Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
1.
Cell Biochem Funct ; 42(5): e4091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973151

ABSTRACT

The intron retention (IR) is a phenomenon utilized by cells to allow diverse fates at the same mRNA, leading to a different pattern of synthesis of the same protein. In this study, we analyzed the modulation of phosphoinositide-specific phospholipase C (PI-PLC) enzymes by Harpagophytum procumbens extract (HPE) in synoviocytes from joins of osteoarthritis (OA) patients. In some samples, the PI-PLC γ1 isoform mature mRNA showed the IR and, in these synoviocytes, the HPE treatment increased the phenomenon. Moreover, we highlighted that as a consequence of IR, a lower amount of PI-PLC γ1 was produced. The decrease of PI-PLC γ1 was associated with the decrease of metalloprotease-3 (MMP-3), and MMP-13, and ADAMTS-5 after HPE treatment. The altered expression of MMPs is a hallmark of the onset and progression of OA, thus substances able to decrease their expression are very desirable. The interesting outcomes of this study are that 35% of analyzed synovial tissues showed the IR phenomenon in the PI-PLC γ1 mRNA and that the HPE treatment increased this phenomenon. For the first time, we found that the decrease of PI-PLC γ1 protein in synoviocytes interferes with MMP production, thus affecting the pathways involved in the MMP expression. This finding was validated by the silencing of PI-PLC γ1 in synoviocytes where the IR phenomenon was not present. Our results shed new light on the biochemical mechanisms involved in the degrading enzyme production in the joint of OA patients, suggesting a new therapeutic target and highlighting the importance of personalized medicine.


Subject(s)
Fibroblasts , Introns , Phospholipase C gamma , RNA, Messenger , Humans , RNA, Messenger/metabolism , RNA, Messenger/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Cells, Cultured , Osteoarthritis/metabolism , Osteoarthritis/pathology , Synovial Membrane/metabolism , Synovial Membrane/cytology , Synovial Membrane/drug effects , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 3/genetics , ADAMTS5 Protein/metabolism , ADAMTS5 Protein/genetics , Synoviocytes/metabolism , Synoviocytes/drug effects , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 13/genetics
2.
Leukemia ; 38(8): 1712-1721, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914716

ABSTRACT

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib represents an effective strategy for treatment of chronic lymphocytic leukemia (CLL), nevertheless about 30% of patients eventually undergo disease progression. Here we investigated by flow cytometry the long-term modulation of the CLL CXCR4dim/CD5bright proliferative fraction (PF), its correlation with therapeutic outcome and emergence of ibrutinib resistance. By longitudinal tracking, the PF, initially suppressed by ibrutinib, reappeared upon early disease progression, without association with lymphocyte count or serum beta-2-microglobulin. Somatic mutations of BTK/PLCG2, detected in 57% of progressing cases, were significantly enriched in PF with a 3-fold greater allele frequency than the non-PF fraction, suggesting a BTK/PLCG2-mutated reservoir resident within the proliferative compartments. PF increase was also present in BTK/PLCG2-unmutated cases at progression, indicating that PF evaluation could represent a marker of CLL progression under ibrutinib. Furthermore, we evidence different transcriptomic profiles of PF at progression in cases with or without BTK/PLCG2 mutations, suggestive of a reactivation of B-cell receptor signaling or the emergence of bypass signaling through MYC and/or Toll-Like-Receptor-9. Clinically, longitudinal monitoring of the CXCR4dim/CD5bright PF by flow cytometry may provide a simple tool helping to intercept CLL progression under ibrutinib therapy.


Subject(s)
Adenine , Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Mutation , Piperidines , Pyrazoles , Pyrimidines , Receptors, CXCR4 , Humans , Adenine/analogs & derivatives , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Drug Resistance, Neoplasm/genetics , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Cell Proliferation/drug effects , Phospholipase C gamma/genetics , Disease Progression , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Male , Aged , Female , Middle Aged , CD5 Antigens/metabolism , CD5 Antigens/genetics
3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791284

ABSTRACT

Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Humans , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Piperidines/therapeutic use , Piperidines/pharmacology , Adenine/analogs & derivatives , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mutation
6.
FEBS J ; 291(12): 2703-2714, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38390745

ABSTRACT

Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1- and PLCG1-silenced Müller cells and P2X7-silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK-8 assays, EdU (5-ethynyl-2'-deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p-PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP-treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.


Subject(s)
Calcium , Cell Survival , Ependymoglial Cells , Glaucoma , Hydrostatic Pressure , Phospholipase C gamma , Retinal Ganglion Cells , TRPV Cation Channels , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Glaucoma/pathology , Glaucoma/metabolism , Glaucoma/genetics , Mice , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Phospholipase C gamma/metabolism , Phospholipase C gamma/genetics , Calcium/metabolism , Cell Survival/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Disease Models, Animal , Mice, Inbred C57BL , Intraocular Pressure , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Male , Apoptosis , Cells, Cultured
7.
J Allergy Clin Immunol ; 153(1): 230-242, 2024 01.
Article in English | MEDLINE | ID: mdl-37769878

ABSTRACT

BACKGROUND: Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE: We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS: Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS: Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS: This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.


Subject(s)
Immunologic Deficiency Syndromes , Phospholipase C gamma , Humans , Autoimmune Diseases , Calcium/metabolism , Immunologic Deficiency Syndromes/genetics , Mutation , Phospholipase C gamma/genetics
8.
J Allergy Clin Immunol ; 153(1): 216-229, 2024 01.
Article in English | MEDLINE | ID: mdl-37714437

ABSTRACT

BACKGROUND: Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES: The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS: The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS: The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS: PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.


Subject(s)
Haploinsufficiency , Immunologic Deficiency Syndromes , Phospholipase C gamma , Animals , Humans , Mice , Herpesviridae Infections , Immunologic Deficiency Syndromes/genetics , Killer Cells, Natural , Signal Transduction , Phospholipase C gamma/genetics
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166978, 2024 02.
Article in English | MEDLINE | ID: mdl-38061598

ABSTRACT

Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.


Subject(s)
Microglia , Neurodegenerative Diseases , Humans , Brain/metabolism , Immunity, Innate , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Phagocytosis/genetics , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phospholipase C gamma/pharmacology
10.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38127456

ABSTRACT

Despite clinical use of immunosuppressive agents, the immunopathogenesis of minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) remains unclear. Src homology 3-binding protein 2 (SH3BP2), a scaffold protein, forms an immune signaling complex (signalosome) with 17 other proteins, including phospholipase Cγ2 (PLCγ2) and Rho-guanine nucleotide exchange factor VAV2 (VAV2). Bioinformatic analysis of human glomerular transcriptome (Nephrotic Syndrome Study Network cohort) revealed upregulated SH3BP2 in MCD and FSGS. The SH3BP2 signalosome score and downstream MyD88, TRIF, and NFATc1 were significantly upregulated in MCD and FSGS. Immune pathway activation scores for Toll-like receptors, cytokine-cytokine receptor, and NOD-like receptors were increased in FSGS. Lower SH3BP2 signalosome score was associated with MCD, higher estimated glomerular filtration rate, and remission. Further work using Sh3bp2KI/KI transgenic mice with a gain-in-function mutation showed ~6-fold and ~25-fold increases in albuminuria at 4 and 12 weeks, respectively. Decreased serum albumin and unchanged serum creatinine were observed at 12 weeks. Sh3bp2KI/KI kidney morphology appeared normal except for increased mesangial cellularity and patchy foot process fusion without electron-dense deposits. SH3BP2 co-immunoprecipitated with PLCγ2 and VAV2 in human podocytes, underscoring the importance of SH3BP2 in immune activation. SH3BP2 and its binding partners may determine the immune activation pathways resulting in podocyte injury leading to loss of the glomerular filtration barrier.


Subject(s)
Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Nephrotic Syndrome , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Kidney/pathology , Kidney Glomerulus/pathology , Mice, Transgenic , Nephrosis, Lipoid/pathology , Nephrotic Syndrome/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism
11.
Immunity ; 56(9): 1985-1987, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37703828

ABSTRACT

PLCγ2 is genetically linked to Alzheimer's disease (AD), but it is unclear how PLCγ2 contributes to pathology. Tsai et al. demonstrate that AD-associated PLCG2 variants bidirectionally orchestrate microglial responses to plaques and impact neural function in an AD mouse model. This positions PLCγ2 as a key microglial signaling node and shows that targeting PLCγ2 could have therapeutic benefits in AD.


Subject(s)
Microglia , Plaque, Amyloid , Animals , Mice , Phospholipase C gamma/genetics , Disease Models, Animal
12.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37651195

ABSTRACT

Endothelial phospholipase Cγ (PLCγ) is essential for vascular development; however, its role in healthy, mature, or pathological vessels is unexplored. Here, we show that PLCγ was prominently expressed in vessels of several human cancer forms, notably in renal cell carcinoma (RCC). High PLCγ expression in clear cell RCC correlated with angiogenic activity and poor prognosis, while low expression correlated with immune cell activation. PLCγ was induced downstream of vascular endothelial growth factor receptor 2 (VEGFR2) phosphosite Y1173 (pY1173). Heterozygous Vegfr2Y1173F/+ mice or mice lacking endothelial PLCγ (Plcg1iECKO) exhibited a stabilized endothelial barrier and diminished vascular leakage. Barrier stabilization was accompanied by decreased expression of immunosuppressive cytokines, reduced infiltration of B cells, helper T cells and regulatory T cells, and improved response to chemo- and immunotherapy. Mechanistically, pY1173/PLCγ signaling induced Ca2+/protein kinase C-dependent activation of endothelial nitric oxide synthase (eNOS), required for tyrosine nitration and activation of Src. Src-induced phosphorylation of VE-cadherin at Y685 was accompanied by disintegration of endothelial junctions. This pY1173/PLCγ/eNOS/Src pathway was detected in both healthy and tumor vessels in Vegfr2Y1173F/+ mice, which displayed decreased activation of PLCγ and eNOS and suppressed vascular leakage. Thus, we believe that we have identified a clinically relevant endothelial PLCγ pathway downstream of VEGFR2 pY1173, which destabilizes the endothelial barrier and results in loss of antitumor immunity.


Subject(s)
Capillary Permeability , Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Mice , Capillary Permeability/genetics , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/immunology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Phosphorylation , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , CSK Tyrosine-Protein Kinase/metabolism
13.
J Allergy Clin Immunol ; 152(5): 1292-1302, 2023 11.
Article in English | MEDLINE | ID: mdl-37422272

ABSTRACT

BACKGROUND: Phospholipase C (PLC) γ1 is a critical enzyme regulating nuclear factor-κB (NF-κB), extracellular signal-related kinase, mitogen-activated protein kinase, and nuclear factor of activated T cells signaling pathways, yet germline PLCG1 mutation in human disease has not been reported. OBJECTIVE: We aimed to investigate the molecular pathogenesis of a PLCG1 activating variant in a patient with immune dysregulation. METHODS: Whole exome sequencing was used to identify the patient's pathogenic variants. Bulk RNA sequencing, single-cell RNA sequencing, quantitative PCR, cytometry by time of flight, immunoblotting, flow cytometry, luciferase assay, IP-One ELISA, calcium flux assay, and cytokine measurements in patient PBMCs and T cells and COS-7 and Jurkat cell lines were used to define inflammatory signatures and assess the impact of the PLCG1 variant on protein function and immune signaling. RESULTS: We identified a novel and de novo heterozygous PLCG1 variant, p.S1021F, in a patient presenting with early-onset immune dysregulation disease. We demonstrated that the S1021F variant is a gain-of-function variant, leading to increased inositol-1,4,5-trisphosphate production, intracellular Ca2+ release, and increased phosphorylation of extracellular signal-related kinase, p65, and p38. The transcriptome and protein expression at the single-cell level revealed exacerbated inflammatory responses in the patient's T cells and monocytes. The PLCG1 activating variant resulted in enhanced NF-κB and type II interferon pathways in T cells, and hyperactivated NF-κB and type I interferon pathways in monocytes. Treatment with either PLCγ1 inhibitor or Janus kinase inhibitor reversed the upregulated gene expression profile in vitro. CONCLUSIONS: Our study highlights the critical role of PLCγ1 in maintaining immune homeostasis. We illustrate immune dysregulation as a consequence of PLCγ1 activation and provide insight into therapeutic targeting of PLCγ1.


Subject(s)
Gain of Function Mutation , NF-kappa B , Humans , NF-kappa B/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/genetics , Phosphorylation , Phospholipase C gamma/genetics
14.
Mol Neurodegener ; 18(1): 25, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081539

ABSTRACT

BACKGROUND: The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS: We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS: In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION: The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Immune System , Phospholipase C gamma/genetics , SARS-CoV-2
15.
SLAS Discov ; 28(4): 170-179, 2023 06.
Article in English | MEDLINE | ID: mdl-36933698

ABSTRACT

A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Fluorescent Dyes , Phospholipase C gamma/genetics , High-Throughput Screening Assays , Coumarins
16.
Front Immunol ; 14: 1014150, 2023.
Article in English | MEDLINE | ID: mdl-36776842

ABSTRACT

Background: The APLAID syndrome is a rare primary immunodeficiency caused by gain-of-function mutations in the PLCG2 gene. We present a 7-year-old APLAID patient who has recurrent blistering skin lesions, skin infections in the perineum, a rectal perineal fistula, and inflammatory bowel disease. Methods: To determine the genetic cause of our patient, WES and bioinformatics analysis were performed. Flow cytometry was used for phenotyping immune cell populations in peripheral blood. Cytokines released into plasma were analyzed using protein chip technology. The PBMCs of patient and a healthy child were subjected to single-cell RNA-sequencing analysis. Results: The patient carried a novel de novo missense mutation c.2534T>C in exon 24 of the PLCG2 gene that causes a leucine to serine amino acid substitution (p.Leu845Ser). Bioinformatics analysis revealed that this mutation had a negative impact on the structure of the PLCγ2 protein, which is highly conserved in many other species. Immunophenotyping by flow cytometry revealed that in addition to the typical decrease in circulating memory B cells, the levels of myeloid dendritic cells (mDCs) in the children's peripheral blood were significantly lower, as were the CD4+ effector T cells induced by their activation. Single-cell sequencing revealed that the proportion of different types of cells in the peripheral blood of the APLAID patient changed. Conclusions: We present the first case of APLAID with severely reduced myeloid dendritic cells carrying a novel PLCG2 mutation, and conducted a comprehensive analysis of immunological features in the ALPAID patient, which has not been mentioned in previous reports. This study expands the spectrum of APLAID-associated immunophenotype and genotype. The detailed immune analyses in this patient may provide a basis for the development of targeted therapies for this severe autoinflammatory disease.


Subject(s)
Autoimmune Diseases , Inflammatory Bowel Diseases , Child , Humans , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Mutation , Syndrome
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166601, 2023 02.
Article in English | MEDLINE | ID: mdl-36442790

ABSTRACT

BACKGROUND: Development of adult T-cell leukemia/lymphoma (ATL) involves human T-cell leukemia virus type 1 (HTLV-1) infection and accumulation of somatic mutations. The most frequently mutated gene in ATL (36 % of cases) is phospholipase C gamma1 (PLCG1). PLCG1 is also frequently mutated in other T-cell lymphomas. However, the functional consequences of the PLCG1 mutations in cancer cells have not been characterized. METHODS: We compared the activity of the wild-type PLCγ1 with that of a mutant carrying a hot-spot mutation of PLCγ1 (S345F) observed in ATL, both in cells and in cell-free assays. To analyse the impact of the mutation on cellular properties, we quantified cellular proliferation, aggregation, chemotaxis and apoptosis by live cell-imaging in an S345F+ ATL-derived cell line (KK1) and a KK1 cell line in which we reverted the mutation to the wild-type sequence using CRISPR/Cas9 and homology-directed repair. FINDINGS: The PLCγ1 S345F mutation results in an increase of basal PLC activity in vitro and in different cell types. This higher basal activity is further enhanced by upstream signalling. Reversion of the S345F mutation in the KK1 cell line resulted in reduction of the PLC activity, lower rates of proliferation and aggregation, and a marked reduction in chemotaxis towards CCL22. The PLCγ1-pathway inhibitors ibrutinib and ritonavir reduced both the PLC activity and the tested functions of KK1 cells. INTERPRETATION: Consistent with observations from clinical studies, our data provide direct evidence that activated variants of the PLCγ1 enzyme contribute to the properties of the malignant T-cell clone in ATL. FUNDING: MRC (UK) Project Grant (P028160).


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Phospholipase C gamma , Adult , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mutation , Phospholipase C gamma/genetics
18.
Hepatol Commun ; 6(11): 3234-3246, 2022 11.
Article in English | MEDLINE | ID: mdl-36153805

ABSTRACT

Phospholipase C gamma 1 (PLCγ1) plays an oncogenic role in several cancers, alongside its usual physiological roles. Despite studies aimed at identifying the effect of PLCγ1 on tumors, the pathogenic role of PLCγ1 in the tumorigenesis and development of hepatocellular carcinoma (HCC) remains unknown. To investigate the function of PLCγ1 in HCC, we generated hepatocyte-specific PLCγ1 conditional knockout (PLCγ1f/f ; Alb-Cre) mice and induced HCC with diethylnitrosamine (DEN). Here, we identified that hepatocyte-specific PLCγ1 deletion effectively prevented DEN-induced HCC in mice. PLCγ1f/f ; Alb-Cre mice showed reduced tumor burden and tumor progression, as well as a decreased incidence of HCC and less marked proliferative and inflammatory responses. We also showed that oncogenic phenotypes such as repressed apoptosis, and promoted proliferation, cell cycle progression and migration, were induced by PLCγ1. In terms of molecular mechanism, PLCγ1 regulated the activation of signal transducer and activator of transcription 3 (STAT3) signaling. Moreover, PLCγ1 expression is elevated in human HCC and correlates with a poor prognosis in patients with HCC. Our results suggest that PLCγ1 promotes the pathogenic progression of HCC, and PLCγ1/STAT3 axis was identified as a potential therapeutic target pathway for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , STAT3 Transcription Factor/genetics , Carcinoma, Hepatocellular/chemically induced , Diethylnitrosamine/toxicity , Liver Neoplasms/chemically induced , Phospholipase C gamma/genetics , Cell Proliferation , Carcinogenesis/genetics
19.
J Hypertens ; 40(9): 1795-1807, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35848503

ABSTRACT

OBJECTIVE: Pulmonary hypertension is a lethal disease characterized by pulmonary vascular remodeling and is mediated by abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). Platelet-derived growth factor BB (PDGF-BB) is the most potent mitogen for PASMCs and is involved in vascular remodeling in pulmonary hypertension development. Therefore, the objective of our study is to identify novel mechanisms underlying vascular remodeling in pulmonary hypertension. METHODS: We explored the effects and mechanisms of PTPRD downregulation in PASMCs and PTPRD knockdown rats in pulmonary hypertension induced by hypoxia. RESULTS: We demonstrated that PTPRD is dramatically downregulated in PDGF-BB-treated PASMCs, pulmonary arteries from pulmonary hypertension rats, and blood and pulmonary arteries from lung specimens of patients with hypoxic pulmonary arterial hypertension (HPAH) and idiopathic PAH (iPAH). Subsequently, we found that PTPRD was downregulated by promoter methylation via DNMT1. Moreover, we found that PTPRD knockdown altered cell morphology and migration in PASMCs via modulating focal adhesion and cell cytoskeleton. We have demonstrated that the increase in cell migration is mediated by the PDGFRB/PLCγ1 pathway. Furthermore, under hypoxic condition, we observed significant pulmonary arterial remodeling and exacerbation of pulmonary hypertension in heterozygous PTPRD knock-out rats compared with the wild-type group. We also demonstrated that HET group treated with chronic hypoxia have higher expression and activity of PLCγ1 in the pulmonary arteries compared with wild-type group. CONCLUSION: We propose that PTPRD likely plays an important role in the process of pulmonary vascular remodeling and development of pulmonary hypertension in vivo .


Subject(s)
Gene Silencing , Hypertension, Pulmonary , Myocytes, Smooth Muscle , Pulmonary Artery , Receptor, Platelet-Derived Growth Factor beta , Animals , Becaplermin/metabolism , Becaplermin/pharmacology , Cell Movement , Cell Proliferation , Cells, Cultured , Gene Silencing/physiology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Methylation , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phospholipase C gamma/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Vascular Remodeling/genetics , Vascular Remodeling/physiology
20.
Cell Mol Life Sci ; 79(8): 453, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35895133

ABSTRACT

BACKGROUND: A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD. METHODS: Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2P522R variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2P522R on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aß) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay. RESULTS: Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aß, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2P522R appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells. CONCLUSION: These findings suggest that PLCγ2P522R may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2P522R 'dose' resulting in reduced beneficial impacts.


Subject(s)
Alzheimer Disease , Phospholipase C gamma , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Humans , Microglia/metabolism , Phospholipase C gamma/genetics , Phospholipase C gamma/metabolism , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL