Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.440
Filter
1.
Methods Mol Biol ; 2816: 129-138, 2024.
Article in English | MEDLINE | ID: mdl-38977594

ABSTRACT

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Subject(s)
Alcohols , Click Chemistry , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Click Chemistry/methods , Alcohols/chemistry , Alcohols/metabolism , Cycloaddition Reaction , Humans , Phosphatidic Acids/metabolism , Phosphatidic Acids/chemistry , Azides/chemistry , Molecular Imaging/methods , Alkynes/chemistry
2.
Structure ; 32(6): 645-647, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848679

ABSTRACT

Phospholipase D (PLD) family proteins degrade phospholipids and nucleic acids. In the current issue of Structure, Yuan et al.1 report crystal structures of lysosomal PLD3 and PLD4 with and without a single-stranded DNA substrate. Their manuscript reveals a catalytic ping-pong mechanism and explains how disease-associated mutations compromise PLD3/4 function.


Subject(s)
Lysosomes , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Phospholipase D/genetics , Lysosomes/metabolism , Humans
3.
Int J Biol Macromol ; 273(Pt 2): 133112, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880454

ABSTRACT

Tumor metastasis is the leading cause of cancer-related death in patients with colorectal cancer (CRC). Heterogeneous nuclear ribonucleoproteins (hnRNPs) are RNA-binding proteins, involved in the tumorigenesis and metastasis of various cancers. However, the molecular mechanisms of hnRNPs in CRC metastasis remain unclear. This study aims to uncover the pivotal roles and molecular mechanisms of hnRNPs in CRC metastasis. Clinical database analysis suggested that the expression of hnRNP-Associated with Lethal Yellow (RALY, an important member of hnRNPs) was strongly correlated with the aggressiveness and survival of CRC patients. Gain- and loss-of-function studies demonstrated that RALY promotes the production of exosomes by increasing the formation of multivesicular bodies (MVBs) and enhancing the fusion of MVBs with the plasma membrane. Notably, RALY directly interacts with phospholipase D2 (PLD2) to enable exosome biogenesis, and cooperates with RBM15b to control PLD2 mRNA stability in an m6A-dependent manner. RALY-mediated exosome secretion activates pro-tumor macrophages and further facilitates CRC metastasis, while rescue experiments in vivo further confirmed that RALY-mediated exosome biogenesis facilitates CRC metastasis. Collectively, our findings demonstrate that RALY promotes exosome biogenesis and facilitates colorectal cancer metastasis by upregulating PLD2 and enhancing exosome production in an m6A-dependent manner, suggesting potential therapeutic strategies for combating CRC metastasis.


Subject(s)
Colorectal Neoplasms , Exosomes , Neoplasm Metastasis , RNA-Binding Proteins , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Exosomes/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Multivesicular Bodies/metabolism , Phospholipase D/metabolism , Phospholipase D/genetics
4.
Planta ; 259(6): 142, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702456

ABSTRACT

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Droughts , Gene Expression Regulation, Plant , Hydrogen Sulfide , Phospholipase D , Plant Stomata , Arabidopsis/genetics , Arabidopsis/physiology , Plant Stomata/physiology , Plant Stomata/genetics , Phospholipase D/metabolism , Phospholipase D/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Proline/metabolism , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Lipid Peroxidation
5.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703555

ABSTRACT

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Subject(s)
Acute Lung Injury , Glycocalyx , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Phospholipase D , Respiratory Distress Syndrome , Animals , Phospholipase D/metabolism , Phospholipase D/genetics , Glycocalyx/metabolism , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/chemically induced , Acute Lung Injury/etiology , Mice , Humans , Male , Matrix Metalloproteinase 9/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Syndecan-1/metabolism , Syndecan-1/genetics , Cytokines/metabolism , Cell Line
6.
mBio ; 15(6): e0012424, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38722159

ABSTRACT

Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE: Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.


Subject(s)
Biofilms , Phospholipase D , Siphonaptera , Yersinia pestis , Yersinia pestis/enzymology , Phospholipase D/metabolism , Siphonaptera/microbiology , Biofilms/growth & development , Plague/microbiology , Plague/transmission , Extracellular Polymeric Substance Matrix/chemistry , Extracellular Polymeric Substance Matrix/microbiology , Extracellular Polymeric Substance Matrix/ultrastructure , Polysaccharides/metabolism , Microscopy, Electron, Transmission , Proteome/metabolism , Animals , Mice , Lipids/analysis
7.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38697119

ABSTRACT

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Subject(s)
Endoribonucleases , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Endoribonucleases/metabolism , Ligands , Phospholipase D/metabolism , Phospholipase D/genetics , RNA/metabolism , HEK293 Cells , Lysosomes/metabolism , Animals , Exonucleases/metabolism , Mice , Binding Sites
8.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630134

ABSTRACT

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Subject(s)
Cardiomyopathies , Caspase 1 , Mice, Knockout , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Phospholipase D , Pyroptosis , Sepsis , Animals , Male , Mice , Rats , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Caspase 1/metabolism , Caspase 1/genetics , Cell Line , Gasdermins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Sepsis/complications , Sepsis/genetics , Signal Transduction
9.
Plant Physiol Biochem ; 210: 108600, 2024 May.
Article in English | MEDLINE | ID: mdl-38593488

ABSTRACT

Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.


Subject(s)
Homeostasis , Phospholipase D , Plant Proteins , Populus , Salt Stress , Arabidopsis/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/drug effects , Phospholipase D/metabolism , Phospholipase D/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plants, Genetically Modified , Populus/metabolism , Populus/genetics , Populus/drug effects , Reactive Oxygen Species/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques
10.
Food Funct ; 15(8): 4389-4398, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563085

ABSTRACT

ß-Hydroxy-ß-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.


Subject(s)
Circadian Rhythm , Muscle Fibers, Skeletal , Phospholipase D , Valerates , Valerates/pharmacology , Animals , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Mice , Phospholipase D/metabolism , Circadian Rhythm/drug effects , Cell Line , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Muscle Development/drug effects
11.
Biomolecules ; 14(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672447

ABSTRACT

Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.


Subject(s)
Escherichia coli , Phosphatidylserines , Phospholipase D , Calcium/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Phosphatidylcholines/metabolism , Phosphatidylcholines/biosynthesis , Phosphatidylserines/biosynthesis , Phosphatidylserines/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism
12.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38606629

ABSTRACT

The ADP-ribosylation factors (ARFs) and ARF-like (ARL) GTPases serve as essential molecular switches governing a wide array of cellular processes. In this study, we used proximity-dependent biotin identification (BioID) to comprehensively map the interactome of 28 out of 29 ARF and ARL proteins in two cellular models. Through this approach, we identified ∼3000 high-confidence proximal interactors, enabling us to assign subcellular localizations to the family members. Notably, we uncovered previously undefined localizations for ARL4D and ARL10. Clustering analyses further exposed the distinctiveness of the interactors identified with these two GTPases. We also reveal that the expression of the understudied member ARL14 is confined to the stomach and intestines. We identified phospholipase D1 (PLD1) and the ESCPE-1 complex, more precisely, SNX1, as proximity interactors. Functional assays demonstrated that ARL14 can activate PLD1 in cellulo and is involved in cargo trafficking via the ESCPE-1 complex. Overall, the BioID data generated in this study provide a valuable resource for dissecting the complexities of ARF and ARL spatial organization and signaling.


Subject(s)
ADP-Ribosylation Factors , Phospholipase D , Signal Transduction , ADP-Ribosylation Factors/metabolism , ADP-Ribosylation Factors/genetics , Humans , Phospholipase D/metabolism , Phospholipase D/genetics , HEK293 Cells , Animals , Sorting Nexins/metabolism , Sorting Nexins/genetics , Protein Interaction Mapping
13.
Braz J Med Biol Res ; 57: e13218, 2024.
Article in English | MEDLINE | ID: mdl-38451609

ABSTRACT

High-altitude hypoxia exposure can lead to phospholipase D-mediated lipid metabolism disorder in spleen tissues and induce ferroptosis. Nonetheless, the key genes underlying hypoxia-induced splenic phospholipase D and the ferroptosis pathway remain unclear. This study aimed to establish a hypoxia animal model. Combined transcriptomic and proteomic analyses showed that 95 predicted target genes (proteins) were significantly differentially expressed under hypoxic conditions. Key genes in phospholipase D and ferroptosis pathways under hypoxic exposure were identified by combining Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis techniques. Gene set enrichment analysis (GSEA) showed that the differential gene sets of the phospholipase D and ferroptosis signaling pathways were upregulated in the high-altitude hypoxia group. The genes in the phospholipase D signalling pathway were verified, and the expression levels of KIT and DGKG were upregulated in spleen tissues under hypoxic exposure. Subsequently, the mRNA and protein expression levels of genes from the exogenous pathway such as TFRC, SLC40A1, SLC7A11, TRP53, and FTH1 and those from the endogenous pathway such as GPX4, HMOX1, and ALOX15 differentials in the ferroptosis signalling pathway were verified, and the results indicated significant differential expression. In summary, exposure to high-altitude hypoxia mediated phospholipid metabolism disturbance through the phospholipase D signalling pathway and further induced ferroptosis, leading to splenic injury.


Subject(s)
Altitude Sickness , Ferroptosis , Phospholipase D , Animals , Mice , Proteomics , Spleen , Hypoxia , Signal Transduction
14.
Anal Cell Pathol (Amst) ; 2024: 6681911, 2024.
Article in English | MEDLINE | ID: mdl-38487684

ABSTRACT

Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.


Subject(s)
Phospholipase D , Animals , Phospholipase D/chemistry , Phospholipase D/metabolism , Protein Isoforms/metabolism , Cytoskeleton/metabolism , Signal Transduction , Mammals/metabolism
15.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38537643

ABSTRACT

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Subject(s)
Catalytic Domain , Models, Molecular , Phospholipase D , Phospholipase D/metabolism , Phospholipase D/chemistry , Phospholipase D/genetics , Humans , Substrate Specificity , Crystallography, X-Ray , Mutation , Lysosomes/metabolism , Lysosomes/enzymology , Phosphorylation , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , Protein Multimerization , Protein Binding , Exodeoxyribonucleases
16.
Autophagy ; 20(7): 1616-1638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513669

ABSTRACT

PLD1 has been implicated in cytoskeletal reorganization and vesicle trafficking in somatic cells; however, its function remains unclear in oocyte meiosis. Herein, we found PLD1 stably expresses in mouse oocytes meiosis, with direct interaction with spindle, RAB11A+ vesicles and macroautophagic/autophagic vacuoles. The genetic or chemical inhibition of PLD1 disturbed MTOC clustering, spindle assembly and its cortical migration, also decreased PtdIns(4,5)P2, phosphorylated CFL1 (p-CFL1 [Ser3]) and ACTR2, and their local distribution on MTOC, spindle and vesicles. Furthermore in PLD1-suppressed oocytes, vesicle size was significantly reduced while F-actin density was dramatically increased in the cytoplasm, the asymmetric distribution of autophagic vacuoles was broken and the whole autophagic process was substantially enhanced, as illustrated with characteristic changes in autophagosomes, autolysosome formation and levels of ATG5, BECN1, LC3-II, SQSTM1 and UB. Exogenous administration of PtdIns(4,5)P2 or overexpression of CFL1 hyperphosphorylation mutant (CFL1S3E) could significantly improve polar MTOC focusing and spindle structure in PLD1-depleted oocytes, whereas overexpression of ACTR2 could rescue not only MTOC clustering, and spindle assembly but also its asymmetric positioning. Interestingly, autophagy activation induced similar defects in spindle structure and positioning; instead, its inhibition alleviated the alterations in PLD1-depleted oocytes, and this was highly attributed to the restored levels of PtdIns(4,5)P2, ACTR2 and p-CFL1 (Ser3). Together, PLD1 promotes spindle assembly and migration in oocyte meiosis, by maintaining rational levels of ACTR2, PtdIns(4,5)P2 and p-CFL1 (Ser3) in a manner of modulating autophagy flux. This study for the first time introduces a unique perspective on autophagic activity and function in oocyte meiotic development.Abbreviations: ACTR2/ARP2: actin related protein 2; ACTR3/ARP3: actin related protein 3; ATG5: autophagy related 5; Baf-A1: bafilomycin A1; BFA: brefeldin A; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GV: germinal vesicle; GVBD: germinal vesicle breakdown; IVM: in vitro maturation; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MI: metaphase of meiosis I; MII: metaphase of meiosis II; MO: morpholino; MTOC: microtubule-organizing center; MTOR: mechanistic target of rapamycin kinase; PB1: first polar body; PLA: proximity ligation assay; PLD1: phospholipase D1; PtdIns(4,5)P2/PIP2: phosphatidylinositol 4,5-bisphosphate; RAB11A: RAB11A, member RAS oncogene family; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TUBA/α-tubulin: tubulin alpha; TUBG/γ-tubulin: tubulin gamma; UB: ubiquitin; WASL/N-WASP: WASP like actin nucleation promoting factor.


Subject(s)
Autophagy , Meiosis , Oocytes , Phospholipase D , Spindle Apparatus , Animals , Autophagy/physiology , Autophagy/genetics , Oocytes/metabolism , Meiosis/physiology , Spindle Apparatus/metabolism , Mice , Female , Phospholipase D/metabolism , Phospholipase D/genetics , Cell Movement/physiology , Phosphorylation
17.
J Exp Clin Cancer Res ; 43(1): 57, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38403587

ABSTRACT

BACKGROUND: Hypoxia in solid tumors is an important source of chemoresistance that can determine poor patient prognosis. Such chemoresistance relies on the presence of cancer stem cells (CSCs), and hypoxia promotes their generation through transcriptional activation by HIF transcription factors. METHODS: We used ovarian cancer (OC) cell lines, xenograft models, OC patient samples, transcriptional databases, induced pluripotent stem cells (iPSCs) and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). RESULTS: Here, we show that hypoxia induces CSC formation and chemoresistance in ovarian cancer through transcriptional activation of the PLD2 gene. Mechanistically, HIF-1α activates PLD2 transcription through hypoxia response elements, and both hypoxia and PLD2 overexpression lead to increased accessibility around stemness genes, detected by ATAC-seq, at sites bound by AP-1 transcription factors. This in turn provokes a rewiring of stemness genes, including the overexpression of SOX2, SOX9 or NOTCH1. PLD2 overexpression also leads to decreased patient survival, enhanced tumor growth and CSC formation, and increased iPSCs reprograming, confirming its role in dedifferentiation to a stem-like phenotype. Importantly, hypoxia-induced stemness is dependent on PLD2 expression, demonstrating that PLD2 is a major determinant of de-differentiation of ovarian cancer cells to stem-like cells in hypoxic conditions. Finally, we demonstrate that high PLD2 expression increases chemoresistance to cisplatin and carboplatin treatments, both in vitro and in vivo, while its pharmacological inhibition restores sensitivity. CONCLUSIONS: Altogether, our work highlights the importance of the HIF-1α-PLD2 axis for CSC generation and chemoresistance in OC and proposes an alternative treatment for patients with high PLD2 expression.


Subject(s)
Ovarian Neoplasms , Phospholipase D , Female , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcription Factors/metabolism , Phospholipase D/genetics , Tumor Hypoxia , Animals
18.
J Nutr ; 154(4): 1119-1129, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365119

ABSTRACT

BACKGROUND: The intestinal epithelium is one of the fastest self-renewal tissues in the body, and glutamine plays a crucial role in providing carbon and nitrogen for biosynthesis. In intestinal homeostasis, phosphorylation-mediated signaling networks that cause altered cell proliferation, differentiation, and metabolic regulation have been observed. However, our understanding of how glutamine affects protein phosphorylation in the intestinal epithelium is limited, and identifying the essential signaling pathways involved in regulating intestinal epithelial cell growth is particularly challenging. OBJECTIVES: This study aimed to identify the essential proteins and signaling pathways involved in glutamine's promotion of porcine intestinal epithelial cell proliferation. METHODS: Phosphoproteomics was applied to describe the protein phosphorylation landscape under glutamine treatment. Kinase-substrate enrichment analysis was subjected to predict kinase activity and validated by qRT-PCR and Western blotting. Cell Counting Kit-8, glutamine rescue experiment, chloroquine treatment, and 5-fluoro-2-indolyl deschlorohalopemide inhibition assay revealed the possible underlying mechanism of glutamine promoting porcine intestinal epithelial cell proliferation. RESULTS: In this study, glutamine starvation was found to significantly suppress the proliferation of intestinal epithelial cells and change phosphoproteomic profiles with 575 downregulated sites and 321 upregulated sites. Interestingly, phosphorylation of eukaryotic initiation factor 4E-binding protein 1 at position Threonine70 was decreased, which is a crucial downstream of the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Further studies showed that glutamine supplementation rescued cell proliferation and mTORC1 activity, dependent on lysosomal function and phospholipase D activation. CONCLUSION: In conclusion, glutamine activates mTORC1 signaling dependent on phospholipase D and a functional lysosome to promote intestinal epithelial cell proliferation. This discovery provides new insight into regulating the homeostasis of the intestinal epithelium, particularly in pig production.


Subject(s)
Glutamine , Phospholipase D , Animals , Swine , Mechanistic Target of Rapamycin Complex 1/metabolism , Glutamine/pharmacology , Glutamine/metabolism , Phospholipase D/metabolism , Intestines , Proteins/metabolism , Intestinal Mucosa/metabolism , Cell Proliferation
19.
Mol Psychiatry ; 29(5): 1478-1490, 2024 May.
Article in English | MEDLINE | ID: mdl-38361126

ABSTRACT

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.


Subject(s)
Dopamine , Feeding Behavior , Homeostasis , Nucleus Accumbens , Phospholipase D , Reward , Ventral Tegmental Area , Ventral Tegmental Area/metabolism , Animals , Homeostasis/physiology , Feeding Behavior/physiology , Phospholipase D/metabolism , Phospholipase D/genetics , Male , Mice , Nucleus Accumbens/metabolism , Dopamine/metabolism , Energy Metabolism/physiology , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics , Dopaminergic Neurons/metabolism , Phosphatidylethanolamines/metabolism , Ethanolamines
20.
Exp Physiol ; 109(1): 81-99, 2024 01.
Article in English | MEDLINE | ID: mdl-37656490

ABSTRACT

A metabotropic glutamate receptor coupled to phospholipase D (PLD-mGluR) was discovered in the hippocampus over three decades ago. Its pharmacology and direct linkage to PLD activation are well established and indicate it is a highly atypical glutamate receptor. A receptor with the same pharmacology is present in spindle primary sensory terminals where its blockade can totally abolish, and its activation can double, the normal stretch-evoked firing. We report here the first identification of this PLD-mGluR protein, by capitalizing on its expression in primary mechanosensory terminals, developing an enriched source, pharmacological profiling to identify an optimal ligand, and then functionalizing it as a molecular tool. Evidence from immunofluorescence, western and far-western blotting indicates PLD-mGluR is homomeric GluK2, since GluK2 is the only glutamate receptor protein/receptor subunit present in spindle mechanosensory terminals. Its expression was also found in the lanceolate palisade ending of hair follicle, also known to contain the PLD-mGluR. Finally, in a mouse model with ionotropic function ablated in the GluK2 subunit, spindle glutamatergic responses were still present, confirming it acts purely metabotropically. We conclude the PLD-mGluR is a homomeric GluK2 kainate receptor signalling purely metabotropically and it is common to other, perhaps all, primary mechanosensory endings.


Subject(s)
Phospholipase D , Receptors, Metabotropic Glutamate , Animals , Mice , Hippocampus/metabolism , Nerve Endings/metabolism , Phospholipase D/metabolism , Receptors, Glutamate/metabolism , Receptors, Metabotropic Glutamate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...