Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.079
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 702-707, 2024 Jun 10.
Article Zh | MEDLINE | ID: mdl-38818554

OBJECTIVE: To explore the characteristics of phenylalanine hydroxylase (PAH) gene variants and prenatal diagnosis for 43 Chinese pedigrees affected with Phenylketonuria (PKU). METHODS: Forty three PKU pedigrees diagnosed at the First Affiliated Hospital of Zhengzhou University between 2019 and 2021 were selected as the study subjects. Variants of the PAH gene of the probands were screened by high-throughput sequencing, and candidate variants were verified by Sanger sequencing. Negative cases were further analyzed by multiplex ligation-dependent probe amplification (MLPA) to detect large fragment deletions and duplications of the PAH gene. For 43 women undergoing subsequent pregnancy, Sanger sequencing, MLPA, combined with short tandem repeats (STR) sequence-based linkage analysis, were carried out for prenatal diagnosis. RESULTS: Among the 86 alleles carried by the 43 probands, 78 nucleotide variants (90.70%) and 3 large deletions (3.49%) were found based on high-throughput sequencing and MLPA. The 81 mutant alleles had included 21 missense variants, 5 splice site variants, 4 nonsense variants, 2 microdeletions, 1 insertional variant and 2 large fragment deletions. Relatively common variants have included p.Arg243Gln (23.26%), p.Arg111Ter (8.14%), EX6-96A>G (6.98%), p.Val399Val (5.81%) and p.Arg413Pro (4.65%). Most of the variants were located in exons 7, 11, 3, 6 and 12. For the 43 families undergoing prenatal diagnosis, 9 fetuses (20.45%) were diagnosed with PKU, 20 (45.45%) were heterozygous carriers, and 15 (34.09%) did not carry the same pathogenic allele as the proband. All neonates were followed up till 6 months old, and the accuracy of prenatal diagnosis was 100%. CONCLUSION: The combination of high-throughput sequencing, Sanger sequencing, MLPA and linkage analysis can increase the diagnostic rate of PKU and attain accurate prenatal diagnosis.


Asian People , Pedigree , Phenylalanine Hydroxylase , Phenylketonurias , Prenatal Diagnosis , Humans , Phenylketonurias/genetics , Phenylketonurias/diagnosis , Female , Phenylalanine Hydroxylase/genetics , Pregnancy , Male , Asian People/genetics , High-Throughput Nucleotide Sequencing , Alleles , Adult , Mutation , China , East Asian People
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731816

This study, conducted in the Republic of North Ossetia-Alania (RNOA), aimed to explore the genetic landscape of hyperphenylalaninemia (HPA) and phenylketonuria (PKU) in the Ossetian population using data from newborn screening (NBS). Through comprehensive molecular genetic analysis of 29 patients with HPA from diverse ethnic backgrounds, two major genetic variants in the PAH gene, P281L and P211T, were identified, constituting 50% of all detected pathogenic alleles in Ossetian patients. Remarkably, these variants exhibited an exceptionally high frequency in the Ossetian population, surpassing global prevalence rates. This study unveiled a notable prevalence of mild forms of HPA (78%), underscoring the importance of genetic counseling for carriers of pathogenic variants in the PAH gene. Moreover, the findings emphasized the necessity for ongoing monitoring of patients with mild forms, as they may lack significant symptoms for diagnosis, potentially impacting offspring. Overall, this research offers valuable insights into the genetic landscape of HPA and PKU in the Ossetian population.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylketonurias/genetics , Phenylketonurias/epidemiology , Female , Phenylalanine Hydroxylase/genetics , Male , Infant, Newborn , Neonatal Screening , Alleles , Gene Frequency
3.
Int J Biol Macromol ; 269(Pt 1): 131960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697430

Rare diseases, defined by their low prevalence, present significant challenges, including delayed detection, expensive treatments, and limited research. This study delves into the genetic basis of two noteworthy rare diseases in Saudi Arabia: Phenylketonuria (PKU) and Spinal Muscular Atrophy (SMA). PKU, resulting from mutations in the phenylalanine hydroxylase (PAH) gene, exhibits geographical variability and impacts intellectual abilities. SMA, characterized by motor neuron loss, is linked to mutations in the survival of motor neuron 1 (SMN1) gene. Recognizing the importance of unveiling signature genomics in rare diseases, we conducted a quantitative study on PAH and SMN1 proteins of multiple organisms by employing various quantitative techniques to assess genetic variations. The derived signature-genomics contributes to a deeper understanding of these critical genes, paving the way for enhanced diagnostics for disorders associated with PAH and SMN1.


Genomics , Muscular Atrophy, Spinal , Phenylalanine Hydroxylase , Phenylketonurias , Rare Diseases , Survival of Motor Neuron 1 Protein , Muscular Atrophy, Spinal/genetics , Phenylketonurias/genetics , Humans , Phenylalanine Hydroxylase/genetics , Survival of Motor Neuron 1 Protein/genetics , Genomics/methods , Rare Diseases/genetics , Mutation , Saudi Arabia/epidemiology
4.
J Pediatr Endocrinol Metab ; 37(6): 543-552, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38706300

OBJECTIVES: Phenylalanine hydroxylase (PAH) is predominantly a hepatic enzyme that catalyzes phenylalanine (Phe) into tyrosine, which is the rate-limiting step in Phe catabolism. Biallelic variants in the PAH gene cause PAH enzyme deficiency. Phenylketonuria (PKU) is an autosomal recessive disorder that causes neurologic, behavioral, and dermatological findings. PKU could be divided clinically into three types based on the blood Phe levels: classic phenylketonuria (cPKU), mild-moderate phenylketonuria (mPKU), and mild hyperphenylalaninemia (MHP). This study aimed to determine the phenotypic and genotypic characteristics of Turkish PKU patients in the eastern region of Türkiye. METHODS: Demographic characteristics, serum Phe levels, treatments, and PAH variants of 163 patients with PKU and hyperphenylalaninemia (HPA) were retrospectively evaluated. Blood Phe levels of the patients were analyzed with the high-performance liquid chromatography method. For PAH gene analysis, next-generation sequencing was performed. RESULTS: Of the 163 patients included in the study, 38 (23.3 %) had cPKU, 16 (9.8 %) had mPKU, and 109 (66.9 %) had MHP. Homozygous variants in the PAH gene were detected in 66 (40.5 %) of the patients, while compound heterozygous variants were detected in 97 (59.5 %) patients. Two novel and 35 recurrent variants in the PAH gene were detected. Of the two novel variants, one was missense (p.Phe351Leu) and the other was frameshift (p.Met276Cysfs*65). The most frequently detected variants were p.Thr380Met (18 %), p.Arg261Gln (16.8 %), and p.Ala300Ser (12.8 %). All patients with the homozygous c.1066-11G>A variant exhibited cPKU phenotype. The c.898G>T (p.Ala300Ser), c.1139C>T (p.Thr380Met), and c.1208C>T (p.Ala403Val) variants were statistically related to mild phenotype. On the other hand, c.592_613del (p.Tyr198Serfs*136), c.1028A>G (p.Tyr343Cys), and c.782G>A (p.Arg261Gln) variants were more frequently detected in the cPKU group. CONCLUSIONS: Our study, conducted with patients from the eastern region of Türkiye, demonstrates the genetic heterogeneity in the Turkish population. Simultaneously, our research contributes to genotype-phenotype correlation and expands the genotypic spectrum by identifying novel variants.


Phenotype , Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylalanine Hydroxylase/genetics , Male , Phenylketonurias/genetics , Phenylketonurias/blood , Female , Turkey/epidemiology , Retrospective Studies , Child , Child, Preschool , Genotype , Infant , Adolescent , Mutation , Prognosis , Phenylalanine/blood , Phenylalanine/genetics , Biomarkers/blood , Biomarkers/analysis , Follow-Up Studies
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 188-193, 2024 Feb 15.
Article Zh | MEDLINE | ID: mdl-38436318

OBJECTIVES: To study the in vitro expression of three phenylalanine hydroxylase (PAH) mutants (p.R243Q, p.R241C, and p.Y356X) and determine their pathogenicity. METHODS: Bioinformatics techniques were used to predict the impact of PAH mutants on the structure and function of PAH protein. Corresponding mutant plasmids of PAH were constructed and expressed in HEK293T cells. Quantitative reverse transcription polymerase chain reaction was used to measure the mRNA expression levels of the three PAH mutants, and their protein levels were assessed using Western blot and enzyme-linked immunosorbent assay. RESULTS: Bioinformatics analysis predicted that all three mutants were pathogenic. The mRNA expression levels of the p.R243Q and p.R241C mutants in HEK293T cells were similar to the mRNA expression level of the wild-type control (P>0.05), while the mRNA expression level of the p.Y356X mutant significantly decreased (P<0.05). The PAH protein expression levels of all three mutants were significantly reduced compared to the wild-type control (P<0.05). The extracellular concentration of PAH protein was reduced in the p.R241C and p.Y356X mutants compared to the wild-type control (P<0.05), while there was no significant difference between the p.R243Q mutant and the wild type control (P>0.05). CONCLUSIONS: p.R243Q, p.R241C and p.Y356X mutants lead to reduced expression levels of PAH protein in eukaryotic cells, with p.R241C and p.Y356X mutants also affecting the function of PAH protein. These three PAH mutants are to be pathogenic.


Phenylalanine Hydroxylase , Humans , HEK293 Cells , Phenylalanine Hydroxylase/genetics , Blotting, Western , Computational Biology , RNA, Messenger
6.
Hum Mol Genet ; 33(12): 1074-1089, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38520741

We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein. Homozygous Pah c.1066-11A mice, with a partially humanized intron 10 sequence with the variant, accurately recapitulate the splicing defect and present almost undetectable hepatic PAH activity. They exhibit fur hypopigmentation, lower brain and body weight and reduced survival. Blood and brain phenylalanine levels are elevated, along with decreased tyrosine, tryptophan and monoamine neurotransmitter levels. They present behavioral deficits, mainly hypoactivity and diminished social interaction, locomotor deficiencies and an abnormal hind-limb clasping reflex. Changes in the morphology of glial cells, increased GFAP and Iba1 staining signals and decreased myelinization are observed. Hepatic tissue exhibits nearly absent PAH protein, reduced levels of chaperones DNAJC12 and HSP70 and increased autophagy markers LAMP1 and LC3BII, suggesting possible coaggregation of mutant PAH with chaperones and subsequent autophagy processing. This PKU mouse model with a prevalent human variant represents a useful tool for pathophysiology research and for novel therapies development.


Disease Models, Animal , Phenylalanine Hydroxylase , Phenylketonurias , Animals , Mice , Phenylketonurias/genetics , Phenylketonurias/pathology , Phenylketonurias/metabolism , Humans , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Brain/metabolism , Brain/pathology , CRISPR-Cas Systems , Autophagy/genetics , Mutation , Liver/metabolism , Liver/pathology
7.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 278-283, 2024 Mar 10.
Article Zh | MEDLINE | ID: mdl-38448014

OBJECTIVE: To explore the pathogenicity and genotype-phenotype correlation of the c.158G>A variant of phenylalanine hydroxylase (PAH) gene among patients with PAH deficiency. METHODS: Thirty seven children diagnosed with PAH deficiency at the Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University between July 2016 and June 2021 were selected as the study subjects. Clinical data and results of genetic testing were retrospectively analyzed. RESULTS: Among the 37 patients, mild hyperphenylalaninemia (HPA) was observed in 34 cases, two PAH variants (including c.158G>A), which formed a compound heterozygous mutation genotype, were detected in 33 patients, and the remainder one was found to harbor three PAH variants, including homozygous c.158G>A variants and a heterozygous c.842+2T>A variant. Classical phenylketonuria (PKU) was observed in 3 patients, and three PAH variants were detected in each of them, including two with c.[158G>A,842+2T>A]/c.728G>A and c.[158G>A,842+2T>A]/c.611A>G, respectively, and one with c.[158G>A, c.722G>A]/c.728G>A. The c.158G>A variant has a minimal influence on the PAH activity and is associated with a mild HPA phenotype. The variant should thereby be classified as likely benign. CONCLUSION: When the c.158G>A variant and other pathogenic variants are arranged in cis position, the ultimate phenotype will be determined by the pathogenicity of other variants.


Phenylalanine Hydroxylase , Phenylketonurias , Child , Female , Pregnancy , Humans , Phenylalanine Hydroxylase/genetics , Virulence , Retrospective Studies , Phenylketonurias/genetics , Genetic Association Studies
8.
J Inherit Metab Dis ; 47(1): 80-92, 2024 Jan.
Article En | MEDLINE | ID: mdl-37401651

Phenylketonuria (PKU) or hyperphenylalaninemia is considered a paradigm for an inherited (metabolic) liver defect and is, based on murine models that replicate all human pathology, an exemplar model for experimental studies on liver gene therapy. Variants in the PAH gene that lead to hyperphenylalaninemia are never fatal (although devastating if untreated), newborn screening has been available for two generations, and dietary treatment has been considered for a long time as therapeutic and satisfactory. However, significant shortcomings of contemporary dietary treatment of PKU remain. A long list of various gene therapeutic experimental approaches using the classical model for human PKU, the homozygous enu2/2 mouse, witnesses the value of this model to develop treatment for a genetic liver defect. The list of experiments for proof of principle includes recombinant viral (AdV, AAV, and LV) and non-viral (naked DNA or LNP-mRNA) vector delivery methods, combined with gene addition, genome, gene or base editing, and gene insertion or replacement. In addition, a list of current and planned clinical trials for PKU gene therapy is included. This review summarizes, compares, and evaluates the various approaches for the sake of scientific understanding and efficacy testing that may eventually pave the way for safe and efficient human application.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Mice , Animals , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Phenylketonurias/therapy , Genetic Therapy/methods , Liver/pathology , DNA
9.
HGG Adv ; 5(1): 100253, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37922902

The c.1222C>T (p.Arg408Trp) phenylalanine hydroxylase (PAH) variant is the most frequent cause of phenylketonuria (PKU), an autosomal recessive disorder characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Here we devised a therapeutic base editing strategy to correct the variant, using prime-edited hepatocyte cell lines engineered with the c.1222C>T variant to screen a variety of adenine base editors and guide RNAs in vitro, followed by assessment in c.1222C>T humanized mice in vivo. We found that upon delivery of a selected adenine base editor mRNA/guide RNA combination into mice via lipid nanoparticles (LNPs), there was sufficient PAH editing in the liver to fully normalize blood Phe levels within 48 h. This work establishes the viability of a base editing strategy to correct the most common pathogenic variant found in individuals with the most common inborn error of metabolism, albeit with potential limitations compared with other genome editing approaches.


Liposomes , Nanoparticles , Phenylalanine Hydroxylase , Phenylketonurias , Mice , Animals , Gene Editing , RNA, Messenger/genetics , RNA, Guide, CRISPR-Cas Systems , Phenylketonurias/genetics , Phenylalanine Hydroxylase/genetics , Adenine
10.
Mol Genet Genomic Med ; 12(1): e2294, 2024 Jan.
Article En | MEDLINE | ID: mdl-37818795

BACKGROUND: Hyperphenylalaninemia (HPA) is a metabolic disorder classified into phenylalanine-4-hydroxylase (PAH) and non-PAH deficiency. The latter is produced by mutations in genes involved in the tetrahydrobiopterin (BH4) biosynthesis pathway and DNAJC12 pathogenetic variants. The BH4 metabolism, including de novo biosynthesis involved genes (i.e., guanosine 5'-triphosphate cyclohydrolase I (GTPCH/GCH1), sepiapterin reductase (SR/SPR), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS)), and two genes that play roles in cofactor regeneration pathway (i.e., dihydropteridine reductase (DHPR/QDPR) and pterin-4α-carbinolamine dehydratase (PCD/PCBD1)). The subsequent systemic hyperphenylalaninemia and monoamine neurotransmitter deficiency lead to neurological consequences. The high rate of consanguineous marriages in Iran substantially increases the incidence of BH4 deficiency. METHODS: We utilized the Sanger sequencing technique in this study to investigate 14 Iranian patients with non-PAH deficiency. All affected subjects in this study had HPA and no mutation was detected in their PAH gene. RESULTS: We successfully identified six mutant alleles in BH4-deficiency-associated genes, including three novel mutations: one in QDPR, one in PTS, and one in the PCBD1 gene, thus giving a definite diagnosis to these patients. CONCLUSION: In this light, appropriate patient management may follow. The clinical effect of reported variants is essential for genetic counseling and prenatal diagnosis in the patients' families and significant for the improvement of precision medicine.


Phenylalanine Hydroxylase , Phenylketonurias , Pregnancy , Female , Humans , Iran , Phenylketonurias/genetics , Phenylketonurias/epidemiology , Biopterins , Dihydropteridine Reductase/genetics , Phenylalanine Hydroxylase/genetics
11.
Methods Mol Biol ; 2745: 191-210, 2024.
Article En | MEDLINE | ID: mdl-38060187

Inborn errors of metabolism (IEM) are a group of about 500 rare genetic diseases with large diversity and complexity due to number of metabolic pathways involved in. Establishing a correct diagnosis and identifying the specific clinical phenotype is consequently a difficult task. However, an inclusive diagnosis able in capturing the different clinical phenotypes is mandatory for successful treatment. However, in contrast with Garrod's basic assumption "one-gene one-disease," no "simple" correlation between genotype-phenotype can be vindicated in IEMs. An illustrative example of IEM is Phenylketonuria (PKU), an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism, ascribed to variants of the phenylalanine hydroxylase (PAH) gene encoding for the enzyme complex phenylalanine-hydroxylase. Blood values of Phe allow classifying PKU into different clinical phenotypes, albeit the participation of other genetic/biochemical pathways in the pathogenetic mechanisms remains elusive. Indeed, it has been shown that the most serious complications, such as cognitive impairment, are not only related to the gene dysfunction but also to the patient's background and the participation of several nongenetic factors.Therefore, a Systems Biology-based strategy is required in addressing IEM complexity, and in identifying the interplay between different pathways in shaping the clinical phenotype. Such an approach should entail the concerted investigation of genomic, transcriptomics, proteomics, metabolomics profiles altogether with phenylalanine and amino acids metabolism. Noticeably, this "omic" perspective could be instrumental in planning personalized treatment, tailored accordingly to the disease profile and prognosis.


Metabolism, Inborn Errors , Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylketonurias/diagnosis , Phenylketonurias/genetics , Phenylketonurias/metabolism , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/genetics , Phenylalanine Hydroxylase/genetics , Phenotype , Phenylalanine/genetics , Phenylalanine/metabolism
12.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 701-706, 2023 Dec 07.
Article En, Zh | MEDLINE | ID: mdl-38105703

OBJECTIVES: To retrospectively analyze the variation and characteristics of phenylalanine hydroxylase (PAH) gene, and to observe the long-term treatment effect and follow-up of newborns with PAH deficiency. METHODS: Clinical data, treatment and follow-up results of 198 patients with PAH deficiency diagnosed by newborn screening in Jinan from 1996 to 2021 were collected. The genetic analysis of 55 patients with PAH deficiency diagnosed by newborn screening in Jinan and 213 patients referred from the surrounding areas of Jinan were summarized. Gene variations were checked by a customized Panel gene detection method. Blood phenylalanine-concentration and physical development indicators including height and weight were regularly monitored. Intellectual development was assessed using a neuropsychological development scale for patients aged 0-6 years and academic performance, and brain injury in patients was assessed using brain magnetic resonance imaging. RESULTS: c.728G>A, c.158G>A, c.721C>T, c.1068C>A, c.611A>G variations were common in PAH gene. The genotype of c.158G>A variation is compound heterozygous variation, with mainly a mild hyperpheny-lalaninemia. 168 patients with PAH deficiency who were followed-up regularly had normal physical development without dwarfism or malnutrition. Among the 33 preschool patients who underwent mental development assessment, 2 were mentally retarded and the initial treatment age was older than 6 months. Nine patients with an average age of (17.13±2.42) years completed brain magnetic resonance imaging, one case was normal, and 8 cases were abnormal. There were patchy or patchy hyperintense foci near the bilateral lateral ventricles on T2WI, and the intellectual development was normal. Compared with the other eight patients, the blood phenylalanine concentration of the normal child was better and stably controlled within the ideal range. CONCLUSIONS: c.728G>A, c.158G>A, c.721C>T, c.1068C>A, c.611A>G variations were common in PAH gene. After standardized treatment, most patients with PAH deficiency diagnosed by screening can obtain normal growth and intellectual development in adolescence, but there are different degrees of organic lesions in the cerebral white matter.


Phenylalanine Hydroxylase , Phenylketonurias , Child , Child, Preschool , Adolescent , Humans , Infant, Newborn , Young Adult , Adult , Neonatal Screening , Follow-Up Studies , Retrospective Studies , Phenylketonurias/diagnosis , Phenylketonurias/genetics , Phenylalanine Hydroxylase/genetics , Phenylalanine/therapeutic use , Mutation
13.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-37924808

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Phenylalanine Hydroxylase , Phenylketonurias , Mice , Animals , Phenylketonurias/genetics , Phenylketonurias/therapy , Phenylalanine Hydroxylase/genetics , Disease Models, Animal , Phenylalanine/genetics , Gene Editing
14.
Mol Genet Metab ; 140(3): 107706, 2023 11.
Article En | MEDLINE | ID: mdl-37837865

BACKGROUND: Phenylalanine (Phe)-restricted diet is associated with lower quality of life for patients with phenylketonuria (PKU), and a concern for caregivers of recently-diagnosed infants. Sapropterin is an oral drug used as an alternative or adjunct to dietary treatment. We have observed that some of the young infants initially managed successfully with sapropterin monotherapy have required dietary treatment in long-term follow-up. We aimed to determine the baseline factors associated with future initiation of dietary treatment in these patients. METHODS: Data were obtained retrospectively from the medical records of 80 PKU patients started on sapropterin monotherapy before 3 months of age between 2011 and 2021. RESULTS: The patients were followed for a median of 3.9 years (Q1-Q3: 2.5-5.75 years). Sapropterin was tapered down and discontinued in 5 patients (6.3%) as their Phe levels remained below 360 µmol/L without treatment. Sapropterin monotherapy was sufficient in 62 patients (77.5%), while 13 (16.2%) required dietary treatment. Phe and tyrosine (Tyr) levels, and Phe:Tyr ratios differed significantly among the patients maintained on sapropterin monotherapy and those started on dietary treatment, but the Phe:Tyr ratio at diagnosis was the most important independent baseline variable (OR: 1.61, 95% CI: 1.15-2.27, p = 0.006), with Phe:Tyr ratio at diagnosis >5.25 associated with dietary treatment (sensitivity: 90.0%, specificity: 81.8%). Genotypic phenotype value (GPV), unavailable at baseline, was also associated with dietary treatment (median GPV 9.2 vs. 3.8, p = 0.006), but some genotypes were not specific to the final treatment modality. DISCUSSION: We propose that the Phe:Tyr ratio at diagnosis is an important indicator to predict dietary requirement in young infants initially managed with sapropterin monotherapy.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Infant , Retrospective Studies , Quality of Life , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Diet , Biopterins , Phenylalanine Hydroxylase/genetics
15.
J Med Genet ; 61(1): 1-7, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37775265

Mendel's Law of Dominance suggests that recessive disease expression requires the inheritance of two mutated alleles as the dominant, wildtype allele suppresses disease presentation leading to the expression of physiological normal phenotypes. However, there is existing evidence that challenges this school of thought. Here, we summarise existing literature evaluating metabolic and health impacts among carriers of autosomal recessive conditions, focusing on phenylketonuria (PKU), classical homocystinuria, galactosemia and Usher syndrome as examples. Our findings suggest that carriers, often described as 'unaffected', may actually display attenuated symptoms for the recessive disease they are carrying. For instance, PKU is an inborn error of metabolism characterised by the build-up of plasma phenylalanine attributed to the deficiency of the phenylalanine hydroxylase (PAH) enzyme. While less severe, PKU carriers also exhibit this impaired enzymatic activity, leading to elevated plasma phenylalanine levels, especially after phenylalanine consumption. Related to these metabolic alterations in the PAH pathway, there is early evidence to suggest that PKU carriers may have compromised cognitive and mental health outcomes. Overall, research on the health and metabolic impacts of PKU carriers is sparse, with most studies conducted several decades ago. However, early evidence suggests that intermediate phenotypes among carriers of autosomal recessive conditions are plausible. The illustrated possible intermediate phenotypes observed among carriers necessitates future research to determine possible clinical implications among this population.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylalanine Hydroxylase/genetics , Phenylketonurias/genetics , Inheritance Patterns , Phenotype , Phenylalanine/metabolism
16.
J Cell Mol Med ; 27(17): 2457-2466, 2023 09.
Article En | MEDLINE | ID: mdl-37525467

To date more than 1000 different variants in the PAH gene have been identified in patients with phenylketonuria (PKU). In Iran, several studies have been performed to investigate the genetics bases of the PKU in different parts of the country. In this study, we have analysed and present an update of the mutational landscape of the PAH gene as well as the population genetics and frequencies of detected variants for each cohort. Published articles on PKU mutations in Iran were identified through a comprehensive PubMed, Google Scholar, Web of Science (ISI), SCOPUS, Elsevier, Wiley Online Library and SID literature search using the terms: "phenylketonuria", "hyperphenylalaninemia", and "PKU" in combination with "Iran", "Iranian population", "mutation analysis", and "Molecular genetics". Among the literature-related to genetics of PKU, 18 studies were on the PKU mutations. According to these studies, in different populations of Iran 1497 patients were included for mutation detection that resulted in detection of 129 different mutations. Results of genetic analysis of the different cohorts of Iranian PKU patients show that the most prevalent mutation in Iran is the pathogenic splice variant c.1066-11G > A, occurring in 19.54% of alleles in the cohort. Four other common mutations were p.Arg261Gln, p.Pro281Leu, c.168 + 5G > C and p.Arg243Ter (8.18%, 6.45%, 5.88% and 3.7%, respectively). One notable feature of the studied populations is its high rate of consanguineous marriages. Considering this feature, determining the prevalent PKU mutations could be advantageous for designing screening and diagnostic panels in Iran.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylalanine Hydroxylase/genetics , Iran/epidemiology , Gene Frequency/genetics , Phenylketonurias/epidemiology , Phenylketonurias/genetics , Mutation/genetics , Genotype , DNA Mutational Analysis
17.
Discov Med ; 35(177): 533-538, 2023 08.
Article En | MEDLINE | ID: mdl-37553307

BACKGROUND: Phenylalanine hydroxylase deficiency (PAHD) is an autosomal recessive disorder affecting phenylalanine (Phe) metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene. It has a complex phenotype with many variants and genotypes in various populations. This study sets out to analyze the screening results of children with phenylketonuria (PKU) in Yinchuan City and characterize the mutation variants of the PAH gene. METHODS: Phenylketonuria screening results were retrospectively analyzed in 398,605 neonates (207,361 males and 191,244 females) born in different maternity hospitals in Yinchuan City between January 2017 and December 2021. Screening for genetic metabolic diseases was performed with parental consent at their own expense. A comprehensive diagnosis was performed by integrating tandem mass spectrometry (MS/MS) findings with clinical presentations. High-throughput sequencing (HTS) was used to detect genetic and metabolic disease-associated genes in children with PKU who were clinically diagnosed and voluntarily tested. The identified loci were validated through Sanger sequencing and parental verification. RESULTS: Among the screened newborns, 45 (11.3/100,000) PKU cases were diagnosed. In the 38 cases that underwent self-financed PAH sequencing, 56 mutations were detected in 76 chromosomes, with an overall detection rate of 73.7%. All patients harbored mutant genes, and the 56 mutations detected identified represented 14 variants, including 8 missense mutations, 2 splicing mutations, 2 nonsense mutations, and 2 silent mutations. The mutations were primarily distributed in exons 2, 3, 6, 7, 9, 11, and intron 4, with the highest frequency observed in exon 7 (25 [44.7%]), followed by exon 11 (15 [26.7%]). The most prevalent mutations were exon 7-p.R252W (10 [17.9%]) and exon 7-p.R261Q (8 [14.3%]). CONCLUSIONS: The PAH gene mutations in children with PKU in Yinchuan City are predominantly concentrated in exons 6, 7, and 11, with the highest detection rates observed for p.R252W and p.R261Q mutations.


Phenylalanine Hydroxylase , Phenylketonurias , Pregnancy , Male , Child , Female , Humans , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Retrospective Studies , Tandem Mass Spectrometry , Phenylketonurias/epidemiology , Phenylketonurias/genetics , Phenylketonurias/diagnosis , Mutation , Genotype
18.
Genet Med ; 25(9): 100358, 2023 09.
Article En | MEDLINE | ID: mdl-37470789

PURPOSE: Elevated serum phenylalanine (Phe) levels due to biallelic pathogenic variants in phenylalanine hydroxylase (PAH) may cause neurodevelopmental disorders or birth defects from maternal phenylketonuria. New Phe reduction treatments have been approved in the last decade, but uncertainty on the optimal lifespan goal Phe levels for patients with PAH deficiency remains. METHODS: We searched Medline and Embase for evidence of treatment concerning PAH deficiency up to September 28, 2021. Risk of bias was evaluated based on study design. Random-effects meta-analyses were performed to compare IQ, gestational outcomes, and offspring outcomes based on Phe ≤ 360 µmol/L vs > 360 µmol/L and reported as odds ratio and 95% CI. Remaining results were narratively synthesized. RESULTS: A total of 350 studies were included. Risk of bias was moderate. Lower Phe was consistently associated with better outcomes. Achieving Phe ≤ 360 µmol/L before conception substantially lowered the risk of negative effect to offspring in pregnant individuals (odds ratio = 0.07, 95% CI = 0.04-0.14; P < .0001). Adverse events due to pharmacologic treatment were common, but medication reduced Phe levels, enabling dietary liberalization. CONCLUSIONS: Reduction of Phe levels to ≤360 µmol/L through diet or medication represents effective interventions to treat PAH deficiency.


Genetics, Medical , Phenylalanine Hydroxylase , Phenylketonuria, Maternal , Phenylketonurias , Pregnancy , Female , Humans , United States , Phenylalanine , Phenylketonurias/drug therapy , Phenylketonurias/genetics , Phenylalanine Hydroxylase/genetics , Genomics
19.
Mol Genet Genomic Med ; 11(10): e2224, 2023 10.
Article En | MEDLINE | ID: mdl-37421234

BACKGROUND: Phenylketonuria (PKU) is an autosomal recessive disease resulting from a deficiency of the enzyme phenylalanine hydroxylase (PAH). Hyperphenylalaninemias (HPA) due to PAH deficiency are accompanied by a wide variety of clinical, biochemical, and molecular features. To identify and characterize pathogenic variants in the PAH gene and establish a correlation between genotype and biochemical phenotype in patients with PKU from state of Pará in the North Region of Brazil. METHODS: All 13 exons of the PAH gene from 32 patients (21 PKU and 11 non-PKU HPA) were amplified by PCR and submitted to DNA sequencing (Sanger). Biochemical data were obtained from the patients' medical records. RESULTS: Molecular analysis identified 17 pathogenic variants and 3 nonpathogenic variants. The most frequent pathogenic variants were IVS10-11G>A (7.9%), p. Arg261Gln (7.9%), p. Val388Met (6.3%) and p. Ile65Thr (4.7%). Was observed correlations and inconsistencies between genotype and biochemical phenotype. CONCLUSION: In PKU patients from state of Pará, North Region of Brazil, a heterogeneous mutation spectrum was revealed, in which the most frequent mutations are variants commonly observed in other Brazilian studies and in the region of the Iberian Peninsula.


Phenylalanine Hydroxylase , Phenylketonurias , Humans , Brazil , Phenylketonurias/genetics , Phenylalanine Hydroxylase/genetics , Genotype , Mutation
20.
Nat Commun ; 14(1): 3451, 2023 06 10.
Article En | MEDLINE | ID: mdl-37301931

Phenylketonuria (PKU), an autosomal recessive disorder caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene, results in the accumulation of blood phenylalanine (Phe) to neurotoxic levels. Current dietary and medical treatments are chronic and reduce, rather than normalize, blood Phe levels. Among the most frequently occurring PAH variants in PKU patients is the P281L (c.842C>T) variant. Using a CRISPR prime-edited hepatocyte cell line and a humanized PKU mouse model, we demonstrate efficient in vitro and in vivo correction of the P281L variant with adenine base editing. With the delivery of ABE8.8 mRNA and either of two guide RNAs in vivo using lipid nanoparticles (LNPs) in humanized PKU mice, we observe complete and durable normalization of blood Phe levels within 48 h of treatment, resulting from corrective PAH editing in the liver. These studies nominate a drug candidate for further development as a definitive treatment for a subset of PKU patients.


Phenylalanine Hydroxylase , Phenylketonurias , Mice , Animals , Phenylketonurias/genetics , Phenylketonurias/therapy , Phenylketonurias/metabolism , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Liver/metabolism , Hepatocytes/metabolism , Disease Models, Animal
...