Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Methods Appl Fluoresc ; 10(4)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36067776

ABSTRACT

Eisosomes are nanoscale plasma membrane domains shaped as furrow-like invaginations. InSaccharomyces cerevisiaethese relatively immobile and uniform structures are mainly composed of two cytoplasmic proteins Pil1 and Lsp1. The present work uses fluctuation of fluorescence signals and analytical methods to determine Pil1 and Lsp1 dynamics at different subcellular locations. Using scanning techniques and autocorrelation analysis we determine that the cytoplasmic pools of Pil1 and Lsp1 behave mainly by passive diffusion. Single-point FCS experiments performed at several subcellular locations reveal that Pil1 mobility is faster in daughter cells. Furthermore, pair correlation function analysis indicates a rapid dynamic of Pil1 near the plasma membrane of growing yeast buds, where the membrane is expected to be actively assembling eisosomes.


Subject(s)
Saccharomyces cerevisiae Proteins , Cell Membrane/metabolism , Female , Humans , Mothers , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
2.
PLoS One ; 17(2): e0262591, 2022.
Article in English | MEDLINE | ID: mdl-35113919

ABSTRACT

SARS-CoV-2 Nucleocapsid (N) is the most abundant viral protein expressed in host samples and is an important antigen for diagnosis. N is a 45 kDa protein that does not present disulfide bonds. Intending to avoid non-specific binding of SARS-CoV-2 N to antibodies from patients who previously had different coronaviruses, a 35 kDa fragment of N was expressed without a conserved motif in E. coli as inclusion bodies (N122-419-IB). Culture media and IB washing conditions were chosen to obtain N122-419-IB with high yield (370 mg/L bacterial culture) and protein purity (90%). High pressure solubilizes protein aggregates by weakening hydrophobic and ionic interactions and alkaline pH promotes solubilization by electrostatic repulsion. The association of pH 9.0 and 2.4 kbar promoted efficient solubilization of N122-419-IB without loss of native-like tertiary structure that N presents in IB. N122-419 was refolded with a yield of 85% (326 mg/L culture) and 95% purity. The refolding process takes only 2 hours and the protein is ready for use after pH adjustment, avoiding the necessity of dialysis or purification. Antibody binding of COVID-19-positive patients sera to N122-419 was confirmed by Western blotting. ELISA using N122-419 is effective in distinguishing between sera presenting antibodies against SARS-CoV-2 from those who do not. To the best of our knowledge, the proposed condition for IB solubilization is one of the mildest described. It is possible that the refolding process can be extended to a wide range of proteins with high yields and purity, even those that are sensible to very alkaline pH.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/chemistry , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Immunoglobulin G/blood , Inclusion Bodies/chemistry , Protein Refolding , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Hydrogen-Ion Concentration , Hydrostatic Pressure , Immunoglobulin G/immunology , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Solubility
3.
J Biomol Struct Dyn ; 40(5): 2156-2168, 2022 03.
Article in English | MEDLINE | ID: mdl-33076779

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is one of the most common causes of acute respiratory diseases such as bronchiolitis and pneumonia in children worldwide. Among the viral proteins, the nucleoprotein (N) stands out for forming the nucleocapsid (NC) that functions as a template for replication and transcription by the viral polymerase complex. The NC/polymerase recognition is mediated by the phosphoprotein (P), which establishes an interaction of its C-terminal residues with a hydrophobic pocket in the N-terminal domain of N (N-NTD). The present study consists of biophysical characterization of N-NTD and investigation of flavonoids binding to this domain using experimental and computational approaches. Saturation transfer difference (STD)-NMR measurements showed that among the investigated flavonoids, only hesperetin (Hst) bound to N-NTD. The binding epitope mapping of Hst suggested that its fused aromatic ring is buried in the protein binding site. STD-NMR and fluorescence anisotropy experiments showed that Hst competes with P protein C-terminal dipeptides for the hRSV nucleoprotein/phosphoprotein (N/P) interaction site in N-NTD, indicating that Hst binds to the hydrophobic pocket in this domain. Computational simulations of molecular docking and dynamics corroborated with experimental results, presenting that Hst established a stable interaction with the N/P binding site. The outcomes presented herein shed light on literature reports that described a significant antireplicative activity of Hst against hRSV, revealing molecular details that can provide the development of a new strategy against this virus.


Subject(s)
Respiratory Syncytial Virus, Human , Binding Sites , Child , Hesperidin , Humans , Molecular Docking Simulation , Nucleoproteins/chemistry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Binding , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/metabolism
4.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202092

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
5.
J Struct Biol ; 213(2): 107715, 2021 06.
Article in English | MEDLINE | ID: mdl-33705979

ABSTRACT

The 106-residue protein Q4DY78 (UniProt accession number) from Trypanosoma cruzi is highly conserved in the related kinetoplastid pathogens Trypanosoma brucei and Leishmania major. Given the essentiality of its orthologue in T. brucei, the high sequence conservation with other trypanosomatid proteins, and the low sequence similarity with mammalian proteins, Q4DY78 is an attractive protein for structural characterization. Here, we solved the structure of Q4DY78 by solution NMR and evaluated its backbone dynamics. Q4DY78 is composed of five α -helices and a small, two-stranded antiparallel ß-sheet. The backbone RMSD is 0.22 ± 0.05 Å for the representative ensemble of the 20 lowest-energy structures. Q4DY78 is overall rigid, except for N-terminal residues (V8 to I10), residues at loop 4 (K57 to G65) and residues at the C-terminus (F89 to F112). Q4DY78 has a short motif FPCAP that could potentially mediate interactions with the host cytoskeleton via interaction with EVH1 (Drosophila Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) homology 1) domains. Albeit Q4DY78 lacks calcium-binding motifs, its fold resembles that of eukaryotic calcium-binding proteins such as calcitracin, calmodulin, and polcacin Bet V4. We characterized this novel protein with a calcium binding fold without the capacity to bind calcium.


Subject(s)
Protozoan Proteins/chemistry , Trypanosoma cruzi/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Cell Adhesion Molecules/chemistry , Circular Dichroism , Conserved Sequence , EF Hand Motifs , Microfilament Proteins/chemistry , Models, Molecular , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Protozoan Proteins/metabolism
6.
Mol Inform ; 40(2): e2000096, 2021 02.
Article in English | MEDLINE | ID: mdl-32750187

ABSTRACT

The emergence of the COVID-19 has caused public health problems worldwide and there is no effective pharmacological treatment for this disease. Research on 3D models of proteins and the search for active molecular sites are important tools to assist in the discovery of effective antiviral drugs to combat COVID-19. To address this problem, the 3D protein structures of SARS-CoV 2 were analyzed and submitted to cavities research, evaluation of their druggabillity and liganbility, and applied to molecular docking studies with potential ligand candidates actually assayed against COVID-19. Eight druggable potential cavity sites were determined in model structures' PDB code, 6W4B, 6VWW, 6W01, 6M3M, and 6VYO, and these are the good alternatives to be characterized as targets for antiviral compounds. The good cavity model of the protease 3D structure was used in molecular docking, and this allowed verifying the theoric interactions of this protein and lopinavir and ritonavir antiviral drugs. These results may assist in the use of 3D protein models in drug design studies aiming to develop drugs against the COVID-19 pandemic.


Subject(s)
COVID-19/virology , Molecular Docking Simulation , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Catalytic Domain , Computer Simulation , Coronavirus Nucleocapsid Proteins/chemistry , Drug Design , Humans , Ligands , Models, Molecular , Phosphoproteins/chemistry , Protein Binding , Protein Conformation , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry , COVID-19 Drug Treatment
7.
Int J Mol Sci ; 21(16)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823483

ABSTRACT

Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.


Subject(s)
Intestines/pathology , Ischemic Preconditioning , Neutrophils/metabolism , Phosphoproteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Kinases/metabolism , Proteomics , Reperfusion Injury/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphoproteins/chemistry , Phosphorylation , Protein Domains , Proteome/metabolism , Rats , Reperfusion Injury/pathology , Signal Transduction
8.
Photochem Photobiol ; 95(5): 1179-1185, 2019 09.
Article in English | MEDLINE | ID: mdl-30963583

ABSTRACT

Bioluminescence is found in a number of cephalopods, such as Watasenia scintillans and Sthenoteuthis oualaniensis; however, many species remain poorly studied, including the Humboldt squid, Dosidicus gigas. This is the largest member of the Ommastrephidae family and grows to 2 m in length, making it one of the largest luminescent animals ever observed. Humboldt squid have small photophores all over their body that emit a brilliant blue luminescence. Using lyophilized photophores from squid caught off the coast of Chile, experiments were conducted to isolate the luciferin and protein involved in its bioluminescence. Methanolic extracts of the photophores were shown to contain dehydrocoelenterazine, and a membrane-bound photoprotein was shown to be involved. This photoprotein was purified using ion exchange chromatography, and SDS-PAGE showed a clean band of approximately 60 kDa. The excised band was analyzed by LC/MS, and the obtained data were compared against the transcriptome data of D. gigas, allowing us to find two gene products which displayed high coverage (>80%), the enzymes symplectin and vanin-2, which potentially associate with light emission process in this organism. Finally, the purified photoprotein was shown to emit a blue light (470 nm) in the presence of dehydrocoelenterazine.


Subject(s)
Decapodiformes/physiology , Luminescence , Animals , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Phosphoproteins/chemistry , Phosphoproteins/isolation & purification
9.
Sci Rep ; 7(1): 9899, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852088

ABSTRACT

Trypanosoma cruzi metacyclogenesis is a natural process that occurs inside the triatomine vector and corresponds to the differentiation of non-infective epimastigotes into infective metacyclic trypomastigotes. The biochemical alterations necessary for the differentiation process have been widely studied with a focus on adhesion and nutritional stress. Here, using a mass spectrometry approach, a large-scale phospho(proteome) study was performed with the aim of understanding the metacyclogenesis processes in a quantitative manner. The results indicate that major modulations in the phospho(proteome) occur under nutritional stress and after 12 and 24 h of adhesion. Significant changes involve key cellular processes, such as translation, oxidative stress, and the metabolism of macromolecules, including proteins, lipids, and carbohydrates. Analysis of the signalling triggered by kinases and phosphatases from 7,336 identified phosphorylation sites demonstrates that 260 of these sites are modulated throughout the differentiation process, and some of these modulated proteins have previously been identified as drug targets in trypanosomiasis treatment. To the best of our knowledge, this study provides the first quantitative results highlighting the modulation of phosphorylation sites during metacyclogenesis and the greater coverage of the proteome to the parasite during this process. The data are available via ProteomeXchange with identifier number PXD006171.


Subject(s)
Phosphoproteins/metabolism , Proteome , Protozoan Proteins/metabolism , Trypanosoma cruzi/physiology , Cytoskeleton/metabolism , Life Cycle Stages , Phosphoproteins/chemistry , Protein Biosynthesis , Protozoan Proteins/chemistry
10.
Biochemistry ; 55(10): 1441-54, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26901160

ABSTRACT

Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Phosphoproteins/metabolism , Respiratory Syncytial Virus, Human/metabolism , DNA-Directed RNA Polymerases/chemistry , Humans , Nuclear Matrix-Associated Proteins/chemistry , Phosphoproteins/chemistry , Protein Binding/physiology , Respiratory Syncytial Virus, Human/chemistry , Viral Proteins/chemistry , Viral Proteins/metabolism
11.
J Sci Food Agric ; 96(13): 4337-44, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26801736

ABSTRACT

BACKGROUND: Artisanal 'Coalho' cheese is a product typically popular in the Brazilian north-eastern region. Production of this cheese represents about 9.2% of the internal crude product of Pernambuco State. Several peptides are generated from hydrolysis of αS1 -, αS2 -, ß-, and κ-caseins during manufacture of this cheese. The commercial importance of Brazilian artisanal 'Coalho' cheese justifies the examination of both the protein and peptide profiles of cheeses from six cities of the semi-arid region of Pernambuco State, Brazil. RESULTS: SDS-PAGE of the aqueous extracts of 'Coalho' cheeses (WSP) showed bands of lactoferrin, ß-lactoglobulin, ß-lactoglobulin (dimer), α-lactoalbumin, bovine serum albumin, α-casein, ß-casein, κ-casein and para-κ-casein. A total of 57 to 72 peptides were confirmed by mass spectra in the different samples of 'Coalho' cheese which 32 known peptides (11 from αS1 -casein, three from αS2 -casein, 15 from ß-casein and three from κ-casein), comprising seven caseinphosphopeptides. Among the unidentified peptides, three showed high intensity peaks in all 'Coalho' cheeses studied (with molecular weights of 1597, 1725/1726, 2778/2779 Da). CONCLUSION: The proteomic studies revealed peptides that may represent molecular markers or fingerprints for investigating the quality control and regional characterisation of these 'Coalho' cheeses. © 2016 Society of Chemical Industry.


Subject(s)
Cheese/analysis , Diet , Food Quality , Milk Proteins/analysis , Peptide Fragments/analysis , Animals , Biomarkers/analysis , Brazil , Cattle , Desert Climate , Diet/ethnology , Food Inspection/methods , Humans , Milk Proteins/chemistry , Milk Proteins/metabolism , Molecular Weight , Oligopeptides/analysis , Oligopeptides/chemistry , Oligopeptides/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Mapping , Phosphoproteins/analysis , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Proteolysis , Proteomics/methods , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
12.
J Immunol Res ; 2015: 395371, 2015.
Article in English | MEDLINE | ID: mdl-26539553

ABSTRACT

The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.


Subject(s)
Herpesvirus 2, Saimiriine/chemistry , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Peptides/genetics , Phosphoproteins/chemistry , Phosphoproteins/metabolism , T-Lymphocytes/immunology , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Motifs , Animals , Aotidae , Herpesvirus 2, Saimiriine/genetics , Humans , Jurkat Cells , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Membrane Microdomains/metabolism , Peptides/chemistry , Phosphoproteins/immunology , Phosphorylation , Phytohemagglutinins/immunology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Signal Transduction , T-Lymphocytes/metabolism , Viral Proteins/immunology
13.
Biochimie ; 107 Pt B: 223-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25223890

ABSTRACT

Caveolin is the protein marker of caveola-mediated endocytosis. Previously, we demonstrated by immunoblotting and immunofluorescence that an anti-chick embryo caveolin-1 monoclonal antibody (mAb) recognizes a protein in amoeba extracts. Nevertheless, the caveolin-1 gene is absent in the Entamoeba histolytica genome database. In this work, the goal was to isolate, identify and characterize the protein that cross-reacts with chick embryo caveolin-1. We identified the protein using a proteomic approach, and the complete gene was cloned and sequenced. The identified protein, E. histolytica phosphatidylcholine transfer protein-like (EhPCTP-L), is a member of the StAR-related lipid transfer (START) protein superfamily. The human homolog binds and transfers phosphatidylcholine (PC) and phosphatidylethanolamine (PE) between model membranes in vitro; however, the physiological role of PCTP-L remains elusive. Studies in silico showed that EhPCTP-L has a central START domain and also contains a C-terminal intrinsically disordered region. The anti-rEhPCTP-L antibody demonstrated that EhPCTP-L is found in the plasma membrane and cytosol, which is in agreement with previous reports on the human counterpart. This result points to the plasma membrane as one possible target membrane for EhPCTP-L. Furthermore, assays using filipin and nystatin showed down regulation of EhPCTP-L, in an apparently cholesterol-independent way. Interestingly, EhPCTP-L binds primarily to anionic phospholipids phosphatidylserine (PS) and phosphatidic acid (PA), while its mammalian counterpart HsPCTP-L binds neutral phospholipids PC and PE. The present study provides information that helps reveal the possible function and regulation of PCTP-L expression in the primitive eukaryotic parasite E. histolytica.


Subject(s)
Entamoeba histolytica/metabolism , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Acetylation , Amino Acid Sequence , Animals , Caveolin 1/immunology , Cell Membrane/metabolism , Chick Embryo , Cholesterol/metabolism , Cross Reactions , Cytoplasm/metabolism , Entamoeba histolytica/drug effects , Entamoeba histolytica/genetics , Filipin/pharmacology , Molecular Sequence Data , Nystatin/pharmacology , Phosphatidylcholines/metabolism , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/isolation & purification , Phospholipid Transfer Proteins/metabolism , Phosphoproteins/chemistry , Protein Conformation , Protein Structure, Tertiary , Protozoan Proteins/genetics , Protozoan Proteins/immunology
14.
PLoS One ; 9(3): e90363, 2014.
Article in English | MEDLINE | ID: mdl-24658276

ABSTRACT

Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5-/- embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5-/- brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.


Subject(s)
Brain/metabolism , Cyclin-Dependent Kinase 5/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cell Line , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Gene Deletion , Mass Spectrometry , Mice , Myristoylated Alanine-Rich C Kinase Substrate , Phosphoproteins/chemistry , Phosphorylation , Proteomics , Purines/pharmacology , Roscovitine
15.
Biochemistry ; 51(41): 8100-10, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22978633

ABSTRACT

Paramyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders the virus inactive. We show that unfolding of P displays a first transition with low cooperativity but substantial loss of α-helix content and accessibility to hydrophobic sites, indicative of loose chain packing and fluctuating tertiary structure, typical of molten globules. The lack of unfolding baseline indicates a native state in conformational exchange and metastable at 20 °C. The second transition starts from a true intermediate state, with only the tetramerization domain remaining folded. The tetramerization domain undergoes a two-state dissociation/unfolding reaction (37.3 kcal mol(-1)). The M(2-1) transcription antiterminator, unique to RSV and Metapneumovirus, forms a nonglobular P:M(2-1) complex with a 1:1 stoichiometry and a K(D) of 8.1 nM determined by fluorescence anisotropy, far from the strikingly coincident dissociation range of P and M(2-1) tetramers (10(-28) M(3)). The M(2-1) binding region has been previously mapped to the N-terminal module of P, strongly suggesting the latter as the metastable molten globule domain. Folding, oligomerization, and assembly events between proteins and with RNA are coupled in the RNA polymerase complex. Quantitative assessment of the hierarchy of these interactions and their mechanisms contribute to the general understanding of RNA replication and transcription in Paramyxoviruses. In particular, the unique P-M(2-1) interface present in RSV provides a valuable antiviral target for this worldwide spread human pathogen.


Subject(s)
Biopolymers/metabolism , Phosphoproteins/metabolism , Protein Denaturation , Respiratory Syncytial Virus, Human/metabolism , Biopolymers/chemistry , Chromatography, Gel , Circular Dichroism , Phosphoproteins/chemistry , Protein Conformation , Protein Folding , Spectrometry, Fluorescence
16.
PLoS One ; 7(1): e29574, 2012.
Article in English | MEDLINE | ID: mdl-22295061

ABSTRACT

Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.


Subject(s)
Disease Models, Animal , Mandibulofacial Dysostosis/genetics , Mandibulofacial Dysostosis/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish , Amino Acid Sequence , Animals , Cell Movement , Cell Size , Computational Biology , Face/embryology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Mandibulofacial Dysostosis/pathology , Mice , Molecular Sequence Data , Neural Crest/metabolism , Neural Crest/pathology , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/deficiency , Sequence Homology, Amino Acid , Skull/embryology , Skull/metabolism , Time Factors , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/deficiency
17.
Mol Biol Cell ; 22(13): 2360-72, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21593205

ABSTRACT

Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein-mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane.


Subject(s)
Phosphoproteins/chemistry , Phosphoproteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Animals , COS Cells , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorocebus aethiops , Computational Biology/methods , Cytoplasm/metabolism , Cytoskeletal Proteins , Liposomes/metabolism , Membrane Lipids/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Phosphoproteins/genetics , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
18.
Parasitology ; 138(6): 736-47, 2011 May.
Article in English | MEDLINE | ID: mdl-21414241

ABSTRACT

Patients with chronic Chagas' Heart Disease (cChHD) develop an antibody response that is suspected to be involved in the cardiac pathogenesis. The response against Trypanosoma cruzi ribosomal P proteins is of particular interest, as these antibodies can cross-react with host cardiac receptors causing electrophysiological alterations. To better understand the humoral anti-P response we constructed a single-chain variable fragment library derived from a cChHD patient. The variable heavy and light regions were amplified from bone-marrow RNA and subcloned into the vector pComb3X. The phage library was subsequently panned against T. cruzi ribosomal P2ß protein (TcP2ß). We obtained 3 different human recombinant antibodies that specifically reacted with TcP2ß in ELISA and Western blots. Two of them reacted with the C-terminal region of TcP2ß, peptide R13, as the recombinant autoanti-P antibodies from Systemic Lupus Erythematosus (SLE) patients. Interestingly, the third one was specific for TcP2ß but did not recognize R13, confirming the specific nature of the anti-P response in Chagas disease. Neither sequence nor VH usage similarities between Chagas and SLE anti-P autoantibodies were observed. Herein, the first human mAbs against TcP2ß have been obtained and characterized showing that the humoral anti-P response is directed against the parasite and does not include an autoimmune component.


Subject(s)
Antibodies, Protozoan/metabolism , Chagas Cardiomyopathy/immunology , Phosphoproteins/immunology , Ribosomal Proteins/immunology , Trypanosoma cruzi/immunology , Amino Acid Sequence , Antibodies, Protozoan/chemistry , Bone Marrow/immunology , Chagas Disease/immunology , Enzyme-Linked Immunosorbent Assay , Gene Library , Humans , Lupus Erythematosus, Systemic/immunology , Phosphoproteins/chemistry , Protozoan Proteins/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Ribosomal Proteins/chemistry , Sequence Alignment
19.
J Cell Biochem ; 109(5): 957-66, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20127719

ABSTRACT

Cell adhesion on surfaces is a fundamental process in the emerging biomaterials field and developmental events as well. However, the mechanisms regulating this biological process in osteoblasts are not fully understood. Reversible phosphorylation catalyzed by kinases is probably the most important regulatory mechanism in eukaryotes. Therefore, the goal of this study is to assess osteoblast adhesion through a molecular prism under a peptide array technology, revealing essential signaling proteins governing adhesion-related events. First, we showed that there are main morphological changes on osteoblast shape during adhesion up to 3 h. Second, besides classical proteins activated upon integrin activation, our results showed a novel network involving signaling proteins such as Rap1A, PKA, PKC, and GSK3beta during osteoblast adhesion on polystyrene. Third, these proteins were grouped in different signaling cascades including focal adhesion establishment, cytoskeleton rearrangement, and cell-cycle arrest. We have thus provided evidence that a global phosphorylation screening is able to yield a systems-oriented look at osteoblast adhesion, providing new insights for understanding of bone formation and improvement of cell-substratum interactions. Altogether, these statements are necessary means for further intervention and development of new approaches for the progress of tissue engineering.


Subject(s)
Osteoblasts/cytology , Osteoblasts/metabolism , Phosphoproteins/metabolism , Proteome/metabolism , Signal Transduction , Actin Depolymerizing Factors/metabolism , Actins/metabolism , Amino Acid Motifs , Animals , Cell Adhesion , Cell Line , Cell Proliferation , Cell Shape , Cytoskeleton/metabolism , Focal Adhesions/enzymology , Mice , Osteoblasts/enzymology , Phosphoproteins/chemistry , Phosphotransferases/metabolism , Protein Array Analysis , Reproducibility of Results , Serine/metabolism , Time Factors
20.
Eukaryot Cell ; 7(8): 1352-61, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18567788

ABSTRACT

We have proposed that reactive oxygen species (ROS) play essential roles in cell differentiation. Enzymes belonging to the NADPH oxidase (NOX) family produce superoxide in a regulated manner. We have identified three distinct NOX subfamilies in the fungal kingdom and have shown that NoxA is required for sexual cell differentiation in Aspergillus nidulans. Here we show that Neurospora crassa NOX-1 elimination results in complete female sterility, decreased asexual development, and reduction of hyphal growth. The lack of NOX-2 did not affect any of these processes but led instead to the production of sexual spores that failed to germinate, even in the presence of exogenous oxidants. The elimination of NOR-1, an ortholog of the mammalian Nox2 regulatory subunit gp67(phox), also caused female sterility, the production of unviable sexual spores, and a decrease in asexual development and hyphal growth. These results indicate that NOR-1 is required for NOX-1 and NOX-2 functions at different developmental stages and establish a link between NOX-generated ROS and the regulation of growth. Indeed, NOX-1 was required for the increased asexual sporulation previously observed in mutants without catalase CAT-3. We also analyzed the function of the penta-EF calcium-binding domain protein PEF-1 in N. crassa. Deletion of pef-1 resulted in increased conidiation but, in contrast to what occurs in Dictyostelium discoideum, the mutation of this peflin did not suppress the phenotypes caused by the lack of NOX-1. Our results support the role of ROS as critical cell differentiation signals and highlight a novel role for ROS in regulation of fungal growth.


Subject(s)
Cell Differentiation/physiology , NADPH Oxidases/metabolism , Neurospora crassa/enzymology , Reactive Oxygen Species/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Enlargement , Gene Expression Regulation, Fungal/genetics , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADPH Oxidase 1 , NADPH Oxidases/chemistry , NADPH Oxidases/genetics , Neurospora crassa/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL