Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.489
Filter
1.
Med Sci (Paris) ; 40(6-7): 534-543, 2024.
Article in French | MEDLINE | ID: mdl-38986098

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDEs) modulate neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple isoforms of PDEs with different enzymatic properties and subcellular locally regulate cyclic nucleotide levels and associated cellular functions. This organisation is severely disrupted during hypertrophy and heart failure (HF), which may contribute to disease progression. Clinically, PDE inhibition has been seen as a promising approach to compensate for the catecholamine desensitisation that accompanies heart failure. Although PDE3 inhibitors such as milrinone or enoximone can be used clinically to improve systolic function and relieve the symptoms of acute CHF, their chronic use has proved detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as potential new targets for the treatment of HF, each with a unique role in local cyclic nucleotide signalling pathways. In this review, we describe cAMP and cGMP signalling in cardiomyocytes and present the different families of PDEs expressed in the heart and their modifications in pathological cardiac hypertrophy and HF. We also review results from preclinical models and clinical data indicating the use of specific PDE inhibitors or activators that may have therapeutic potential in CI.


Title: Les phosphodiestérases des nucléotides cycliques - Cibles thérapeutiques dans l'hypertrophie et l'insuffisance cardiaques. Abstract: Les phosphodiestérases des nucléotides cycliques (PDE) modulent la régulation neuro-hormonale de la fonction cardiaque en dégradant l'AMPc et le GMPc. Dans les cardiomyocytes, de multiples isoformes de PDE, aux propriétés enzymatiques et aux localisations subcellulaires différentes, régulent localement les niveaux de nucléotides cycliques et les fonctions cellulaires associées. Cette organisation est fortement perturbée au cours de l'hypertrophie et de l'insuffisance cardiaque à fraction d'éjection réduite (IC), ce qui peut contribuer à la progression de la maladie. Sur le plan clinique, l'inhibition des PDE a été considérée comme une approche prometteuse pour compenser la désensibilisation aux catécholamines qui accompagne l'IC. Bien que des inhibiteurs de la PDE3, tels que la milrinone ou l'énoximone, puissent être utilisés cliniquement pour améliorer la fonction systolique et soulager les symptômes de l'IC aiguë, leur utilisation chronique s'est avérée préjudiciable. D'autres PDE, telles que les PDE1, PDE2, PDE4, PDE5, PDE9 et PDE10, sont apparues comme de nouvelles cibles potentielles pour le traitement de l'IC, chacune ayant un rôle unique dans les voies de signalisation locales des nucléotides cycliques. Dans cette revue, nous décrivons la signalisation de l'AMPc et du GMPc dans les cardiomyocytes et présentons les différentes familles de PDE exprimées dans le cœur ainsi que leurs modifications dans l'hypertrophie cardiaque pathologique et dans l'IC. Nous évaluons également les résultats issus de modèles précliniques ainsi que les données cliniques indiquant l'utilisation d'inhibiteurs ou d'activateurs de PDE spécifiques qui pourraient avoir un potentiel thérapeutique dans l'IC.


Subject(s)
Cardiomegaly , Heart Failure , Phosphodiesterase Inhibitors , Humans , Cardiomegaly/drug therapy , Heart Failure/drug therapy , Animals , Phosphodiesterase Inhibitors/therapeutic use , Phosphodiesterase Inhibitors/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/physiology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Molecular Targeted Therapy/methods , Cyclic GMP/metabolism , Cyclic GMP/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Cyclic AMP/metabolism , Cyclic AMP/physiology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/physiology
2.
Bull Exp Biol Med ; 177(1): 30-34, 2024 May.
Article in English | MEDLINE | ID: mdl-38954304

ABSTRACT

Topotecan administered intraperitoneally at single doses of 0.25, 0.5, and 1 mg/kg induced chromosomal aberrations in bone marrow cells of F1(CBA×C57BL/6) hybrid mice in a dose-dependent manner. A tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitor, an usnic acid derivative OL9-116 was inactive in a dose range of 20-240 mg/kg, but enhanced the cytogenetic effect of topotecan (0.25 mg/kg) at a dose of 40 mg/kg (per os). The TDP1 inhibitor, a coumarin derivative TX-2552 (at doses of 20, 40, 80, and 160 mg/kg per os), increased the level of aberrant metaphases induced by topotecan (0.25 mg/kg) by 2.1-2.6 times, but was inactive at a dose of 10 mg/kg. The results indicate that TDP1 inhibitors enhance the clastogenic activity of topotecan in mouse bone marrow cells in vivo and are characterized by different dose profiles of the co-mutagenic effects.


Subject(s)
Bone Marrow Cells , Phosphoric Diester Hydrolases , Topotecan , Animals , Topotecan/pharmacology , Mice , Phosphoric Diester Hydrolases/metabolism , Bone Marrow Cells/drug effects , Male , Chromosome Aberrations/drug effects , Chromosome Aberrations/chemically induced , Phosphodiesterase Inhibitors/pharmacology , Topoisomerase I Inhibitors/pharmacology , Mice, Inbred C57BL , Mutagens/toxicity
3.
Eur Respir Rev ; 33(172)2024 Apr.
Article in English | MEDLINE | ID: mdl-39009409

ABSTRACT

Lysophosphatidic acid (LPA)-mediated activation of LPA receptor 1 (LPAR1) contributes to the pathophysiology of fibrotic diseases such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). These diseases are associated with high morbidity and mortality despite current treatment options. The LPA-producing enzyme autotaxin (ATX) and LPAR1 activation contribute to inflammation and mechanisms underlying fibrosis in preclinical fibrotic models. Additionally, elevated levels of LPA have been detected in bronchoalveolar lavage fluid from patients with IPF and in serum from patients with SSc. Thus, ATX and LPAR1 have gained considerable interest as pharmaceutical targets to combat fibrotic disease and inhibitors of these targets have been investigated in clinical trials for IPF and SSc. The goals of this review are to summarise the current literature on ATX and LPAR1 signalling in pulmonary fibrosis and to help differentiate the novel inhibitors in development. The mechanisms of action of ATX and LPAR1 inhibitors are described and preclinical studies and clinical trials of these agents are outlined. Because of their contribution to numerous physiologic events underlying fibrotic disease, ATX and LPAR1 inhibition presents a promising therapeutic strategy for IPF, SSc and other fibrotic diseases that may fulfil unmet needs of the current standard of care.


Subject(s)
Idiopathic Pulmonary Fibrosis , Phosphoric Diester Hydrolases , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Animals , Signal Transduction/drug effects , Phosphoric Diester Hydrolases/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Molecular Targeted Therapy , Lung/drug effects , Lung/physiopathology , Lung/metabolism , Antifibrotic Agents/therapeutic use , Lysophospholipids/metabolism , Treatment Outcome , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/physiopathology , Phosphodiesterase Inhibitors/therapeutic use
4.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994980

ABSTRACT

The Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 (ENPP1) ectoenzyme regulates vascular intimal proliferation and mineralization of bone and soft tissues. ENPP1 variants cause Generalized Arterial Calcification of Infancy (GACI), a rare genetic disorder characterized by ectopic calcification, intimal proliferation, and stenosis of large- and medium-sized arteries. ENPP1 hydrolyzes extracellular ATP to pyrophosphate (PPi) and AMP. AMP is the precursor of adenosine, which has been implicated in the control of neointimal formation. Herein, we demonstrate that an ENPP1-Fc recombinant therapeutic inhibits proliferation of vascular smooth muscle cells (VSMCs) in vitro and in vivo. Addition of ENPP1 and ATP to cultured VSMCs generated AMP, which was metabolized to adenosine. It also significantly decreased cell proliferation. AMP or adenosine alone inhibited VSMC growth. Inhibition of ecto-5'-nucleotidase CD73 decreased adenosine accumulation and suppressed the anti-proliferative effects of ENPP1/ATP. Addition of AMP increased cAMP synthesis and phosphorylation of VASP at Ser157. This AMP-mediated cAMP increase was abrogated by CD73 inhibitors or by A2aR and A2bR antagonists. Ligation of the carotid artery promoted neointimal hyperplasia in wild-type mice, which was exacerbated in ENPP1-deficient ttw/ttw mice. Prophylactic or therapeutic treatments with ENPP1 significantly reduced intimal hyperplasia not only in ttw/ttw but also in wild-type mice. These findings provide the first insight into the mechanism of the anti-proliferative effect of ENPP1 and broaden its potential therapeutic applications beyond enzyme replacement therapy.


Subject(s)
5'-Nucleotidase , Adenosine , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphoric Diester Hydrolases , Pyrophosphatases , Signal Transduction , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/genetics , Animals , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Adenosine/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Mice , Humans , Adenosine Monophosphate/metabolism , Mice, Inbred C57BL , Cyclic AMP/metabolism , Male , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/genetics
5.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830372

ABSTRACT

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Subject(s)
Antioxidants , Lipid Peroxidation , Lung , Paraquat , Pentoxifylline , Superoxide Dismutase , Animals , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Paraquat/toxicity , Mice , Male , Lung/drug effects , Lung/pathology , Lung/metabolism , Lipid Peroxidation/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects , Catalase/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Nitric Oxide/metabolism , Peroxidase/metabolism , Lung Injury/chemically induced , Lung Injury/drug therapy , Phosphoric Diester Hydrolases/metabolism
6.
Cells ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891067

ABSTRACT

Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors.


Subject(s)
Cell Differentiation , Homeobox Protein Nkx-2.2 , Oligodendroglia , SOXB1 Transcription Factors , Transcription Factors , Animals , Mice , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Oligodendroglia/metabolism , Oligodendroglia/cytology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
7.
EBioMedicine ; 105: 105178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889481

ABSTRACT

BACKGROUND: The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS: To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS: Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION: We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING: Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Disease Models, Animal , Liver Neoplasms , Phosphoric Diester Hydrolases , Animals , Mice , Biomarkers, Tumor/blood , Phosphoric Diester Hydrolases/blood , Phosphoric Diester Hydrolases/metabolism , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , alpha-Fetoproteins/metabolism , Male , Humans , Cell Line, Tumor , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Oligopeptides/administration & dosage
8.
PLoS One ; 19(5): e0300584, 2024.
Article in English | MEDLINE | ID: mdl-38709779

ABSTRACT

Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Transducin , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mice , Transducin/metabolism , Transducin/genetics , Retina/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics
9.
Cell Rep ; 43(5): 114214, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38761375

ABSTRACT

TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Mutation , Neurodegenerative Diseases , Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Mutation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/genetics , Transcription, Genetic , R-Loop Structures , CRISPR-Cas Systems/genetics
10.
Biosensors (Basel) ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785726

ABSTRACT

Phosphodiesterases (PDEs), a superfamily of enzymes that hydrolyze cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), are recognized as a therapeutic target for various diseases. However, the current screening methods for PDE inhibitors usually experience problems due to complex operations and/or high costs, which are not conducive to drug development in respect of this target. In this study, a new method for screening PDE inhibitors based on GloSensor technology was successfully established and applied, resulting in the discovery of several novel compounds of different structural types with PDE inhibitory activity. Compared with traditional screening methods, this method is low-cost, capable of dynamically detecting changes in substrate concentration in live cells, and can be used to preliminarily determine the type of PDEs affected by the detected active compounds, making it more suitable for high-throughput screening for PDE inhibitors.


Subject(s)
Phosphodiesterase Inhibitors , Phosphodiesterase Inhibitors/pharmacology , Humans , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/metabolism , High-Throughput Screening Assays , Biosensing Techniques , Cyclic GMP/metabolism , Drug Evaluation, Preclinical
11.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791377

ABSTRACT

Phosphodiesterases (PDEs) are ubiquitous enzymes that hydrolyse cAMP and cGMP second messengers temporally, spatially, and integratedly according to their expression and compartmentalization inside the cell [...].


Subject(s)
Phosphoric Diester Hydrolases , Phosphoric Diester Hydrolases/metabolism , Humans , Animals , Cyclic AMP/metabolism , Cyclic GMP/metabolism
12.
Cell Rep ; 43(5): 114209, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749434

ABSTRACT

2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.


Subject(s)
Immunity, Innate , Membrane Proteins , Nucleotides, Cyclic , Phosphoric Diester Hydrolases , Pyrophosphatases , Animals , Nucleotides, Cyclic/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Mice , Membrane Proteins/metabolism , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Humans , Mice, Inbred C57BL , Hydrolysis , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction
13.
J Appl Physiol (1985) ; 136(6): 1526-1545, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695358

ABSTRACT

Intrauterine growth restriction (IUGR) is a common complication of pregnancy. We previously demonstrated that IUGR is associated with an impaired nitric oxide (NO)-induced relaxation in the human umbilical vein (HUV) of growth-restricted females compared to appropriate for gestational age (AGA) newborns. We found that phosphodiesterase (PDE) inhibition improved NO-induced relaxation in HUV, suggesting that PDEs could represent promising targets for therapeutic intervention. This study aimed to investigate the effects of PDE inhibition on human umbilical arteries (HUAs) compared to HUV. Umbilical vessels were collected in IUGR and AGA term newborns. NO-induced relaxation was studied using isolated vessel tension experiments in the presence or absence of the nonspecific PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). PDE1B, PDE1C, PDE3A, PDE4B, and PDE5A were investigated by Western blot. NO-induced vasodilation was similar between IUGR and AGA HUAs. In HUAs precontracted with serotonin, IBMX enhanced NO-induced relaxation only in IUGR females, whereas in HUV IBMX increased NO-induced relaxation in all groups except IUGR males. In umbilical vessels preconstricted with the thromboxane A2 analog U46619, IBMX improved NO-induced relaxation in all groups to a greater extent in HUV than HUAs. However, the PDE protein content was higher in HUAs than HUV in all study groups. Therefore, the effects of PDE inhibition depend on the presence of IUGR, fetal sex, vessel type, and vasoconstrictors implicated. Despite a higher PDE protein content, HUAs are less sensitive to IBMX than HUV, which could lead to adverse effects of PDE inhibition in vivo by impairment of the fetoplacental hemodynamics.NEW & NOTEWORTHY The effects of phosphodiesterase inhibition on the umbilical circulation depend on the presence of intrauterine growth restriction, the fetal sex, vessel type, and vasoconstrictors implicated. The human umbilical vascular tone regulation is complex and depends on the amount and activity of specific proteins but also probably on the subcellular organization mediating protein interactions. Therefore, therapeutic interventions using phosphodiesterase inhibitors to improve the placental-fetal circulation should consider fetal sex and both umbilical vein and artery reactivity.


Subject(s)
Fetal Growth Retardation , Nitric Oxide , Phosphodiesterase Inhibitors , Umbilical Arteries , Umbilical Veins , Vasodilation , Humans , Female , Umbilical Arteries/drug effects , Male , Vasodilation/drug effects , Vasodilation/physiology , Umbilical Veins/drug effects , Phosphodiesterase Inhibitors/pharmacology , Fetal Growth Retardation/drug therapy , Fetal Growth Retardation/physiopathology , Nitric Oxide/metabolism , Pregnancy , Infant, Newborn , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , 1-Methyl-3-isobutylxanthine/pharmacology , Sex Factors , Phosphoric Diester Hydrolases/metabolism
14.
Bone ; 186: 117136, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38806089

ABSTRACT

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.


Subject(s)
Phenotype , Phosphoric Diester Hydrolases , Pyrophosphatases , Pyrophosphatases/genetics , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Female , Genetic Variation , Male , Mutation/genetics
15.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750793

ABSTRACT

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Subject(s)
Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/genetics , Crystallography, X-Ray , Computational Biology/methods , RNA-Binding Motifs/genetics
16.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582229

ABSTRACT

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Subject(s)
Autophagy , DNA Methylation , Dioxygenases , Disease Models, Animal , Epigenesis, Genetic , Hepatocytes , Non-alcoholic Fatty Liver Disease , Phosphoric Diester Hydrolases , Promoter Regions, Genetic , Pyrophosphatases , Animals , Humans , Male , Mice , Autophagy/genetics , Carbon Tetrachloride/toxicity , Diet, High-Fat/adverse effects , Dioxygenases/genetics , Dioxygenases/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
17.
Eur J Med Chem ; 271: 116386, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38614063

ABSTRACT

Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aß oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.


Subject(s)
Neurodegenerative Diseases , Phosphodiesterase Inhibitors , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/therapeutic use , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Phosphoric Diester Hydrolases/metabolism , Molecular Structure
18.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663337

ABSTRACT

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Subject(s)
Carcinoma, Pancreatic Ductal , Irinotecan , Minocycline , Pancreatic Neoplasms , Photochemotherapy , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Minocycline/pharmacology , Minocycline/therapeutic use , Irinotecan/pharmacology , Irinotecan/therapeutic use , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Phosphoric Diester Hydrolases/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Topoisomerase I Inhibitors/chemistry , Liposomes/chemistry
19.
Biochim Biophys Acta Gen Subj ; 1868(7): 130616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38621596

ABSTRACT

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.


Subject(s)
CRISPR-Cas Systems , Phosphoric Diester Hydrolases , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , HEK293 Cells , Gene Knockout Techniques/methods , Transcriptome/genetics , Gene Expression Profiling , DNA Repair/genetics
20.
DNA Cell Biol ; 43(7): 353-361, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682313

ABSTRACT

Saccharomyces cerevisiae is a genetically tractable, affordable, and extensively documented eukaryotic single-cell model organism. This budding yeast is amenable for the development of genetic and biochemical experiments and is frequently used to investigate the function, activity, and mechanism of mammalian proteins. However, yeast contains a cell wall that hinders select assays including organelle isolation. Lytic enzymes, with Zymolyase as the most effective and frequently used tool, are utilized to weaken the yeast cell wall resulting in yeast spheroplasts. Spheroplasts are easily lysed by, for example, osmotic-shock conditions to isolate yeast nuclei or mitochondria. However, during our studies of the DNA repair enzyme tyrosyl-DNA phosphodiesterase I (Tdp1), we encountered a negative effect of Zymolyase. We observed that Zymolyase treatment affected the steady-state protein levels of Tdp1. This was revealed by inconsistencies in technical and biological replicate lysates of plasmid-born galactose-induced expression of Tdp1. This off-target effect of Zymolyase is rarely discussed in articles and affects a select number of intracellular proteins, including transcription factors and assays such as chromatin immunoprecipitations. Following extensive troubleshooting, we concluded that the culprit is the Ser-protease, Zymolyase B, component of the Zymolyase enzyme mixture that causes the degradation of Tdp1. In this study, we report the protocols we have used, and our final protocol with an easy, affordable adaptation to any assay/protocol involving Zymolyase.


Subject(s)
Phosphoric Diester Hydrolases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...