barcodes were overlapping but distinct from intestinal barcodes, indicating that disseminated virus represents a distinct viral population than that replicating in the intestine. Barcoded viruses are a valuable tool to explore the influence of host factors on viral diversity in the context of establishment and maintenance of infection as well as dissemination and have provided important insights into how NoV infection proceeds in immunocompetent and immunocompromised hosts.


Subject(s)
Caliciviridae Infections , Interferons , Norovirus , Animals , Norovirus/physiology , Caliciviridae Infections/virology , Caliciviridae Infections/immunology , Mice , Interferons/metabolism , Persistent Infection/virology , Persistent Infection/immunology , Mice, Inbred C57BL , Intestinal Mucosa/virology , Intestinal Mucosa/immunology , Gastroenteritis/virology , Virus Replication , Mice, Knockout , Immunity, Innate , Virus Shedding
6.
Front Cell Infect Microbiol ; 14: 1397940, 2024.
Article in English | MEDLINE | ID: mdl-38751999

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.


Subject(s)
Biofilms , Haemophilus influenzae , Moraxella catarrhalis , Moraxellaceae Infections , Moraxella catarrhalis/physiology , Humans , Haemophilus influenzae/physiology , Haemophilus influenzae/pathogenicity , Biofilms/growth & development , Moraxellaceae Infections/microbiology , Persistent Infection/microbiology , Host-Pathogen Interactions , Haemophilus Infections/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Models, Biological , Respiratory Tract Infections/microbiology , Epithelial Cells/microbiology
7.
Front Immunol ; 15: 1380049, 2024.
Article in English | MEDLINE | ID: mdl-38576607

ABSTRACT

Introduction: There is currently no vaccine against Chagas disease (ChD), and the medications available confer multiple side effects. Mycobacterium bovis Bacillus Calmette-Guérin (BCG) produces balanced Th1, Th2, and Th17 modulatory immune responses and has improved efficacy in controlling chronic infections through nonspecific immunity. We aimed to improve the response to infection by inducing a stronger immune response and greater protection against the parasite by trained immunity. Methods: BALB/c mice were immunized with BCG subcutaneously, and 60 days later, they were infected with Trypanosoma cruzi intraperitoneally. An evaluation of the progression of the disease from the acute to the chronic stage, analyzing various aspects such as parasitemia, survival, clinical status, and humoral and cellular immune response, as well as the appearance of visceral megas and the histopathological description of target organs, was performed. Results: Vaccination reduced parasitemia by 70%, and 100% survival was achieved in the acute stage; although the presentation of clinical signs was reduced, there was no increase in the antibody titer or in the differential production of the isotypes. Conclusion: Serum cytokine production indicated a proinflammatory response in infected animals, while in those who received BCG, the response was balanced by inducing Th1/Th2-type cytokines, with a better prognosis of the disease in the chronic stage.


Subject(s)
Chagas Disease , Mycobacterium bovis , Animals , Mice , BCG Vaccine , Parasitemia , Persistent Infection , Adjuvants, Immunologic
8.
Sci Rep ; 14(1): 8208, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589582

ABSTRACT

To investigate the effect of an exercise-based cardiac rehabilitation program on the quality of life (QoL) of patients with chronic Chagas cardiomyopathy (CCC). PEACH study was a single-center, superiority randomized clinical trial of exercise training versus no exercise (control). The sample comprised Chagas disease patients with CCC, left ventricular ejection fraction < 45%, without or with HF symptoms (CCC stages B2 or C, respectively). QoL was assessed at baseline, after three months, and at the end of six months of follow-up using the SF-36 questionnaire. Patients randomized for the exercise group (n = 15) performed exercise training (aerobic, strength and stretching exercises) for 60 min, three times a week, during six months. Patients in the control group (n = 15) were not provided with a formal exercise prescription. Both groups received identical nutritional and pharmaceutical counseling during the study. Longitudinal analysis of the effects of exercise training on QoL, considering the interaction term (group × time) to estimate the rate of changes between groups in the outcomes (represented as beta coefficient), was performed using linear mixed models. Models were fitted adjusting for each respective baseline QoL value. There were significant improvements in physical functioning (ß = + 10.7; p = 0.02), role limitations due to physical problems (ß = + 25.0; p = 0.01), and social functioning (ß = + 19.2; p < 0.01) scales during the first three months in the exercise compared to the control group. No significant differences were observed between groups after six months. Exercise-based cardiac rehabilitation provided short-term improvements in the physical and mental aspects of QoL of patients with CCC.Trial registration: ClinicalTrials.gov Identifier: NCT02517632; August 7, 2015.


Subject(s)
Cardiac Rehabilitation , Chagas Cardiomyopathy , Heart Failure , Humans , Cardiac Rehabilitation/methods , Quality of Life , Chagas Cardiomyopathy/therapy , Stroke Volume , Ventricular Function, Left , Exercise Therapy/methods , Exercise , Persistent Infection
9.
BMC Pulm Med ; 24(1): 172, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600466

ABSTRACT

BACKGROUND: Bronchiectasis is a pulmonary disease characterized by irreversible dilation of the bronchi and recurring respiratory infections. Few studies have described the microbiology and prevalence of infections in large patient populations outside of specialized tertiary care centers. METHODS: We used the Cerner HealthFacts Electronic Health Record database to characterize the nature, burden, and frequency of pulmonary infections among persons with bronchiectasis. Chronic infections were defined based on organism-specific guidelines. RESULTS: We identified 7,749 patients who met our incident bronchiectasis case definition. In this study population, the organisms with the highest rates of isolate prevalence were Pseudomonas aeruginosa with 937 (12%) individuals, Staphylococcus aureus with 502 (6%), Mycobacterium avium complex (MAC) with 336 (4%), and Aspergillus sp. with 288 (4%). Among persons with at least one isolate of each respective pathogen, 219 (23%) met criteria for chronic P. aeruginosa colonization, 74 (15%) met criteria for S. aureus chronic colonization, 101 (30%) met criteria for MAC chronic infection, and 50 (17%) met criteria for Aspergillus sp. chronic infection. Of 5,795 persons with at least two years of observation, 1,860 (32%) had a bronchiectasis exacerbation and 3,462 (60%) were hospitalized within two years of bronchiectasis diagnoses. Among patients with chronic respiratory infections, the two-year occurrence of exacerbations was 53% and for hospitalizations was 82%. CONCLUSIONS: Patients with bronchiectasis experiencing chronic respiratory infections have high rates of hospitalization.


Subject(s)
Bronchiectasis , Pseudomonas Infections , Respiratory Tract Infections , Humans , United States/epidemiology , Anti-Bacterial Agents/therapeutic use , Persistent Infection , Staphylococcus aureus , Electronic Health Records , Bronchiectasis/epidemiology , Bronchiectasis/complications , Pseudomonas Infections/drug therapy , Respiratory Tract Infections/complications , Mycobacterium avium Complex , Pseudomonas aeruginosa
10.
Oncologist ; 29(6): 457-464, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38630576

ABSTRACT

Human papillomavirus (HPV)-associated malignancies account for ~5% of human cancers worldwide. Thirteen, or more, HPV types are oncogenic, but infection with these viruses is common and usually cleared within 2 years. Only infections that become persistent are associated with the development of cancer, often occurring several decades later. These cancers mostly arise in 6 different anatomical regions: 5 are anogenital (anus, cervix, penis, vagina, and vulva) and the sixth is the oropharynx. Oncogenic HPVs promote cellular proliferation and genomic instability, but the anatomical niche of the target tissue also plays an important role in the development of cancer. Cells that reside in transitional regions between different types of epithelia, such as in the anus, cervix, and oropharynx, are particularly vulnerable to oncogenesis.


Subject(s)
Papillomavirus Infections , Humans , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomavirus Infections/pathology , Female , Male , Papillomaviridae/pathogenicity , Neoplasms/virology , Neoplasms/pathology , Neoplasms/complications , Persistent Infection/virology
11.
mBio ; 15(6): e0345123, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38651896

ABSTRACT

The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE: Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.


Subject(s)
Anti-Bacterial Agents , Mucus , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Mucus/microbiology , Mucus/metabolism , Humans , Mucins/metabolism , Drug Resistance, Bacterial , Polymers/metabolism , Persistent Infection/microbiology , Lung/microbiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/drug therapy , Adaptation, Physiological
12.
Emerg Microbes Infect ; 13(1): 2348526, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38683015

ABSTRACT

The foot-and-mouth disease virus (FMDV) Leader proteinase Lpro inhibits host mRNA translation and blocks the interferon response which promotes viral survival. Lpro is not required for viral replication in vitro but serotype A FMDV lacking Lpro has been shown to be attenuated in cattle and pigs. However, it is not known, whether leaderless viruses can cause persistent infection in vivo after simulated natural infection and whether the attenuated phenotype is the same in other serotypes. We have generated an FMDV O/FRA/1/2001 variant lacking most of the Lpro coding region (ΔLb). Cattle were inoculated intranasopharyngeally and observed for 35 days to determine if O FRA/1/2001 ΔLb is attenuated during the acute phase of infection and whether it can maintain a persistent infection in the upper respiratory tract. We found that although this leaderless virus can replicate in vitro in different cell lines, it is unable to establish an acute infection with vesicular lesions and viral shedding nor is it able to persistently infect bovine pharyngeal tissues.


Subject(s)
Cattle Diseases , Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Persistent Infection , Serogroup , Virus Replication , Animals , Cattle , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/physiology , Foot-and-Mouth Disease Virus/classification , Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease Virus/isolation & purification , Foot-and-Mouth Disease/virology , Cattle Diseases/virology , Persistent Infection/virology , Cell Line , Endopeptidases/genetics , Endopeptidases/metabolism , Virus Shedding
13.
BMC Genom Data ; 25(1): 27, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443836

ABSTRACT

OBJECTIVES: The black rhinoceros (Diceros bicornis) is an endangered mammal for which a captive breeding program is part of the conservation effort. Black rhinos in zoo's often suffer from chronic infections and heamochromatosis. Furthermore, breeding is hampered by low male fertility. To aid a research project studying these topics, we sequenced and assembled the genome of a captive male black rhino using ONT sequencing data only. DATA DESCRIPTION: This work produced over 100 Gb whole genome sequencing reads from whole blood. These were assembled into a 2.47 Gb draft genome consisting of 834 contigs with an N50 of 29.53 Mb. The genome annotation was lifted over from an available genome annotation for black rhino, which resulted in the retrieval of over 99% of gene features. This new genome assembly will be a valuable resource in for conservation genetic research in this species.


Subject(s)
Genetic Research , Nose , Male , Animals , Perissodactyla/genetics , Persistent Infection , Research Design
14.
Sci Rep ; 14(1): 7536, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553516

ABSTRACT

The stool antigen test (SAT) and the serum Helicobacter pylori (H. pylori) IgG antibody assays exhibit significant utility in the clinical diagnosis of H. pylori infection and in distinguishing between acute and chronic infections. The main objective of the current study was to identify the diagnostic value of serum H. pylori IgG antibody and SAT in the detection of H. pylori infections among chronic H. pylori-infected patients residing in Ibb Governorate, Yemen. 200 patients with H. pylori infection, confirmed through positive results in the serum immunochromatographic antibody test, were selected for H. pylori infection confirmation using serum H. pylori IgG antibodies and SAT across diverse hospitals, gastroenterology, and Hepatology clinics in Ibb Governorate. After the selection of patients, blood and stool specimens were obtained from all participants and underwent analysis via the Statistical Package for the Social Sciences (SPSS). The prevalence of H. pylori infection demonstrated variability based on the confirmatory tests, with rates of 54% for SAT and 78.5% for serum H. pylori IgG antibody, contrasting with a 100% prevalence observed in the screening serum immunochromatographic antibody test. Clinically, the study categorized H. pylori infections into four stages, whereby a significant proportion of patients (40.5%) exhibited positivity for both serum H. pylori IgG antibody and SAT, indicative of active chronic infections. The majority of positive cases only manifested serum H. pylori IgG antibody presence (chronic infections) at 38%, whereas 13.5% exclusively tested positive for SAT, corresponding to acute infections. Moreover, 88% of patients did not have either serum H. pylori IgG antibody or SAT (absence of infections) during confirmatory tests. Noteworthy is the study's approach employing multiple tests for H. pylori infection detection, focusing predominantly on chronic infections-prevailing types caused by H. pylori. The results revealed a significant association between serum levels of H. pylori IgG antibody and SAT results with the presence of diverse gastrointestinal symptoms among patients, which increased with long H. pylori infection durations.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/diagnosis , Helicobacter Infections/epidemiology , Immunoglobulin G , Yemen/epidemiology , Persistent Infection , Serologic Tests , Antibodies, Bacterial , Antigens, Bacterial/analysis , Sensitivity and Specificity
15.
Autoimmunity ; 57(1): 2330394, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38497343

ABSTRACT

Soil-transmitted helminth (STH) among children aged 24-59 months is one cause of chronic infection that could lead to stunting. The association of 25(OH)D and immune responses during chronic infection in stunted populations has not yet been well established. An association study of case-control data was conducted in Bandung district from October 2019 to January 2023. Sociodemographic factors, stool samples, and serum levels of 25(OH)D, interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-13 (IL-13) were assessed. Statistical analysis was performed to evaluate the prevalence and association of 25(OH)D, IL-4, IL-5, and IL-13 with the burden of STH infection in stunted children. In total, 401 stunted children were recruited. A higher burden of STH infection was found for lower levels of IL-5 (r = -0.477; p = 0.004) and IL-13 (r = -0.433; p = 0.028). Thus, 25(OH)D, IL-4, IL-5, and IL-13 play a role in the burden of STH infection.


Subject(s)
Helminthiasis , Helminths , Animals , Child , Humans , Helminthiasis/epidemiology , Helminthiasis/complications , Interleukin-13 , Interleukin-4 , Interleukin-5 , Persistent Infection , Soil
16.
Proc Natl Acad Sci U S A ; 121(11): e2318599121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446856

ABSTRACT

T cells help orchestrate immune responses to pathogens, and their aberrant regulation can trigger autoimmunity. Recent studies highlight that a threshold number of T cells (a quorum) must be activated in a tissue to mount a functional immune response. These collective effects allow the T cell repertoire to respond to pathogens while suppressing autoimmunity due to circulating autoreactive T cells. Our computational studies show that increasing numbers of pathogenic peptides targeted by T cells during persistent or severe viral infections increase the probability of activating T cells that are weakly reactive to self-antigens (molecular mimicry). These T cells are easily re-activated by the self-antigens and contribute to exceeding the quorum threshold required to mount autoimmune responses. Rare peptides that activate many T cells are sampled more readily during severe/persistent infections than in acute infections, which amplifies these effects. Experiments in mice to test predictions from these mechanistic insights are suggested.


Subject(s)
Autoimmune Diseases , Persistent Infection , Animals , Mice , Peripheral Tolerance , T-Lymphocytes , Autoantigens , Peptides
17.
Front Immunol ; 15: 1334762, 2024.
Article in English | MEDLINE | ID: mdl-38533492

ABSTRACT

Salmonella enterica serovar Typhi (S. Typhi), a human-restricted pathogen, invades the host through the gut to cause typhoid fever. Recent calculations of the typhoid fever burden estimated that more than 10 million new typhoid fever cases occur in low and middle-income countries, resulting in 65,400-187,700 deaths yearly. Interestingly, if not antibiotic-treated, upon the resolution of acute disease, 1%-5% of patients become asymptomatic chronic carriers. Chronically infected hosts are not only critical reservoirs of infection that transmit the disease to naive individuals but are also predisposed to developing gallbladder carcinoma. Nevertheless, the molecular mechanisms involved in the early interactions between gallbladder epithelial cells and S. Typhi remain largely unknown. Based on our previous studies showing that closely related S. Typhi strains elicit distinct innate immune responses, we hypothesized that host molecular pathways activated by S. Typhi strains derived from acutely and chronically infected patients would differ. To test this hypothesis, we used a novel human organoid-derived polarized gallbladder monolayer model, and S. Typhi strains derived from acutely and chronically infected patients. We found that S. Typhi strains derived from acutely and chronically infected patients differentially regulate host mitogen-activated protein kinase (MAPK) and S6 transcription factors. These variations might be attributed to differential cytokine signaling, predominantly via TNF-α and IL-6 production and appear to be influenced by the duration the isolate was subjected to selective pressures in the gallbladder. These findings represent a significant leap in understanding the complexities behind chronic S. Typhi infections in the gallbladder and may uncover potential intervention targets.


Subject(s)
Salmonella typhi , Typhoid Fever , Humans , Gallbladder/pathology , Persistent Infection , Immunity
18.
Front Immunol ; 15: 1341600, 2024.
Article in English | MEDLINE | ID: mdl-38482000

ABSTRACT

The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Pandemics , Kinetics , Persistent Infection
19.
Nat Commun ; 15(1): 2717, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548737

ABSTRACT

Mycobacterium abscessus is an opportunistic, extensively drug-resistant non-tuberculous mycobacterium. Few genomic studies consider its diversity in persistent infections. Our aim was to characterize microevolution/reinfection events in persistent infections. Fifty-three sequential isolates from 14 patients were sequenced to determine SNV-based distances, assign resistance mutations and characterize plasmids. Genomic analysis revealed 12 persistent cases (0-13 differential SNVs), one reinfection (15,956 SNVs) and one very complex case (23 sequential isolates over 192 months), in which a first period of persistence (58 months) involving the same genotype 1 was followed by identification of a genotype 2 (76 SNVs) in 6 additional alternating isolates; additionally, ten transient genotypes (88-243 SNVs) were found. A macrolide resistance mutation was identified from the second isolate. Despite high diversity, the genotypes shared a common phylogenetic ancestor and some coexisted in the same specimens. Genomic analysis is required to access the true intra-patient complexity behind persistent infections involving M. abscessus.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium Infections, Nontuberculous/microbiology , Macrolides , Phylogeny , Persistent Infection , Reinfection , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests
20.
Int Immunopharmacol ; 131: 111821, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38484664

ABSTRACT

Chlamydia trachomatis (C.tr), an obligate intracellular pathogen, causes asymptomatic genital infections in women and is a leading cause of preventable blindness. We have developed in vivo mouse models of acute and chronic C. trachomatis genital infection to explore the significance of macrophage-directed response in mediating immune activation/suppression. Our findings reveal that during chronic and repeated C. trachomatis infections, Th1 response is abated while Treg response is enhanced. Additionally, an increase in exhaustion (PD1, CTLA4) and anergic (Klrg3, Tim3) T cell markers is observed during chronic infection. We have also observed that M2 macrophages with low CD40 expression promote Th2 and Treg differentiation leading to sustained C. trachomatis genital infection. Macrophages infected with C. trachomatis or treated with supernatant of infected epithelial cells drive them to an M2 phenotype. C. trachomatis infection prevents the increase in CD40 expression as observed in western blots and flow cytometric analysis. Insufficient IFNγ, as observed during chronic infection, leads to incomplete clearance of bacteria and poor immune activation. C. trachomatis decapacitates IFNγ responsiveness in macrophages via hampering IFNγRI and IFNγRII expression which can be correlated with poor expression of MHC-II, CD40, iNOS and NO release even following IFNγ supplementation. M2 macrophages during C. trachomatis infection express low CD40 rendering immunosuppressive, Th2 and Treg differentiation which could not be reverted even by IFNγ supplementation. The alternative macrophages also harbour high bacterial load and are poor responders to IFNγ, thus promoting immunosuppression. In summary, C. trachomatis modulates the innate immune cells, attenuating the anti-chlamydial functions of T cells in a manner that involves decreased CD40 expression on macrophages.


Subject(s)
CD40 Antigens , Chlamydia Infections , Chlamydia trachomatis , Interferon-gamma , Macrophages , Animals , Female , Humans , Mice , CD40 Antigens/metabolism , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Chlamydia trachomatis/physiology , Epithelial Cells , Lymphocyte Activation , Macrophages/metabolism , Persistent Infection , Interferon-gamma/immunology , Interferon-gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL