Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.738
1.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Article En | MEDLINE | ID: mdl-38833407

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


DNA Methylation , Genomic Imprinting , Lead , Liver , Animals , DNA Methylation/drug effects , Mice , Female , Liver/drug effects , Male , Lead/toxicity , Lead/blood , Genomic Imprinting/drug effects , Diethylhexyl Phthalate/toxicity , Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Epigenesis, Genetic/drug effects
2.
Int J Hyg Environ Health ; 259: 114377, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692176

BACKGROUND: Early-life exposure to phthalates alters behaviors in animals. However, epidemiological evidence on childhood phthalate exposure and attention-deficit/hyperactivity disorder (ADHD) behaviors is limited. METHODS: This study included 243 children from the ReCHARGE (Revisiting Childhood Autism Risks from Genetics and Environment) study, who were previously classified as having autism spectrum disorder (ASD), developmental delay, other early concerns, and typical development in the CHARGE case-control study. Twenty phthalate metabolites were measured in spot urine samples collected from children aged 2-5 years. Parents reported on children's ADHD symptoms at ages 8-18 years using Conners-3 Parent Rating Scale. Covariate-adjusted negative binomial generalized linear models were used to investigate associations between individual phthalate metabolite concentrations and raw scores. Weighted quantile sum (WQS) regression with repeated holdout validation was used to examine mixture effects of phthalate metabolites on behavioral scores. Effect modification by child sex was evaluated. RESULTS: Among 12 phthalate metabolites detected in >75% of the samples, higher mono-2-heptyl phthalate (MHPP) was associated with higher scores on Inattentive (ß per doubling = 0.05, 95% confidence interval [CI]: 0.02, 0.08) and Hyperactive/Impulsive scales (ß = 0.04, 95% CI: 0.00, 0.07), especially among children with ASD. Higher mono-carboxy isooctyl phthalate (MCiOP) was associated with higher Hyperactivity/Impulsivity scores (ß = 0.07, 95% CI: -0.01, 0.15), especially among typically developing children. The associations of the molar sum of high molecular weight (HMW) phthalate metabolites and a phthalate metabolite mixture with Hyperactivity/Impulsivity scores were modified by sex, showing more pronounced adverse associations among females. CONCLUSION: Exposure to phthalates during early childhood may impact ADHD behaviors in middle childhood and adolescence, particularly among females. Although our findings may not be broadly generalizable due to the diverse diagnostic profiles within our study population, our robust findings on sex-specific associations warrant further investigations.


Attention Deficit Disorder with Hyperactivity , Environmental Exposure , Environmental Pollutants , Phthalic Acids , Humans , Phthalic Acids/urine , Phthalic Acids/toxicity , Attention Deficit Disorder with Hyperactivity/urine , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/chemically induced , Child , Male , Female , Adolescent , Environmental Pollutants/urine , Child, Preschool , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Case-Control Studies , Autism Spectrum Disorder/urine , Autism Spectrum Disorder/epidemiology
3.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791471

Given the widespread use of esters and polyesters in products like cosmetics, fishing nets, lubricants and adhesives, whose specific application(s) may cause their dispersion in open environments, there is a critical need for stringent eco-design criteria based on biodegradability and ecotoxicity evidence. Our approach integrates experimental and computational methods based on short oligomers, offering a screening tool for the rapid identification of sustainable monomers and oligomers, with a special focus on bio-based alternates. We provide insights into the relationships between the chemical structure and properties of bio-based oligomers in terms of biodegradability in marine environments and toxicity in benchmark organisms. The experimental results reveal that the considered aromatic monomers (terephthalic acid and 2,5-furandicarboxylic acid) accumulate under the tested conditions (OECD 306), although some slight biodegradation is observable when the inoculum derives from sites affected by industrial and urban pollution, which suggests that ecosystems adapt to non-natural chemical pollutants. While clean seas are more susceptible to toxic chemical buildup, biotic catalytic activities offer promise for plastic pollution mitigation. Without prejudice to the fact that biodegradability inherently signifies a desirable trait in plastic products, nor that it automatically grants them a sustainable "license", this study is intended to facilitate the rational design of new polymers and materials on the basis of specific uses and applications.


Biodegradation, Environmental , Polyesters/chemistry , Aquatic Organisms , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Phthalic Acids/chemistry , Phthalic Acids/toxicity , Phthalic Acids/metabolism
4.
Environ Sci Technol ; 58(19): 8182-8193, 2024 May 14.
Article En | MEDLINE | ID: mdl-38691136

As an alternative plasticizer to conventional phthalates, di(2-ethylhexyl) terephthalate (DEHTP) has attracted considerable concerns, given its widespread detection in the environment and humans. However, the potential toxicity, especially liver toxicity, posed by DEHTP remains unclear. In this study, based on the 2017-2018 National Health and Nutrition Examination Survey, two metabolites of DEHTP, i.e., mono(2-ethyl-5-hydroxyhexyl) terephthalate (MEHHTP) and mono(2-ethyl-5-carboxypentyl) terephthalate (MECPTP), were found to be present in the urine samples of nearly all representative U.S. adults. Moreover, a positive linear correlation was observed between the concentrations of the two metabolites and the risk of nonalcoholic fatty liver disease (NAFLD) in the population. Results of weighted quantile sum and Bayesian kernel machine regression indicated that MEHHTP contributed a greater weight to the risk of NAFLD in comparison with 12 conventional phthalate metabolites. In vitro experiments with hepatocyte HepG2 revealed that MEHHTP exposure could increase lipogenic gene programs, thereby promoting a dose-dependent hepatic lipid accumulation. Activation of liver X receptor α may be an important regulator of MEHHTP-induced hepatic lipid disorders. These findings provide new insights into the liver lipid metabolism toxicity potential of DEHTP exposure in the population.


Non-alcoholic Fatty Liver Disease , Phthalic Acids , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Humans , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Male , Adult , Female
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732095

Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers.


Exosomes , Extracellular Vesicles , MicroRNAs , Phthalic Acids , Phthalic Acids/urine , Phthalic Acids/toxicity , Humans , Male , MicroRNAs/genetics , MicroRNAs/urine , Exosomes/genetics , Exosomes/metabolism , Adult , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Biomarkers/urine , Environmental Exposure/adverse effects , Middle Aged , Environmental Pollutants/urine , Environmental Pollutants/toxicity
6.
J Hazard Mater ; 472: 134593, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38749249

Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.


Denitrification , Microplastics , Soil Microbiology , Soil Pollutants , Denitrification/drug effects , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Tibet , Microplastics/toxicity , Plasticizers/toxicity , Plasticizers/metabolism , Microbiota/drug effects , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Metals, Heavy/toxicity
7.
Ecotoxicol Environ Saf ; 279: 116473, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38781890

The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.


Larva , Paracentrotus , Phthalic Acids , Water Pollutants, Chemical , Animals , Phthalic Acids/toxicity , Paracentrotus/drug effects , Water Pollutants, Chemical/toxicity , Larva/drug effects , Larva/growth & development , Diethylhexyl Phthalate/toxicity
8.
Environ Toxicol Pharmacol ; 108: 104463, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734395

Phthalates can induce hepatotoxicity in animal studies. We aimed to assess the associations of individual and mixture of urinary phthalate metabolites with serum liver function indicators among 764 women undergoing assisted reproductive technology (ART). In linear models, we observed inverse correlations between urinary mono-benzyl phthalate and serum total protein (TP) as well as globulin (ß=-0.27 and -0.23, respectively, P<0.05). Additionally, negative associations were identified between mono-isobutyl phthalate and mono-butyl phthalate (MBP) and aspartate aminotransferase-to-alanine transaminase ratio (AST/ALT) (P<0.05). MBP and the sum of all phthalate metabolites (∑all.phth.m) were positively associated with bilirubin, with ß ranging from 0.14 to 0.47. Most phthalate metabolites were also positively related to gamma-glutamyl transferase (GGT) (all P<0.05). In Bayesian kernel machine regression models, phthalate mixture was positively associated with bilirubin and GGT, whereas inversely associated with AST/ALT and TP. Our results suggest that phthalate exposure may impair liver function among women undergoing ART.


Liver , Phthalic Acids , Reproductive Techniques, Assisted , Humans , Female , Phthalic Acids/urine , Phthalic Acids/toxicity , Adult , Liver/drug effects , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Bilirubin/blood , Bilirubin/urine , Liver Function Tests , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/urine , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure/adverse effects
9.
Int J Public Health ; 69: 1606802, 2024.
Article En | MEDLINE | ID: mdl-38590582

Objectives: This systematic review aims to assess the relationship between prenatal and childhood exposure to phthalates and neurodevelopmental outcomes, identifying periods of heightened susceptibility. Data sources considered studies examining repeated phthalate exposure during pregnancy and childhood on neurodevelopment. Methods: Evaluation included bias risk and study quality criteria. Evidence was synthesized by groups of low and high phthalate molecular weight and exposure measured prenatally and postnatally and outcome measured in childhood. Beta coefficients and their standard errors were extracted, leading to meta-analyses of various neurodevelopmental outcomes: cognition, motor skills, language, behavior, and temperament. Results: Eleven pregnancy and birth cohort studies were identified as relevant. For each phthalate group and outcome combination, there was low or very low evidence of an association, except for prenatal and postnatal phthalate exposure and behavioral development and postnatal exposure and cognition. Conclusion: The estimated effects sizes were relatively small and strong evidence for periods of heightened susceptibility could not be elucidated. No distinction between phthalates of low molecular weight and those of high molecular weight with regards to the outcomes was found.


Phthalic Acids , Prenatal Exposure Delayed Effects , Child , Female , Pregnancy , Humans , Phthalic Acids/toxicity , Cohort Studies , Cognition , Environmental Exposure/adverse effects
10.
Toxicol Ind Health ; 40(6): 312-322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38590048

Previous epidemiologic research has shown that phthalate exposure in pregnant women is related to adverse birth outcomes in a sex-specific manner. However, the biological mechanism of phthalate exposure that causes these birth outcomes remains poorly defined. In this research, we investigated the association between phthalate exposure and placental oxidative stress in a large population-based cohort study, aiming to initially explore the relationship between phthalate exposure and gene expression in placental oxidative stress in a sex-specific manner. Quantitative PCR was performed to measure the expression of placental inflammatory mRNAs (HO-1, HIF1α, and GRP78) in 2469 placentae. The multiple linear regression models were used to investigate the associations between mRNA and urinary phthalate monoesters. Phthalate metabolites monomethyl phthalate (MMP) and mono-n-butyl phthalate (MBP) were positively correlated with higher HIF1α expression in placentae of male fetuses (p < .05). Mono-benzyl phthalate (MBzP) increased the expression of HO-1, HIF1α, and GRP78 in placentae of male fetuses, and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) up-regulated the expression of HIF1α and GRP78. Additionally, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) was negatively correlated with HO-1, HIF1α, and GRP78 in placentae of female fetuses. Maternal phthalate exposure was associated with oxidative stress variations in placental tissues. The associations were closer in the placentas of male fetuses than in that of female ones. The placenta oxidative stress is worth further investigation as a potential mediator of maternal exposure-induced disease risk in children.


Biomarkers , Endoplasmic Reticulum Chaperone BiP , Maternal Exposure , Oxidative Stress , Phthalic Acids , Placenta , Humans , Phthalic Acids/toxicity , Phthalic Acids/urine , Female , Oxidative Stress/drug effects , Pregnancy , Male , Placenta/drug effects , Placenta/metabolism , Biomarkers/urine , Prospective Studies , Adult , Maternal Exposure/adverse effects , Sex Factors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Cohort Studies
11.
PLoS One ; 19(4): e0301097, 2024.
Article En | MEDLINE | ID: mdl-38640138

As a new definition for the evidence of hepatic steatosis and metabolic dysfunctions, the relationship between phthalates (PAEs) and metabolic dysfunction-associated fatty liver disease (MAFLD) remains virtually unexplored. This study included 3,137 adults from the National Health and Nutrition Examination Survey spanning 2007-2018. The diagnosis of MAFLD depended on the US Fatty Liver Index (US FLI) and evidence of metabolic dysregulation. Eleven metabolites of PAEs were included in the study. Poisson regression, restricted cubic spline (RCS), and weighted quantile sum (WQS) regression were used to assess the associations between phthalate metabolites and MAFLD. After adjusting for potential confounders, Poisson regression analysis showed that mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-n-butyl phthalate, mono-(3-carboxypropyl) phthalate, mono-ethyl phthalate (MEP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate were generally significant positively associated with MAFLD (P<0.05). Furthermore, the WQS index constructed for the eleven phthalates was significantly related to MAFLD (OR:1.43; 95%CI: 1.20, 1.70), MEHHP (33.30%), MEP (20.84%), MECPP (15.43%), and mono-isobutyl phthalate (11.78%) contributing the most. This study suggests that exposure to phthalates, individually or in combination, may be associated with an increased risk of MAFLD.


Environmental Pollutants , Liver Diseases , Phthalic Acids , Adult , Humans , United States/epidemiology , Nutrition Surveys , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity
12.
J Hazard Mater ; 470: 134187, 2024 May 15.
Article En | MEDLINE | ID: mdl-38574659

The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.


Esters , Phthalic Acids , Plants , Water Pollutants, Chemical , Phthalic Acids/toxicity , Phthalic Acids/metabolism , Esters/toxicity , Plants/drug effects , Plants/metabolism , Water Pollutants, Chemical/toxicity
13.
J Hazard Mater ; 471: 134423, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38678719

Phthalate esters (PAEs) are a class of plasticizers that are readily released from plastic products, posing a potential exposure risk to human body. At present, much attention is paid on PAE concentrations in indoor dust with the understanding of PAEs toxicity. This study collected 8187 data on 10 PAEs concentrations in indoor dusts from 26 countries and comprehensively reviewed the worldwide distribution, influencing factors, and health risks of PAEs. Di-(2-ethylhexyl) phthalate (DEHP) is the predominant PAE with a median concentration of 316 µg·g-1 in indoor dust. Polyvinyl chloride wallpaper and flooring and personal care products are the main sources of PAEs indoor dust. The dust concentrations of DEHP show a downward trend over the past two decades, while high dust concentrations of DiNP are found from 2011 to 2016. The median dust contents of 8 PAEs in public places are higher than those in households. Moreover, the concentrations of 9 PAEs in indoor dusts from high-income countries are higher than those from upper-middle-income countries. DEHP in 69.8% and 77.8% of the dust samples may pose a potential carcinogenic risk for adults and children, respectively. Besides, DEHP in 16.9% of the dust samples may pose a non-carcinogenic risk to children. Nevertheless, a negligible risk was found for other PAEs in indoor dust worldwide. This review contributes to an in-depth understanding of the global distribution, sources and health risks of PAEs in indoor dust.


Air Pollution, Indoor , Dust , Esters , Phthalic Acids , Plasticizers , Dust/analysis , Air Pollution, Indoor/analysis , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Esters/analysis , Plasticizers/analysis , Plasticizers/toxicity , Risk Assessment , Environmental Exposure/analysis , Air Pollutants/analysis
14.
Environ Health Perspect ; 132(4): 45002, 2024 Apr.
Article En | MEDLINE | ID: mdl-38683745

BACKGROUND: Humans are exposed to hazardous chemicals found in consumer products. In 2019, the Pollution Prevention for Healthy People and Puget Sound Act was passed in Washington State. This law is meant to reduce hazardous chemicals in consumer products and protect human health and the environment. The law directs the Washington State Department of Ecology to assess chemicals and chemical classes found in products, determine whether there are safer alternatives, and make regulatory determinations. OBJECTIVES: To implement the law, the Department of Ecology developed a hazard-based framework for identifying safer alternatives to classes of chemicals. METHODS: We developed a hazard-based framework, termed the "Criteria for Safer," to set a transparent bar for determining whether new chemical alternatives are safer than existing classes of chemicals. Our "Criteria for Safer" is a framework that builds on existing hazard assessment methodologies and published approaches for assessing chemicals and chemical classes. DISCUSSION: We describe implementation of our criteria using a case study on the phthalates chemical class in two categories of consumer products: vinyl flooring and fragrances used in personal care and beauty products. Additional context and considerations that guided our decision-making process are also discussed, as well as benefits and limitations of our approach. This paper gives insight into our development and implementation of a hazard-based framework to address classes of chemicals in consumer products and will aid others working to build and employ similar approaches. https://doi.org/10.1289/EHP13549.


Hazardous Substances , Phthalic Acids , Phthalic Acids/analysis , Phthalic Acids/toxicity , Washington , Humans , Hazardous Substances/analysis , Risk Assessment/methods , Consumer Product Safety , Environmental Exposure , Environmental Pollutants/analysis , Cosmetics/analysis
15.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38640799

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Copper , Daphnia , Dibutyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Phthalic Acids/toxicity , Water Pollutants, Chemical/toxicity , Copper/toxicity , Dibutyl Phthalate/toxicity , Metal Nanoparticles/toxicity , Esters/toxicity , Microbiota/drug effects , Glutathione Transferase/metabolism , Metabolomics , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Metabolome/drug effects , Daphnia magna
16.
Sci Total Environ ; 928: 172411, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38608898

Exposure to diisodecyl phthalate (DIDP) during early pregnancy may be a risk factor for depressive behavior in offspring. While ozone (O3) exposure also raises the probability of depressive behavior during the preceding DIDP-induced process. In the present study, we investigated the effects of prenatal exposure to DIDP and O3 on the development of depressive-like behavior in offspring mice. The study found that prenatal exposure to both DIDP and O3 significantly increased depressive-like behavior in the offspring mice compared to either DIDP or O3 alone. Prenatal exposure to DIDP and O3 obviously increased the levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol, and decreased the levels of brain-derived neurotrophic factor (BDNF), 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the brain tissues of offspring mice. Transcriptome analysis further revealed significant alterations in genes related to oxidative stress and TWIST1 (a helix-loop-helix transcription factor) in response to the combined exposure to DIDP and O3. HPA axis activation, dysregulation of neurodevelopmental factors, oxidative stress and TWIST1 involvement, collectively contributed to the development of depression-like behaviors in offspring mice following prenatal exposure to DIDP and O3. Moreover, the study also verified the potential role of oxidative stress using vitamin E as an antioxidant. The findings provide valuable evidence for the relationship between co-exposure to DIDP and O3 and depression, highlighting the importance of considering the combined effects of multiple environmental pollutants in assessing their impact on mental health outcomes.


Depression , Oxidative Stress , Ozone , Phthalic Acids , Prenatal Exposure Delayed Effects , Animals , Ozone/toxicity , Oxidative Stress/drug effects , Female , Pregnancy , Mice , Phthalic Acids/toxicity , Depression/chemically induced , Air Pollutants/toxicity , Behavior, Animal/drug effects , Nuclear Proteins/metabolism , Maternal Exposure/adverse effects
17.
Food Chem Toxicol ; 188: 114686, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663762

Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), two common types of phthalates, are known to cause reproductive and developmental toxicity in animals and humans. The reference doses (RfD) of DBP and DEHP should be determined by sensitive endpoints. We here aimed to identify sensitive endpoints for DBP- and DEHP-induced such toxicity using published literatures. By examining the impacts of maternal exposure to DBP or DEHP on anogenital distance (AGD) and semen quality of offspring, we discovered that DBP or DEHP caused AGD decline in boys but increase in girls with DBP being more potent and the first 14weeks of pregnancy being more susceptible, suggesting a chemical- and time-dependent phenomenon. We also identified AGD shortening and total sperm count reduction as two sensitive endpoints for DBP- or DEHP-induced reproductive and developmental toxicity, respectively. Based upon these two endpoints and the employment of the Bayesian benchmark dose approach with an uncertainty factor of 3,000, we estimated the RfD values of DBP and DEHP were 15 µg/kg/day and 36 µg/kg/day, respectively. Thus, we uncover previously unrecognized phenomena of DBP- or DEHP-induced reproductive and developmental toxicity and establish new and comparable or more conservative RfDs for the risk assessment of phthalates exposure in humans.


Dibutyl Phthalate , Reproduction , Male , Humans , Reproduction/drug effects , Female , Animals , Dibutyl Phthalate/toxicity , Pregnancy , Diethylhexyl Phthalate/toxicity , Phthalic Acids/toxicity , Maternal Exposure/adverse effects
18.
Chemosphere ; 358: 142105, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657690

Di(2-ethylhexyl) terephthalate (DEHTP) is an alternative plasticizer widely used in numerous consumer products, replacing di(2-ethylhexyl) phthalate (DEHP). Hence, DEHTP has been frequently detected in the environment and humans. As a structural isomer and functional analog of DEHP, DEHTP is a suspected endocrine disruptor. Here, we evaluated thyroid-disrupting effects of DEHTP using embryo-larval and adult male zebrafish. We also investigated its sex hormone disruption potential in the adult zebrafish. After 5- and 7-days of exposure to DEHTP, significant increases in whole-body thyroid hormonal levels were observed in the larval fish. Down-regulation of several thyroid-regulating genes, including trh, tshß, nis, and dio2, was observed, but only after 5-day exposure. Following a 21-day exposure, the adult male zebrafish exhibited a significant decrease in total triiodothyronine and an increase in thyroid-stimulating hormones. Potential changes in the deiodination of thyroid hormones, supported by the up-regulation of two deiodinases, dio1 and dio3a, along with the down-regulation of dio2, could explain the thyroid hormone changes in the adult zebrafish. Moreover, significant trends of decrease in estradiol and 11-ketotestosterone, along with increase of testosterone (T), were observed in the adult zebrafish. Up-regulation of several steroidogenic genes may explain elevated T, while exact mechanisms of action warrant further investigation. Our results demonstrate that DEHTP can cause disruptions of thyroid and sex hormones at different life stages in zebrafish.


Endocrine Disruptors , Thyroid Gland , Thyroid Hormones , Zebrafish , Animals , Male , Endocrine Disruptors/toxicity , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Hormones/metabolism , Gonadal Steroid Hormones/metabolism , Plasticizers/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Phthalic Acids/toxicity , Triiodothyronine , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/analogs & derivatives
19.
Environ Toxicol Pharmacol ; 108: 104457, 2024 Jun.
Article En | MEDLINE | ID: mdl-38677495

Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.


Clothing , Esters , Phthalic Acids , Plasticizers , Phthalic Acids/analysis , Phthalic Acids/toxicity , Humans , Plasticizers/analysis , Plasticizers/toxicity , Esters/analysis , Textiles/analysis , Animals
20.
Environ Res ; 252(Pt 2): 118825, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38609072

Human fertility is impacted by changes in lifestyle and environmental deterioration. To increase human fertility, assisted reproductive technology (ART) has been extensively used around the globe. As early as 2009, the Endocrine Society released its first scientific statement on the potential adverse effects of environmental endocrine-disrupting chemicals (EDCs) on human health and disease development. Chemicals known as phthalates, frequently employed as plasticizers and additives, are common EDCs. Numerous studies have shown that phthalate metabolites in vivo exert estrogen-like or anti-androgenic effects in both humans and animals. They are associated with the progression of a range of diseases, most notably interference with the reproductive process, damage to the placenta, and the initiation of chronic diseases in adulthood. Phthalates are ingested by infertile couples in a variety of ways, including household products, diet, medical treatment, etc. Exposure to phthalates may exacerbate their infertility or poor ART outcomes, however, the available data on phthalate exposure and ART pregnancy outcomes are sparse and contradictory. Therefore, this review conducted a systematic evaluation of 16 papers related to phthalate exposure and ART pregnancy outcomes, to provide more aggregated results, and deepen our understanding of reproductive outcomes in infertile populations with phthalate exposure.


Fertilization in Vitro , Infertility , Phthalic Acids , Phthalic Acids/toxicity , Phthalic Acids/urine , Humans , Female , Pregnancy , Infertility/chemically induced , Endocrine Disruptors/toxicity , Endocrine Disruptors/adverse effects , Environmental Pollutants/toxicity , Environmental Exposure/adverse effects , Pregnancy Outcome/epidemiology , Male
...