Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.976
Filter
1.
J Environ Sci (China) ; 148: 13-26, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095152

ABSTRACT

Bisphenol A (BPA) is an industrial pollutant that can cause immune impairment. Selenium acts as an antioxidant, as selenium deficiency often accompanies oxidative stress, resulting in organ damage. This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell (MDCC-MSB-1) via oxidative stress-induced endoplasmic reticulum (ER) stress. We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days. The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities (T-AOC, CAT, and GSH-Px), accumulation of peroxides (H2O2 and MDA), significant upregulation of ER stress-related markers (GRP78, IER 1, PERK, EIF-2α, ATF4, and CHOP), a significant increase in iron ion levels, significant upregulation of pyroptosis-related gene (NLRP3, ASC, Caspase1, GSDMD, IL-18 and IL-1ß), significantly increase ferroptosis-related genes (TFRC, COX2) and downregulate GPX4, HO-1, FTH, NADPH. In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results, demonstrating that the addition of antioxidant (NAC), ER stress inhibitor (TUDCA) and pyroptosis inhibitor (Vx765) alleviated oxidative stress, endoplasmic reticulum stress, pyroptosis, and ferroptosis. Overall, this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.


Subject(s)
Benzhydryl Compounds , Chickens , Endoplasmic Reticulum Stress , Ferroptosis , Phenols , Pyroptosis , Reactive Oxygen Species , Selenium , Animals , Benzhydryl Compounds/toxicity , Ferroptosis/drug effects , Pyroptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Selenium/deficiency , Phenols/toxicity , Reactive Oxygen Species/metabolism , Thymus Gland/drug effects , Oxidative Stress/drug effects
2.
J Environ Sci (China) ; 148: 188-197, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095156

ABSTRACT

Bisphenol compounds (BPs) have various industrial uses and can enter the environment through various sources. To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity, Arabidopsis thaliana was exposed to bisphenol A (BPA), BPB, BPE, BPF, and BPS at 1, 3, 10 mg/L for a duration of 14 days, and their growth status were monitored. At day 14, roots and leaves were collected for internal BPs exposure concentration detection, RNA-seq (only roots), and morphological observations. As shown in the results, exposure to BPs significantly disturbed root elongation, exhibiting a trend of stimulation at low concentration and inhibition at high concentration. Additionally, BPs exhibited pronounced generation of reactive oxygen species, while none of the pollutants caused significant changes in root morphology. Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots, with BPS exhibiting the highest level of accumulation. The results of RNA-seq indicated that the shared 211 differently expressed genes (DEGs) of these 5 exposure groups were enriched in defense response, generation of precursor metabolites, response to organic substance, response to oxygen-containing, response to hormone, oxidation-reduction process and so on. Regarding unique DEGs in each group, BPS was mainly associated with the redox pathway, BPB primarily influenced seed germination, and BPA, BPE and BPF were primarily involved in metabolic signaling pathways. Our results provide new insights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.


Subject(s)
Arabidopsis , Benzhydryl Compounds , Oxidation-Reduction , Phenols , Plant Roots , Arabidopsis/drug effects , Arabidopsis/genetics , Phenols/toxicity , Benzhydryl Compounds/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , RNA-Seq , Sequence Analysis, RNA , Soil Pollutants/toxicity
3.
Elife ; 132024 Oct 03.
Article in English | MEDLINE | ID: mdl-39361026

ABSTRACT

Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.


Subject(s)
Endocrine Disruptors , Phenols , Endocrine Disruptors/toxicity , Animals , Phenols/toxicity , Mice , Epigenesis, Genetic/drug effects , Sulfones/adverse effects , Sulfones/toxicity , Mutation , Male , Female
4.
Chemosphere ; 364: 143301, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251161

ABSTRACT

Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.


Subject(s)
Energy Metabolism , ErbB Receptors , Mitochondria , Trophoblasts , Humans , ErbB Receptors/metabolism , Trophoblasts/drug effects , Trophoblasts/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Energy Metabolism/drug effects , Glycolysis/drug effects , Phenols/toxicity , Female , Polychlorinated Biphenyls/toxicity , Atrazine/toxicity , Pregnancy , Benzhydryl Compounds/toxicity , Cell Line , Environmental Pollutants/toxicity , Sulfones
5.
Int J Mol Sci ; 25(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39337594

ABSTRACT

INTRODUCTION: According to the Institute of Environmental Sciences, endocrine-disrupting chemicals (EDCs) are "natural or human-made chemicals that may mimic, block, or interfere with the body's hormones, associated with a wide array of health issues", mainly in the endocrine system. Recent studies have discussed the potential contribution of EDCs as risk factors leading to diabetes mellitus type 1 (T1DM), through various cellular and molecular pathways. PURPOSE: The purpose of this study was to investigate the correlation between the EDCs and the development of T1DM. METHODOLOGY: Thus, a 5-year systematic review was conducted to bring light to this research question. Using the meta-analysis and systematic review guideline protocol, a PRISMA flow diagram was constructed and, using the keywords (diabetes mellitus type 1) AND (endocrine-disrupting chemicals) in the databases PubMed, Scopus and ScienceDirect, the relevant data was collected and extracted into tables. Quality assessment tools were employed to evaluate the quality of the content of each article retrieved. RESULTS: Based on the data collected and extracted from both human and animal studies, an association was found between T1DM and certain EDCs, such as bisphenol A (BPA), bisphenol S (BPS), persistent organic pollutants (POPs), phthalates and dioxins. Moreover, based on the quality assessments performed, using the Newcastle-Ottawa Scale and ARRIVE quality assessment tool, the articles were considered of high quality and thus eligible to justify the correlation of the EDCs and the development of T1DM. CONCLUSION: Based on the above study, the correlation can be justified; however, additional studies can be made focusing mainly on humans to understand further the pathophysiologic mechanism involved in this association.


Subject(s)
Diabetes Mellitus, Type 1 , Endocrine Disruptors , Phenols , Humans , Endocrine Disruptors/adverse effects , Endocrine Disruptors/toxicity , Diabetes Mellitus, Type 1/chemically induced , Phenols/toxicity , Phenols/adverse effects , Animals , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/adverse effects , Persistent Organic Pollutants/adverse effects , Phthalic Acids/toxicity , Phthalic Acids/adverse effects , Environmental Exposure/adverse effects , Sulfones
6.
J Hazard Mater ; 479: 135704, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217924

ABSTRACT

Bisphenol S (BPS) is widely used in plastic products, food packaging, electronic products, and other applications. In recent years, BPS emissions have increasingly impacted aquatic ecosystems. The effects of BPS exposure on aquatic animal health have been documented; however, our understanding of its toxicology remains limited. This study aimed to explore the mechanisms of lipid metabolism disorders, oxidative stress, and autophagy dysfunction induced in freshwater crayfish (Procambarus clarkii) by exposure to different concentrations of BPS (0 µg/L, 1 µg/L, 10 µg/L, and 100 µg/L) over 14 d. The results indicated that BPS exposure led to oxidative stress by inducing elevated levels of reactive oxygen species (ROS) and inhibiting the activity of antioxidant-related enzymes. Additionally, BPS exposure led to increased lipid content in the serum and hepatopancreas, which was associated with elevated lipid-related enzyme activity and increased expression of related genes. Furthermore, BPS exposure decreased levels of phosphatidylcholine (PC) and phosphatidylinositol (PI), disrupted glycerophospholipid (GPI) metabolism, and caused lipid deposition in the hepatopancreatic. These phenomena may have occurred because BPS exposure reduced the transport of fatty acids and led to hepatopancreatic lipid deposition by inhibiting the transport and synthesis of PC and PI in the hepatopancreas, thereby inhibiting the PI3K-AMPK pathway. In conclusion, BPS exposure induced oxidative stress, promoted lipid accumulation, and led to autophagy dysfunction in the hepatopancreas of freshwater crayfish. Collectively, our findings provide the first evidence that environmentally relevant levels of BPS exposure can induce hepatopancreatic lipid deposition through multiple pathways, raising concerns about the potential population-level harm of BPS and other bisphenol analogues.


Subject(s)
Astacoidea , Autophagy , Lipid Metabolism , Oxidative Stress , Phenols , Sulfones , Water Pollutants, Chemical , Animals , Astacoidea/drug effects , Astacoidea/metabolism , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Autophagy/drug effects , Water Pollutants, Chemical/toxicity , Phenols/toxicity , Sulfones/toxicity , Reactive Oxygen Species/metabolism , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Hepatopancreas/pathology
7.
J Hazard Mater ; 479: 135728, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39236535

ABSTRACT

Bisphenols (BPs) are recognized as endocrine disrupting compounds and have garnered increasing attention due to their widespread utilization. However, the varying biological toxicities and underlying mechanisms of BPs with different functional groups remain unknown. In the present study, the toxic effects of four BPs (BPA, BPS, BPAF, and TBBPA) on a photosynthetic microalgae Chromochloris zofingiensis were compared. Results showed that halogen-containing BPs exhibited higher cellular uptake, leading to more severe oxidative stress, lower photosynthetic efficiency, and greater accumulation of starch and lipids. Specifically, TBBPA with bromine groups showed a greater toxicity than BPAF with fluorine groups, possibly due to the incomplete debromination in C. zofingiensis. Transcriptomic analysis revealed that halogen-containing BPs triggered greater number of differentially expressed genes (DEGs), and only 64 common DEGs were found among different BPs, indicating that the effects of BPs with different functional groups varied greatly. Genes involved in endocytosis, peroxisomes, and endoplasmic reticulum protein processing pathways were mostly upregulated across different BPs, while photosynthesis-related genes showed varied expression, possibly due to their distinct functional groups. Additionally, SIN3A, ZFP36L, CHMP, and ATF2 emerged as potential key regulatory genes. Overall, this study thoroughly explained how functional groups impact the toxicity and biodegradation of BPs in C. zofingiensis.


Subject(s)
Biodegradation, Environmental , Phenols , Phenols/toxicity , Phenols/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Microalgae/drug effects , Microalgae/metabolism , Chlorophyta/metabolism , Chlorophyta/drug effects , Chlorophyta/genetics , Endocrine Disruptors/toxicity , Endocrine Disruptors/metabolism , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
8.
Environ Health Perspect ; 132(9): 97011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39298647

ABSTRACT

BACKGROUND: A broad suite of bisphenol S (BPS) derivatives as alternatives for BPS have been identified in various human biological samples, including 4-hydroxyphenyl 4-isopropoxyphenylsulfone (BPSIP) detected in human umbilical cord plasma and breast milk. However, very little is known about the health outcomes of prenatal BPS derivative exposure to offspring. OBJECTIVES: Our study aimed to investigate the response of hepatic cholesterol metabolism by sex in offspring of dams exposed to BPSIP. METHODS: Pregnant ICR mice were exposed to 5µg/kg body weight (BW)/day of BPSIP, BPS, or E2 through drinking water from gestational day one until the pups were weaned. The concentration of BPSIP, BPS, or E2 in the plasma and liver of pups was determined by liquid chromatography-tandem mass spectrometry. Metabolic phenotypes were recorded, and histopathology was examined for liver impairment. Transcriptome analysis was employed to characterize the distribution and expression patterns of differentially expressed genes across sexes. The metabolic regulation was validated by quantitative real-time PCR, immunohistochemistry, and immunoblotting. The role of estrogen receptors (ERs) in mediating sex-dependent effects was investigated using animal models and liver organoids. RESULTS: Pups of dams exposed to BPSIP showed a higher serum cholesterol level, and liver cholesterol levels were higher in females and lower in males than in the controls. BPSIP concentration in the male liver was 1.22±0.25 ng/g and 0.69±0.27 ng/g in the female liver. Histopathology analysis showed steatosis and lipid deposition in both male and female offspring. Transcriptome and gene expression analyses identified sex-specific differences in cholesterol biosynthesis, absorption, disposal, and efflux between pups of dams exposed to BPSIP and those in controls. In vivo, chromatin immunoprecipitation analysis revealed that the binding of ERα protein to key genes such as Hmgcr, Pcsk9, and Abcg5 was attenuated in BPSIP-exposed females compared to controls, while it was enhanced in males. In vitro, the liver organoid experiments demonstrated that restoration of differential expression induced by BPSIP in key genes, such as Hmgcr, Ldlr, and Cyp7a1, to levels comparable to the controls was only achieved when treated with a combination of ERα agonist and ERß agonist. DISCUSSION: Findings from this study suggest that perinatal exposure to BPSIP disrupted cholesterol metabolism in a sex-specific manner in a mouse model, in which ERα played a crucial role both in vivo and in vitro. Therefore, it is crucial to systematically evaluate BPS derivatives to protect maternal health during pregnancy and prevent the transmission of metabolic disorders across generations. https://doi.org/10.1289/EHP14643.


Subject(s)
Cholesterol , Liver , Mice, Inbred ICR , Phenols , Animals , Female , Male , Mice , Cholesterol/metabolism , Liver/drug effects , Liver/metabolism , Pregnancy , Phenols/toxicity , Prenatal Exposure Delayed Effects , Sulfones/toxicity , Maternal Exposure
9.
Chemosphere ; 364: 143228, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233297

ABSTRACT

Our capability to predict the impact of exposure to chemical mixtures on environmental and human health is limited in comparison to the advances on the chemical characterization of the exposome. Current approaches, such as new approach methodologies, rely on the characterization of the chemicals and the available toxicological knowledge of individual compounds. In this study, we show a new methodological approach for the assessment of chemical mixtures based on a proteome-wide identification of the protein targets and revealing the relevance of new targets based on their role in the cellular function. We applied a proteome integral solubility alteration assay to identify 24 protein targets from a chemical mixture of 2,3,7,8-tetrachlorodibenzo-p-dioxin, alpha-endosulfan, and bisphenol A among the HepG2 soluble proteome, and validated the chemical mixture-target interaction orthogonally. To define the range of interactive capability of the new targets, the data from intrinsic properties of the targets were retrieved. Introducing the target properties as criteria for a multi-criteria decision-making analysis called the analytical hierarchy process, the prioritization of targets was based on their involvement in multiple pathways. This methodological approach that we present here opens a more realistic and achievable scenario to address the impact of complex and uncharacterized chemical mixtures in biological systems.


Subject(s)
Proteome , Proteome/metabolism , Humans , Benzhydryl Compounds/toxicity , Phenols/toxicity , Phenols/analysis , Hep G2 Cells , Polychlorinated Dibenzodioxins/toxicity , Polychlorinated Dibenzodioxins/analysis , Environmental Pollutants/toxicity
10.
Ecotoxicol Environ Saf ; 284: 116937, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39226863

ABSTRACT

The synthetic phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) is an emergent contaminant and can disrupt the delicate balance of aquatic ecosystems. This study aimed to investigate 2,4-DTBP-induced hepatotoxicity in common carp and the underlying mechanisms involved. Sixty common carp were divided into four groups and exposed to 0 mg/L, 0.01 mg/L, 0.1 mg/L or 1 mg/L 2,4-DTBP for 30 days. Here, we first demonstrated that 2,4-DTBP exposure caused liver damage, manifested as hepatocyte nuclear pyknosis, inflammatory cell infiltration and apoptosis. Moreover, 2,4-DTBP exposure induced hepatic reactive oxygen species (ROS) overload and disrupted antioxidant capacity, as indicated by the reduced activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). In addition, transmission electron microscopy revealed that 2,4-DTBP exposure induced autophagosome accumulation in the liver of common carp. Western blot analysis further revealed that 2,4-DTBP exposure significantly decreased the protein levels of mTOR and increased the LC3II/LC3I ratio. Furthermore, 2,4-DTBP exposure inhibited lysozyme (LZM) and alkaline phosphatase (AKP) activity; decreased immunoglobulin M (IgM), complement 3 (C3), and complement 4 (C4) levels in the serum; increased the mRNA levels of proinflammatory cytokines (NF-κB, TNF-α, IL-1ß and IL-6); and increased the mRNA levels of three types of proliferator-activated receptors (PPARs) (α, ß/δ and γ). Molecular docking revealed that 2,4-DTBP directly binds to the internal active pocket of PPARs. Overall, we concluded that 2,4-DTBP exposure in aquatic systems could induce hepatotoxicity in common carp by regulating autophagy and controlling inflammatory responses. The present study provides new insights into the hepatotoxicity mechanism induced by 2,4-DTBP in aquatic organisms and furthers our understanding of the effects of 2,4-DTBP on public health and ecotoxicology.


Subject(s)
Antioxidants , Autophagy , Carps , Liver , NF-kappa B , Phenols , Water Pollutants, Chemical , Animals , Autophagy/drug effects , NF-kappa B/metabolism , Water Pollutants, Chemical/toxicity , Phenols/toxicity , Antioxidants/metabolism , Liver/drug effects , Liver/pathology , Peroxisome Proliferator-Activated Receptors/metabolism , Inflammation/chemically induced , Inflammation/pathology , Chemical and Drug Induced Liver Injury/pathology , Reactive Oxygen Species/metabolism
11.
J Hazard Mater ; 479: 135619, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39217935

ABSTRACT

Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Molecular Docking Simulation , Phenols , Receptors, FSH , Humans , Phenols/toxicity , Phenols/chemistry , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/chemistry , Receptors, FSH/metabolism , Risk Assessment , Endocrine Disruptors/toxicity , Endocrine Disruptors/chemistry , Halogenation , HEK293 Cells , Molecular Dynamics Simulation
12.
J Biochem Mol Toxicol ; 38(10): e23862, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39318032

ABSTRACT

Bisphenol A (BPA) is one of the most prevalent endocrine disrupting chemicals (EDCs) and there is widespread concern about the adverse effects of EDCs on human health. However, the exact mechanism of these toxicities has still not been fully deciphered. Additionally, studies have reported the toxicological effects at far low doses to the generally considered no-observed-adverse-effect level (NOAEL) dose. The present study investigates the effects of a sub-acute (28 days) exposure to BPA (10, 50 and 100 mg/kg/day) in adult male mice on various hormones levels, sperm motility, sperm count, functional integrity of sperm plasma membrane, testicular histological changes, oxidative stress markers and DNA damage. The key proteome signatures were quantified by LC-MS/MS analysis using Orbitrap Fusion Lumos Tribrid Mass Spectrometer equipped with nano-LC Easy-nLC 1200. Data suggest that the BPA exposure in all doses (below/above NOAEL dose) have greatly impacted the hormone levels, sperm parameters (sperm count, motility and membrane integrity) and testicular histology. Mass spectrometry-based proteomics data suggested for 1352 differentially expressed proteins (DEPs; 368 upregulated, 984 downregulated) affecting biological process, cellular component, and molecular functions. Specifically searched male reproductive function related proteins suggested a complex network where 46 potential proteins regulating spermatogenesis, sperm structure, activity and membrane integrity while tackling oxidative stress responses were downregulated. These potential biomarkers could shed some more light on our current understanding of the reproductive toxicological effects of BPA and may lead to exploration of novel interventions strategies against these targets for male infertility.


Subject(s)
Benzhydryl Compounds , Phenols , Proteomics , Testis , Male , Animals , Benzhydryl Compounds/toxicity , Phenols/toxicity , Mice , Testis/drug effects , Testis/metabolism , Testis/pathology , Proteome/metabolism , Proteome/drug effects , Endocrine Disruptors/toxicity , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/metabolism , Reproductive Health , Oxidative Stress/drug effects
13.
J Gene Med ; 26(9): e3723, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228142

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Subject(s)
Benzhydryl Compounds , Carcinoma, Hepatocellular , Disease Progression , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Phenols , Tumor Microenvironment , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Benzhydryl Compounds/adverse effects , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Phenols/adverse effects , Phenols/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Gene Expression Profiling , Biomarkers, Tumor/genetics
14.
Front Endocrinol (Lausanne) ; 15: 1415216, 2024.
Article in English | MEDLINE | ID: mdl-39268238

ABSTRACT

Background: Bisphenol A (BPA), a characteristic endocrine disruptor, is a substance that seriously interferes with the human endocrine system and causes reproductive disorders and developmental abnormalities. However, its toxic effects on the gut-liver-hormone axis are still unclear. Method: Male and female rats were exposed to BPA (300 mg/kg) by oral gavage for 60 consecutive days. H&E staining was used for histopathological evaluation, and the serum biochemical indexes were determined using an automatic analyzer. The 16S rRNA gene sequencing was used to detect the intestinal microbial diversity, and the GC-MS was used to analyze the contents of short-chain fatty acids (SCFAs) in colon contents. UPLC-QTOF MS was used to analyze the related metabolites. The ELISA method was used to assess the levels of serum inflammatory factors. Results: Histopathological analysis indicated that the liver, heart, and testis were affected by BPA. There was a significant effect on alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL) in the male-BPA group (P < 0.05), and globulin (GLB), indirect bilirubin (IBIL), alkaline phosphatase (ALP), ALT, TG, TC, high-density lipoprotein (HDL), and creatinine (Cr) in the female-BPA group (P < 0.05). Metagenomics (16S rRNA gene sequencing) analysis indicated that BPA reduced the diversity and changed the composition of gut microbiota in rats significantly. Compared with the control and blank groups, the contents of caproic acid, isobutyric acid, isovaleric acid, and propanoic acid in the colon contents decreased in the male-BPA group (P < 0.05), and caproic acid, isobutyric acid, isovaleric acid, and valeric acid in the colon contents decreased in the female-BPA group (P < 0.05). Metabolomic analysis of the serum indicated that BPA could regulate bile acid levels, especially ursodeoxycholic acid (UDCA) and its conjugated forms. The contents of amino acids, hormones, and lipids were also significantly affected after exposure to BPA. The increase in interleukin-6 (IL-6), interleukin-23 (IL-23), and transforming growth factor-ß (TGF-ß) in the serum of the male-BPA group suggests that BPA exposure affects the immune system. Conclusion: BPA exposure will cause toxicity to rats via disrupting the gut-liver-hormone axis.


Subject(s)
Benzhydryl Compounds , Endocrine Disruptors , Gastrointestinal Microbiome , Liver , Phenols , Animals , Phenols/toxicity , Male , Female , Rats , Gastrointestinal Microbiome/drug effects , Benzhydryl Compounds/toxicity , Liver/drug effects , Liver/metabolism , Liver/pathology , Endocrine Disruptors/toxicity , Rats, Sprague-Dawley , Hormones/blood
15.
J Biochem Mol Toxicol ; 38(9): e23844, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39252451

ABSTRACT

A common industrial chemical known as bisphenol A (BPA) has been linked to endocrine disruption and can interfere with hormonal signaling pathways in humans and animals. This comprehensive review aims to explore the detrimental consequences of BPA on reproductive organ performance and apoptosis induction, shedding light on the emerging body of evidence from laboratory animal studies. Historically, most studies investigating the connection between BPA and reproductive tissue function have mainly leaned on laboratory animal models. These studies have provided crucial insights into the harmful effects of BPA on several facets of reproduction. This review consolidates an increasing literature that correlates exposure to BPA in the environment with a negative impact on human health. It also integrates findings from laboratory studies conducted on diverse species, collectively bolstering the mounting evidence that environmental BPA exposure can be detrimental to both humans and animals, particularly to reproductive health. Furthermore, this article explores the fundamental processes by which BPA triggers cell death and apoptosis in testicular cells. By elucidating these mechanisms, this review aids a deeper understanding of the complex interactions between BPA and reproductive tissues.


Subject(s)
Apoptosis , Benzhydryl Compounds , Phenols , Testis , Benzhydryl Compounds/toxicity , Phenols/toxicity , Humans , Male , Animals , Apoptosis/drug effects , Testis/drug effects , Testis/pathology , Endocrine Disruptors/toxicity
16.
Int. j. morphol ; 42(4): 977-983, ago. 2024. ilus
Article in English | LILACS | ID: biblio-1569274

ABSTRACT

SUMMARY: BPA is a multifunctional endocrine disruptor with ubiquitous presence in aquatic ecosystems. The Mexican Central Plateau is an area severely impacted by pollution, inhabited by endemic viviparous fish. However, efforts to understand the effects of BPA on native species such as Goodea atripinnis are non-existent. This study focused on providing in vivo evidence of alterations in the testes of G. atripinnis males due to acute exposure to BPA at test concentrations of 1 mg/L, 10 mg/L, and 50 mg/L for 96 h. BPA exposition 1 mg/L and 10 mg/L showed degeneration and disorganization in germinal tissue. Furthermore, there was a notable decrease in sperm within the seminiferous tubules of males exposed to 10 mg/L of BPA. In all treatments, somatic cells had alterations by connective tissue thickening and an increase in collagen fibers. Additionally, inflammation and bleeding occurred in the testes of males exposed to 1 and 10 mg/L BPA. The alterations in the testes of G. atripinnis are related to BPA toxicity, which can lead to apoptosis in germ cells increasing connective tissue. Finally, even though the changes produced by BPA became evident in acute exposure (96 h), its effects are probably irreversible, compromising the reproduction of G. atripinnis.


El BPA es un disruptor endocrino multifuncional con presencia ubicua en los ecosistemas acuáticos. La Meseta Central mexicana habitada por peces vivíparos endémicos, es una zona severamente impactada por la contaminación. Sin embargo, los esfuerzos por comprender los efectos del BPA en especies nativas como Goodea atripinnis son inexistentes. Este estudio se centró en proporcionar evidencia in vivo de alteraciones en los testículos de machos de G. atripinnis debido a la exposición aguda al BPA en concentraciones de prueba de 1 mg/L, 10 mg/L y 50 mg/L durante 96 h. La exposición a BPA 1 mg/L y 10 mg/L mostró degeneración y desorganización en el tejido germinal. Además, hubo una disminución notable de los espermatozoides dentro de los túbulos seminíferos de machos expuestos a 10 mg/L de BPA. En todos los tratamientos las células somáticas presentaron alteraciones por engrosamiento del tejido conectivo y aumento de las fibras de colágeno. Además, se produjo inflamación y sangrado en los testículos de machos expuestos a 1 y 10 mg/L de BPA. Las alteraciones en los testículos de G. atripinnis están relacionadas con la toxicidad del BPA, lo que puede provocar apoptosis en las células germinales aumentando el tejido conectivo. Finalmente, si bien los cambios producidos por el BPA se hicieron evidentes en la exposición aguda (96 h), sus efectos probablemente sean irreversibles, comprometiendo la reproducción de G. atripinnis.


Subject(s)
Animals , Phenols/toxicity , Testis/drug effects , Benzhydryl Compounds/toxicity , Cyprinodontiformes , Testis/pathology , Endocrine Disruptors , Fishes
17.
Environ Sci Pollut Res Int ; 31(42): 54589-54602, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39207615

ABSTRACT

In this study, the protective role of Urtica dioica extract (Udex) against Li2CO3 toxicity in Allium cepa L. was investigated using various parameters such as germination rates, root growth, weight gain, mitotic index (MI), malondialdehyde (MDA), micronucleus (MN), antioxidant enzyme activity, chromosomal abnormalities (CAs) and anatomical changes. As the biological activity of Udex is related to its active content, the profile of phenolic compounds was determined by LC-MS/MS analysis. Li2CO3 caused abnormalities in the tested parameters and serious regressions in germination parameters. Application of 100 mg/L Li2CO3 reduced the chlorophyll a and b contents by 73.04% and 65.7%, respectively. Li2CO3 application exhibited a cytotoxic effect by inducing significant decreases in MI and increases in the frequency of MN, and also showed a genotoxic effect by causing CAs. After 100 mg/L Li2CO3 treatment, MDA, proline, superoxide dismutase, and catalase levels increased by 54.9%, 58.5%, 47.8%, and 52.3%, respectively. Li2CO3 and Udex co-administration resulted in a regression in increased biochemical parameters and genotoxicity parameters, and an improvement in germination parameters. Furthermore, Udex demonstrated efficacy in mitigating the detrimental effects of Li2CO3 on the root tip, particularly in the 200 µg/mL Udex-treated group. The thickening of the cortex cell wall and conduction tissue, which is commonly induced by Li2CO3, was not observed in the Udex-treated group. The protective effect of Udex can be explained by the phenolic compounds it contains. Rutin was detected as the major component in Udex and other phenolics were listed according to their presence rate as protecatechuic acid > caffeic acid > p-coumaric acid > syringic acid > rosemarinic acid > epicatechin. Li ions, which increase in the environment after industrialization, are an important environmental pollutant and exhibit toxicity that affects many pathways in organisms. Scientific research should not only detect these toxic effects but also develop solutions to such problems. In this study, it was determined that the Udex application had a toxicity-reducing role against Li2CO3 toxicity. Also, it has been demonstrated that A. cepa is an important indicator in determining this toxicity and toxicity-reducing applications.


Subject(s)
Phenols , Plant Extracts , Urtica dioica , Urtica dioica/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Extracts/chemistry , Phenols/toxicity , Chromatography, Liquid , Tandem Mass Spectrometry , Onions/drug effects , Germination/drug effects , Liquid Chromatography-Mass Spectrometry
18.
J Hazard Mater ; 479: 135552, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39208629

ABSTRACT

Bisphenol A (BPA), a known endocrine disruptor, is ubiquitous in various aquatic environments. Appendicularians are among the most abundant mesozooplankton populations and occupy a crucial niche in marine ecosystems. However, no toxicological data are available concerning the effects of BPA on this functional group. In this study, an evaluation of the toxicity of environmentally relevant levels of BPA (2.5-150 µg/L) on the appendicularian Oikopleura dioica, including its morphology and transcriptome, was conducted. Our results demonstrated the high sensitivity of O. dioica to BPA, with a LC50 of 142 µg/L. Exposure to 125 µg/L BPA significantly inhibited the somatic growth, gonadal development and reproduction of individuals, whereas exposure to an environmentally safe concentration (2.5 µg/L) affected female fecundity and fitness as well as male gene expression. The results of the transcriptomic analysis suggest that males were more sensitive to BPA stress at the molecular level. BPA exposure not only led to abnormal secretion of digestive enzymes and phospholipase A2, affecting the function of the digestive system and arachidonic acid but also significantly down-regulated the expression of mRNAs related to enzymes involved in carbohydrate and energy metabolism in males. These findings suggest that the current safe environmental concentrations may not be safe.


Subject(s)
Benzhydryl Compounds , Phenols , Reproduction , Water Pollutants, Chemical , Phenols/toxicity , Benzhydryl Compounds/toxicity , Animals , Reproduction/drug effects , Male , Water Pollutants, Chemical/toxicity , Female , Endocrine Disruptors/toxicity , Transcriptome/drug effects , Gonads/drug effects , Fertility/drug effects
19.
J Hazard Mater ; 479: 135579, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39216247

ABSTRACT

Exposure to fine particulate matter (PM2.5) poses numerous health risks, with oxidative potential (OP) serving as a critical marker of its toxicity. Synthetic phenolic antioxidants (SPAs) and bisphenols (BPs) influence reactive oxygen species (ROS) levels in PM2.5, and exposure to these compounds induces oxidative stress in organisms, thereby potentially affecting the OP of PM2.5. We detected 26 phenols (including 12 SPAs, 5 transformation products (TPs), and 9 BPs) in PM2.5 sample collected from October 2018 to September 2021 in Wuhan, China. Among them, 19 substances were detected at a detection frequency greater than 50 % in PM2.5 sample. AO 2246 and BHT were the main components of SPAs, and BHT-Q and BPA had the highest concentrations in TPs and BPs, respectively. PM2.5 mass concentrations and phenolic levels were higher in winter and autumn. Substances within groups were strongly correlated, suggesting the same or similar source of exposure. This finding aid in more precise pollution source identification and is crucial for comprehensively evaluating their combined health effects. Furthermore, we determined the OP of PM2.5 and found that BPs were related to increased OP and ROS. This suggests that the toxicity of PM2.5 is influenced not only by its concentration but also by its chemical composition, with BPs potentially enhancing its toxic effects. These factors should be fully considered when assessing the health impacts of PM2.5.


Subject(s)
Air Pollutants , Particulate Matter , Phenols , Seasons , Particulate Matter/analysis , Particulate Matter/toxicity , Phenols/analysis , Phenols/toxicity , Air Pollutants/analysis , Air Pollutants/toxicity , China , Antioxidants/analysis , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Environmental Monitoring , Oxidative Stress/drug effects , Oxidation-Reduction
20.
Environ Int ; 191: 108948, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39167857

ABSTRACT

Bisphenol A (BPA) and its substitute fluorene-9-bisphenol (BHPF) are used in consumer products; however, their toxic effects on intestinal epithelium remain largely unknown. In this study, we combined intestinal organoids and single-cell RNA sequencing to investigate the impact of BPA and BHPF exposure on intestinal cell composition, differentiation, and function. Both compounds inhibited the growth of small intestinal organoids, with BHPF exhibiting a more potent inhibitory effect. BPA and BHPF did not significantly alter the overall cell type composition; however, they led to different alterations in cell-cell communications. Gene Ontology enrichment analysis showed that BPA and BHPF exposures affected various biological processes, such as glutathione transferase activity, antioxidant activity, and lipid metabolism, in cell type-specific and compound-dependent manners. Trajectory analysis demonstrated that BPA and BHPF altered the differentiation trajectory of the intestinal cells. To further connect the cellular mechanism to the phenotypic impact in vivo, we constructed a mouse model exposed to BPA or BHPF and observed significant alterations in intestinal morphology, including reduced crypt depth and villus length and impaired stem cell proliferation and self-renewal. These results provide novel insights into the cell type-specific effects of BPA and BHPF on the intestinal epithelium and highlight the potential risks of exposure to these compounds. Our findings underscore the importance of evaluating the safety of BPA substitutes and contribute to a better understanding of the effects of environmental chemicals on gut health.


Subject(s)
Benzhydryl Compounds , Fluorenes , Homeostasis , Phenols , Phenols/toxicity , Benzhydryl Compounds/toxicity , Animals , Mice , Fluorenes/toxicity , Homeostasis/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Organoids/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL