Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.768
Filter
1.
Nat Commun ; 15(1): 6895, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134528

ABSTRACT

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite.


Subject(s)
Kidney , Mice, Knockout , Animals , Humans , Mice , Male , Kidney/metabolism , Renal Elimination , Female , Lactates/metabolism , Lactates/blood , Lactates/urine , Phenylalanine/metabolism , Phenylalanine/urine , Phenylalanine/blood , Mice, Inbred C57BL , Adult , HEK293 Cells
2.
Trends Endocrinol Metab ; 35(8): 758-759, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137723
3.
Sci Rep ; 14(1): 18470, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122799

ABSTRACT

The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.


Subject(s)
Flavobacteriaceae , Zika Virus , Zika Virus/physiology , Animals , Flavobacteriaceae/metabolism , Flavobacteriaceae/genetics , Anopheles/virology , Anopheles/microbiology , Zika Virus Infection/virology , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication , Phenylalanine/metabolism , Arginine/metabolism , Multiomics
4.
Microb Cell Fact ; 23(1): 212, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061053

ABSTRACT

Being generally regarded as safe, Kluyveromyces lactis has been widely taken for food, feed, and pharmaceutical applications, owing to its ability to achieve high levels of protein secretion and hence being suitable for industrial production of heterologous proteins. Production platform strains can be created through genetic engineering; while prototrophic cells without chromosomally accumulated antibiotics resistance genes have been generally preferred, arising the need for dominant counterselection. We report here the establishment of a convenient counterselection system based on a Frs2 variant, Frs2v, which is a mutant of the alpha-subunit of phenylalanyl-tRNA synthase capable of preferentially incorporating a toxic analog of phenylalanine, r-chloro-phenylalanine (4-CP), into proteins to bring about cell growth inhibition. We demonstrated that expression of Frs2v from an episomal plasmid in K. lactis could make the host cells sensitive to 2 mM 4-CP, and a Frs2v-expressing plasmid could be efficiently removed from the cells immediately after a single round of cell culturing in a 4-CP-contianing YPD medium. This Frs2v-based counterselection helped us attain scarless gene replacement in K. lactis without any prior engineering of the host cells. More importantly, counterselection with this system was proven to be functionally efficient also in Saccharomyces cerevisiae and Komagataella phaffii, suggestive of a broader application scope of the system in various yeast hosts. Collectively, this work has developed a strategy to enable rapid, convenient, and high-efficiency construction of prototrophic strains of K. lactis and possibly many other yeast species, and provided an important reference for establishing similar methods in other industrially important eukaryotic microbes.


Subject(s)
Kluyveromyces , Plasmids , Kluyveromyces/genetics , Kluyveromyces/metabolism , Plasmids/genetics , Phenylalanine-tRNA Ligase/genetics , Phenylalanine-tRNA Ligase/metabolism , Genetic Engineering/methods , Phenylalanine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
Nature ; 632(8024): 451-459, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085604

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.


Subject(s)
Epilepsy , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Ion Channel Gating , Mutation , Potassium Channels , Propofol , Humans , Binding Sites , Cryoelectron Microscopy , Electrophysiology , Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy/metabolism , HEK293 Cells , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/ultrastructure , Ion Channel Gating/drug effects , Ion Channel Gating/genetics , Methionine/genetics , Methionine/metabolism , Models, Molecular , Movement/drug effects , Phenylalanine/genetics , Phenylalanine/metabolism , Polymorphism, Genetic , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels/ultrastructure , Propofol/pharmacology , Propofol/chemistry
6.
Mol Pharm ; 21(8): 4038-4046, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38949624

ABSTRACT

The plasma protein α1-acid glycoprotein (AGP) primarily affects the pharmacokinetics of basic drugs. There are two AGP variants in humans, A and F1*S, exhibiting distinct drug-binding selectivity. Elucidation of the drug-binding selectivity of human AGP variants is essential for drug development and personalized drug therapy. Herein, we aimed to establish the contribution of amino acids 112 and 114 of human AGP to drug-binding selectively. Both amino acids are located in the drug-binding region and differ between the variants. Phe112/Ser114 of the A variant and its equivalent residues in the F1*S variant (Leu112/Phe114) were swapped with each other. Binding experiments were then conducted using the antiarrhythmic drug disopyramide, which selectively binds to the A variant. A significant decrease in the bound fraction was observed in each singly mutated A protein (Phe112Leu or Ser114Phe). Moreover, the bound fraction of the double A mutant (Phe112Leu/Ser114Phe) was decreased to that of wild-type F1*S. Intriguingly, the double F1*S mutant (Leu112Phe/Phe114Ser), in which residues were swapped with those of the A variant, showed only partial restoration in binding. The triple F1*S mutant (Leu112Phe/Phe114Ser/Asp115Tyr), where position 115 is thought to contribute to the difference in pocket size between variants, showed a further recovery in binding to 70% of that of wild-type A. These results were supported by thermodynamic analysis and acridine orange binding, which selectively binds the A variant. Together, these data indicate that, in addition to direct interaction with Phe112 and Ser114, the binding pocket size contributed by Tyr115 is important for the drug-binding selectivity of the A variant.


Subject(s)
Orosomucoid , Protein Binding , Orosomucoid/metabolism , Orosomucoid/genetics , Orosomucoid/chemistry , Humans , Binding Sites , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Tyrosine/chemistry , Tyrosine/metabolism , Tyrosine/genetics , Mutation , Serine/metabolism , Serine/genetics , Serine/chemistry , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/metabolism
7.
Open Biol ; 14(7): 240092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043226

ABSTRACT

Magnetoreceptive biology as a field remains relatively obscure; compared with the breadth of species believed to sense magnetic fields, it remains under-studied. Here, we present grounds for the expansion of magnetoreception studies among teleosts. We begin with the electromagnetic perceptive gene (EPG) from Kryptopterus vitreolus and expand to identify 72 teleosts with homologous proteins containing a conserved three-phenylalanine (3F) motif. Phylogenetic analysis provides insight as to how EPG may have evolved over time and indicates that certain clades may have experienced a loss of function driven by different fitness pressures. One potential factor is water type with freshwater fish significantly more likely to possess the functional motif version (FFF), and saltwater fish to have the non-functional variant (FXF). It was also revealed that when the 3F motif from the homologue of Brachyhypopomus gauderio (B.g.) is inserted into EPG-EPG(B.g.)-the response (as indicated by increased intracellular calcium) is faster. This indicates that EPG has the potential to be engineered to improve upon its response and increase its utility to be used as a controller for specific outcomes.


Subject(s)
Amino Acid Motifs , Fishes , Phenylalanine , Phylogeny , Animals , Phenylalanine/genetics , Phenylalanine/metabolism , Phenylalanine/chemistry , Fishes/genetics , Conserved Sequence , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/chemistry , Amino Acid Sequence , Electromagnetic Fields
8.
Cells ; 13(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38891061

ABSTRACT

Through the shikimate pathway, a massive metabolic flux connects the central carbon metabolism with the synthesis of chorismate, the common precursor of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, as well as other compounds, including salicylate or folate. The alternative metabolic channeling of chorismate involves a key branch-point, finely regulated by aromatic amino acid levels. Chorismate mutase catalyzes the conversion of chorismate to prephenate, a precursor of phenylalanine and tyrosine and thus a vast repertoire of fundamental derived compounds, such as flavonoids or lignin. The regulation of this enzyme has been addressed in several plant species, but no study has included conifers or other gymnosperms, despite the importance of the phenolic metabolism for these plants in processes such as lignification and wood formation. Here, we show that maritime pine (Pinus pinaster Aiton) has two genes that encode for chorismate mutase, PpCM1 and PpCM2. Our investigations reveal that these genes encode plastidial isoenzymes displaying activities enhanced by tryptophan and repressed by phenylalanine and tyrosine. Using phylogenetic studies, we have provided new insights into the possible evolutionary origin of the cytosolic chorismate mutases in angiosperms involved in the synthesis of phenylalanine outside the plastid. Studies based on different platforms of gene expression and co-expression analysis have allowed us to propose that PpCM2 plays a central role in the phenylalanine synthesis pathway associated with lignification.


Subject(s)
Chorismate Mutase , Phylogeny , Pinus , Chorismate Mutase/metabolism , Chorismate Mutase/genetics , Pinus/enzymology , Pinus/genetics , Pinus/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Phenylalanine/metabolism , Plastids/metabolism , Plastids/enzymology , Tryptophan/metabolism
9.
PLoS One ; 19(6): e0305867, 2024.
Article in English | MEDLINE | ID: mdl-38917064

ABSTRACT

BACKGROUND: Foliage color is considered an important ornamental character of Cymbidium tortisepalum (C. tortisepalum), which significantly improves its horticultural and economic value. However, little is understood on the formation mechanism underlying foliage-color variations. METHODS: In this study, we applied a multi-omics approach based on transcriptomics and metabolomics, to investigate the biomolecule mechanisms of metabolites changes in C. tortisepalum colour mutation cultivars. RESULTS: A total of 508 genes were identified as differentially expressed genes (DEGs) between wild and foliage colour mutation C. tortisepalum cultivars based on transcriptomic data. KEGG enrichment of DEGs showed that genes involved in phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and brassinosteroid biosynthesis were most significantly enriched. A total of 420 metabolites were identified in C. tortisepalum using UPLC-MS/MS-based approach and 115 metabolites differentially produced by the mutation cultivars were identified. KEGG enrichment indicated that the most metabolites differentially produced by the mutation cultivars were involved in glycerophospholipid metabolism, tryptophan metabolism, isoflavonoid biosynthesis, flavone and flavonol biosynthesis. Integrated analysis of the metabolomic and transcriptomic data showed that there were four significant enrichment pathways between the two cultivars, including phenylalanine metabolism, phenylpropanoid biosynthesis, flavone and flavonol biosynthesis and flavonoid biosynthesis. CONCLUSION: The results of this study revealed the mechanism of metabolites changes in C. tortisepalum foliage colour mutation cultivars, which provides a new reference for breeders to improve the foliage color of C. tortisepalum.


Subject(s)
Gene Expression Regulation, Plant , Metabolomics , Mutation , Transcriptome , Metabolomics/methods , Gene Expression Profiling , Flavonoids/metabolism , Flavonoids/biosynthesis , Pigmentation/genetics , Phenylalanine/metabolism , Phenylalanine/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Metabolome
10.
Microbiol Res ; 286: 127806, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924817

ABSTRACT

Metabolic cross-feeding is a pervasive interaction between bacteria to acquire novel phenotypes. However, our current understanding of the survival mechanism for cross-feeding in cocultured bacterial biofilms under heavy-metal conditions remains limited. Herein, we found that Comamonas sp. A23 produces L-phenylalanine to activate the L-phenylalanine degradation pathway in Enterobacter sp. A11, enhancing biofilm formation and cadmium [Cd(II)] immobilization in A11. The genes responsible for L-phenylalanine-degradation (paaK) and cell attachment and aggregation (csgAD) are essential for biofilm formation and Cd(II) immobilization in A11 induced by L-phenylalanine. The augmentation of A11 biofilms, in turn, protects A23 under Cd(II) and H2O2 stresses. The plant-based experiments demonstrate that the induction of two rice Cd(II) transporters, OsCOPT4 and OsBCP1, by A11 and A23 enhances rice resistance against Cd(II) and H2O2 stresses. Overall, our findings unveil the mutual dependence between bacteria and rice on L-phenylalanine cross-feeding for survival under abiotic stress.


Subject(s)
Biofilms , Cadmium , Comamonas , Enterobacter , Hydrogen Peroxide , Oryza , Phenylalanine , Cadmium/metabolism , Oryza/microbiology , Enterobacter/metabolism , Enterobacter/genetics , Biofilms/growth & development , Hydrogen Peroxide/metabolism , Phenylalanine/metabolism , Comamonas/metabolism , Comamonas/genetics , Stress, Physiological , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions
11.
Appl Microbiol Biotechnol ; 108(1): 374, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878128

ABSTRACT

2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.


Subject(s)
Culture Media , Phenylethyl Alcohol , Phenylethyl Alcohol/metabolism , Culture Media/chemistry , Mycelium/growth & development , Mycelium/metabolism , Mycelium/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Phenylalanine/metabolism
12.
Sci Rep ; 14(1): 14794, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926472

ABSTRACT

The spontaneous plant landscape is a key focus in the development of urban environments. While many spontaneous plants can coexist with bryophytes to create appealing wilderness landscapes, the potential allelopathic effects of bryophytes on the growth of neighboring spontaneous plants remain uncertain. This study evaluated the allelopathic impact of Thuidium kanedae aqueous extracts on the germination and seedling growth of prevalent urban spontaneous plants by analyzing seed germination, seedling growth morphology, and associated indices. We also investigated the allelopathic potential of the predominant compounds in the extract on seed germination. Our findings reveal that the aqueous extract significantly impeded the seed germination of Ophiopogon japonicus, Taraxacum mongolicum, and Viola philippica, with the level of inhibition correlating positively with concentration. In contrast, Senecio scandens seed germination showed a concentration-dependent reaction, with low concentrations promoting and high concentrations hindering germination. The extract consistently reduced root length in all four species, yet it appeared to increase root vigor. The chlorophyll content in O. japonicus and V. philippica seedlings reached a maximum at a concentration of 5 g/L and decreased with higher extract concentrations. The treatment resulted in elevated catalase and soluble protein levels in the seedlings, indicating that the extract induced stress and enhanced the stress resistance index. L-phenylalanine and 2-phenylethanol, substances present in the extract, were notably inhibitory to seed germination across all species, except for O. japonicus. Notably, 2-phenylethanol exhibited a stronger allelopathic effect than L-phenylalanine. Allelopathy synthetical effect evaluation showed that high concentration of aqueous extract allelopathic inhibition effect on seed germination of four plant species, but allelopathic promotion effect on physiological and biochemical growth of Taraxacum mongolicum, Senecio scandens and Viola philippica. In summary, the study demonstrates that bryophytes exert allelopathic effects on neighboring spontaneous plants, with the degree of influence varying among species. This suggests that the germination and growth of spontaneous plant seeds may be selective in bryophyte-dominated habitats and that the density of bryophytes could shape the evolution of these landscapes.


Subject(s)
Allelopathy , Germination , Plant Extracts , Seedlings , Germination/drug effects , Seedlings/drug effects , Seedlings/growth & development , Plant Extracts/pharmacology , Seeds/drug effects , Seeds/growth & development , Taraxacum/metabolism , Pheromones/pharmacology , Pheromones/metabolism , Senecio/chemistry , Chlorophyll/metabolism , Phenylalanine/metabolism , Plant Roots/drug effects , Plant Roots/growth & development
13.
PLoS One ; 19(6): e0305073, 2024.
Article in English | MEDLINE | ID: mdl-38900837

ABSTRACT

Stable isotope methods have been used to study protein metabolism in humans; however, there application in dogs has not been frequently explored. The present study compared the methods of precursor (13C-Leucine), end-products (15N-Glycine), and amino acid oxidation (13C-Phenylalanine) to determine the whole-body protein turnover rate in senior dogs. Six dogs (12.7 ± 2.6 years age, 13.6 ± 0.6 kg bodyweight) received a dry food diet for maintenance and were subjected to all the above-mentioned methods in succession. To establish 13C and 15N kinetics, according to different methodologies blood plasma, urine, and expired air were collected using a specifically designed mask. The volume of CO2 was determined using respirometry. The study included four methods viz. 13C-Leucine, 13C-Phenylalanine evaluated with expired air, 13C-Phenylalanine evaluated with urine, and 15N-Glycine, with six dogs (repetitions) per method. Data was subjected to variance analysis and means were compared using the Tukey test (P<0.05). In addition, the agreement between the methods was evaluated using Pearson correlation and Bland-Altman statistics. Protein synthesis (3.39 ± 0.33 g.kg-0,75. d-1), breakdown (3.26 ± 0.18 g.kg-0.75.d-1), and flux estimations were similar among the four methods of study (P>0.05). However, only 13C-Leucine and 13C-Phenylalanine (expired air) presented an elevated Pearson correlation and concordance. This suggested that caution should be applied while comparing the results with the other methodologies.


Subject(s)
Leucine , Oxidation-Reduction , Phenylalanine , Animals , Dogs , Leucine/metabolism , Leucine/blood , Phenylalanine/metabolism , Phenylalanine/blood , Carbon Isotopes , Amino Acids/metabolism , Amino Acids/blood , Male , Nitrogen Isotopes , Glycine/urine , Glycine/metabolism , Glycine/blood , Proteins/metabolism , Proteins/analysis , Female
14.
Sci Rep ; 14(1): 14582, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918455

ABSTRACT

Volatile organic compounds (VOCs) are metabolites pivotal in determining the aroma of various products. A well-known VOC producer of industrial importance is Saccharomyces cerevisiae, partially responsible for flavor of beers and wines. We identified VOCs in beers produced by yeast strains characterized by improved aroma obtained in UV-induced mutagenesis. We observed significant increase in concentration of compounds in strains: 1214uv16 (2-phenylethyl acetate, 2- phenylethanol), 1214uv31 (2-ethyl henxan-1-ol), 1214uv33 (ethyl decanoate, caryophyllene). We observed decrease in production of 2-phenyethyl acetate in strain 1214uv33. Analysis of intracellular metabolites based on 1H NMR revealed that intracellular phenylalanine concentration was not changed in strains producing more phenylalanine related VOCs (1214uv16 and 1214uv33), so regulation of this pathway seems to be more sophisticated than is currently assumed. Metabolome analysis surprisingly showed the presence of 3-hydroxyisobutyrate, a product of valine degradation, which is considered to be absent in S. cerevisiae. Our results show that our knowledge of yeast metabolism including VOC production has gaps regarding synthesis pathways for individual metabolites and regulation mechanisms. Detailed analysis of 1214uv16 and 1214uv33 may enhance our knowledge of the regulatory mechanisms of VOC synthesis in yeast, and analysis of strain 1214uv31 may reveal the pathway of 2-ethyl henxan-1-ol biosynthesis.


Subject(s)
Beer , Metabolome , Mutation , Saccharomyces cerevisiae , Volatile Organic Compounds , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Beer/analysis , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Odorants/analysis , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/analysis , Fermentation , Phenylalanine/metabolism , Phenylalanine/analysis , Metabolomics/methods , Acetates
15.
Food Chem ; 457: 140194, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38924917

ABSTRACT

Phenylalanine (Phe) accelerates fruit wound healing by activating phenylpropanoid metabolism. However, whether Phe affects sucrose and respiratory metabolism in fruit during wound healing remains unknown. In this research, we found that preharvest Phe spray promoted sucrose degradation and increased glucose and fructose levels by activating acid invertase (AI), neutral invertase (NI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) on harvested muskmelons. The spray also activated hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), malate dehydrogenase (MDH), succinate dehydrogenase (SDH) and glucose-6-phosphate dehydrogenase (G6PDH). In addition, the spray improved energy and reducing power levels in the fruit. Taken together, preharvest Phe spray can provide carbon skeleton, energy and reducing power for wound healing by activating the sucrose metabolism, Embden-Meyerhof-Parnas (EMP) pathway, tricarboxylic acid (TCA) cycle and pentose phosphate (PPP) pathway in muskmelon wounds during healing, which is expected to be developed as a new strategy to accelerate fruit wound healing.


Subject(s)
Fruit , Glucosyltransferases , Phenylalanine , Plant Proteins , Sucrose , Sucrose/metabolism , Fruit/metabolism , Fruit/chemistry , Fruit/drug effects , Phenylalanine/metabolism , Plant Proteins/metabolism , Glucosyltransferases/metabolism , Wound Healing/drug effects , beta-Fructofuranosidase/metabolism
16.
ACS Chem Biol ; 19(7): 1525-1532, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38889186

ABSTRACT

Copper amine oxidases (CAOs) catalyze the oxidative deamination of primary amines to aldehyde, ammonia, and hydrogen peroxide as products and are widely distributed in bacteria, plants, and eukaryotes. These enzymes initiate the single turnover, post-translational conversion of an active site tyrosine to the redox cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ), subsequently employing TPQ to catalyze steady-state amine oxidation. The mechanisms of TPQ biogenesis and steady-state amine oxidation have been studied extensively, with consensus mechanisms proposed for both reactions. One unresolved issue has been whether the Cu2+ center must undergo formal reduction to Cu1+ in the course of the reaction. Herein, we investigate the properties of the active site of a yeast (Hansenula polymorpha) amine oxidase (HPAO) that has undergone site-specific insertion of a para-aminophenylalanine (pAF) into the position of either the precursor tyrosine to TPQ (Y405) or the two strictly conserved neighboring tyrosines (Y305 and Y407). While our original intention was to interrogate cofactor biogenesis using a precursor unnatural amino acid (UAA) of altered redox potential and pKa, we instead observe an unanticipated reaction assigned to an intramolecular electron transfer from pAF to the active site copper ion. We establish the generality of the observed active site chemistry using exogenously added, aniline-containing substrates under conditions that prevent side chain amine oxidation. The results support previous proposals that the activation of the TPQ precursor occurs in the absence of a formal valence change at the active site copper site. The described reaction of pAFs with the active site redox Cu2+ center of HPAO provides a prototype for either the engineering of the enzymatic oxidation of exogenous anilines or the insertion of site-specific free radical probes within proteins.


Subject(s)
Amine Oxidase (Copper-Containing) , Aniline Compounds , Copper , Tyrosine , Amine Oxidase (Copper-Containing)/metabolism , Amine Oxidase (Copper-Containing)/chemistry , Tyrosine/metabolism , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Copper/chemistry , Copper/metabolism , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Free Radicals/metabolism , Free Radicals/chemistry , Oxidation-Reduction , Catalytic Domain , Phenylalanine/metabolism , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives
17.
PeerJ ; 12: e17372, 2024.
Article in English | MEDLINE | ID: mdl-38770096

ABSTRACT

Quantifying the tropic position (TP) of an animal species is key to understanding its ecosystem function. While both bulk and compound-specific analyses of stable isotopes are widely used for this purpose, few studies have assessed the consistency between and within such approaches. Champsocephalus gunnari is a specialist teleost that predates almost exclusively on Antarctic krill Euphausia superba. This well-known and nearly constant trophic relationship makes C. gunnari particularly suitable for assessing consistency between TP methods under field conditions. In the present work, we produced and compared TP estimates for C. gunnari and its main prey using a standard bulk and two amino acid-specific stable isotope approaches (CSI-AA). One based on the difference between glutamate and phenylalanine (TPGlx-Phe), and the other on the proline-phenylalanine difference (TPPro-Phe). To do that, samples from C. gunnari, E. superba and four other pelagic invertebrate and fish species, all potential prey for C.gunnari, were collected off the South Orkney Islands between January and March 2019, analyzed using standard isotopic ratio mass spectrometry methods and interpreted following a Bayesian approach. Median estimates (CI95%) for C. gunnari were similar between TPbulk (3.6; CI95%: 3.0-4.8) and TPGlx-Phe(3.4; CI95%:3.2-3.6), and lower for TPPro-Phe (3.1; CI95%:3.0-3.3). TP differences between C. gunnari and E. superba were 1.4, 1.1 and 1.2, all compatible with expectations from the monospecific diet of this predator (ΔTP=1). While these results suggest greater accuracy for Glx-Phe and Pro-Phe, differences observed between both CSI-AA approaches suggests these methods may require further validation before becoming a standard tool for trophic ecology.


Subject(s)
Food Chain , Perciformes , Animals , Perciformes/metabolism , Phenylalanine/analysis , Phenylalanine/metabolism , Antarctic Regions , Euphausiacea/chemistry , Ecosystem , Bayes Theorem , Glutamic Acid/analysis , Glutamic Acid/metabolism , Proline/analysis
18.
Sci Rep ; 14(1): 10388, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710760

ABSTRACT

Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.


Subject(s)
Biomarkers , COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Female , Male , Middle Aged , Biomarkers/blood , SARS-CoV-2/isolation & purification , Aged , Adult , Physical Functional Performance , Interleukin-6/blood , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Inflammation , Tryptophan/blood , Tryptophan/metabolism , Neopterin/blood , Phenylalanine/blood , Phenylalanine/metabolism , Amino Acids/blood
19.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699920

ABSTRACT

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Subject(s)
Escherichia coli , Fermentation , Metabolic Engineering , Phenylalanine , Escherichia coli/genetics , Escherichia coli/metabolism , Phenylalanine/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Biosynthetic Pathways
20.
Int J Biol Macromol ; 271(Pt 1): 132587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788880

ABSTRACT

Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC50) of Phe for AktADTs ranged from 49.81 to 331.17 µM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.


Subject(s)
Hydro-Lyases , Phenylalanine , Phenylalanine/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL