Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Biotechnol Bioeng ; 118(6): 2368-2379, 2021 06.
Article in English | MEDLINE | ID: mdl-33710627

ABSTRACT

The effect of light intensity and inoculum volume on the occurrence of photooxidation for Leptolyngbya sp. QUCCCM 56 was investigated, to facilitate the transition from small-scale laboratory experiments to large-scale outdoor cultivation. Indoor, the strain was capable of growing at light intensities of up to 5600 µmol photons/m2 /s, at inoculation densities as low as 0.1 g/L (10% inoculation volume vol/vol). Levels of chlorophyll and phycocyanin showed a significant decrease within the first 24 h, indicating some level of photooxidation, however, both were able to recover within 72 h. When cultivated under outdoor conditions in Qatar during summer, with average peak light intensities 1981 ± 41 µmol photons/m2 /s, the strain had difficulties growing. The culture recovered after an initial adaptation period, and clear morphological differences were observed, such as an increase in trichome length, as well as coiling of multiple trichomes in tightly packed strands. It was hypothesized that the morphological changes were induced by UV-radiation as an adaptation mechanism for increased self-shading. Furthermore, the presence of contaminating ciliates could have also affected the outdoor culture. Both UV and contaminants are generally not simulated under laboratory environments, causing a mismatch between indoor optimizations and outdoor realizations.


Subject(s)
Cyanobacteria/growth & development , Light , Oxidation-Reduction , Adaptation, Physiological , Biomass , Chlorophyll/analysis , Culture Techniques , Cyanobacteria/radiation effects , Phycocyanin/analysis , Ultraviolet Rays
2.
Phytomedicine ; 81: 153420, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33278781

ABSTRACT

BACKGROUND: Periodontitis is a common oral disease characterized as inflammation on gingival tissue and alveolar bone resorption. Spirulina maxima has been reported to have anti-oxidative and anti-inflammatory effects on gastric ulcers. However, its effects on gingival inflammation and alveolar bone resorption of periodontitis have not been studied. PURPOSE: This study was designed to investigate the effects of S. maxima on the P. gingivalis-induced periodontitis and to elucidate its mechanism. METHODS: The phycocyanin contents in S. maxima were identified by high-performance liquid chromatography. 8-week old SD rats were induced periodontitis by inoculation with P. gingivalis for 14 days. The rats were then orally treated with S. maxima 100, 200, 400 mg/kg, or indomethacin (IND, positive control) 5 mg/kg for an additional 14 days. Inflammatory responses, expressions of collagenases in gingival tissue, osteoclast formation and activation, alveolar bone resorption, osteogenesis-related markers, and BMP2/Smad signaling in alveolar bone were measured. RESULTS: Pro-inflammatory cytokines such as TNF-α, IL-1ß, IL-6, and inflammatory transcription factor NF-κB were decreased in gingival tissue by S. maxima administration. Also, myeloperoxidase (MPO) activity and matrix metalloproteinase (MMPs) expression were decreased by S. maxima administration. Conversely, S. maxima increased IL-4, anti-inflammatory cytokine from Th2 cells. The osteoprotegerin (OPG) / receptor activator of NF-κB ligand (RANKL) expression ratio, which represents osteoclast-osteoblast balance, was increased in S. maxima-treated groups. The alveolar bone loss and the number of TRAP-positive osteoclast cells were also declined in S. maxima-treated groups while the osteoblasts count was increased. Besides, in S. maxima-treated groups, the osteogenesis-related factors were promoted and BMP-2/Smad pathway was up-regulated in a periodontitis condition. CONCLUSION: S. maxima reduces periodontitis induced by P. gingivalis through anti-inflammatory effect and resultant reduction in bone loss, suggesting that S. maxima might be a potential agent for treating periodontitis.


Subject(s)
Alveolar Bone Loss/drug therapy , Bacteroidaceae Infections/complications , Periodontitis/drug therapy , Periodontitis/microbiology , Porphyromonas gingivalis , Spirulina/chemistry , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/microbiology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bacteroidaceae Infections/drug therapy , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Male , Osteoblasts/drug effects , Osteoclasts/drug effects , Periodontitis/metabolism , Phycocyanin/analysis , Rats, Sprague-Dawley , Smad Proteins/metabolism
3.
BMC Microbiol ; 20(1): 206, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32660415

ABSTRACT

BACKGROUND: Cyanobacteria are well known for their inherent ability to serve as atmospheric nitrogen fixers and as bio-fertilizers; however, increased contaminants in aquatic ecosystem significantly decline the growth and function of these microbes in paddy fields. Plant growth regulators play beneficial role in combating the negative effects induced by heavy metals in photoautotroph. Current study evaluates the potential role of indole acetic acid (IAA; 290 nm) and kinetin (KN; 10 nm) on growth, nitrogen metabolism and biochemical constituents of two paddy field cyanobacteria Nostoc muscorum ATCC 27893 and Anabaena sp. PCC 7120 exposed to two concentrations of chromium (CrVI; 100 µM and 150 µM). RESULTS: Both the tested doses of CrVI declined the growth, ratio of chlorophyll a to carotenoids (Chl a/Car), contents of phycobiliproteins; phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE), protein and carbohydrate associated with decrease in the inorganic nitrogen (nitrate; NO3- and nitrite; NO2-) uptake rate that results in the decrease in nitrate and ammonia assimilating enzymes; nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT) except glutamate dehydrogenase (GDH). However, exogenous supplementation of IAA and KN exhibited alleviating effects on growth, nitrogen metabolism and exopolysaccharide (EPS) (first protective barrier against metal toxicity) contents in both the cyanobacteria, which probably occurred as a result of a substantial decrease in the Cr uptake that lowers the damaging effects. CONCLUSION: Overall result of the present study signifies affirmative role of the phytohormone in minimizing the toxic effects induced by chromium by stimulating the growth of cyanobacteria thereby enhancing its ability as bio-fertilizer that improved fertility and productivity of soil even in metal contaminated condition.


Subject(s)
Bacterial Proteins/metabolism , Chromium/toxicity , Cyanobacteria/growth & development , Plant Growth Regulators/pharmacology , Polysaccharides, Bacterial/metabolism , Anabaena/chemistry , Anabaena/drug effects , Anabaena/growth & development , Carotenoids/analysis , Chlorophyll A/analysis , Cyanobacteria/chemistry , Cyanobacteria/drug effects , Gene Expression Regulation, Bacterial/drug effects , Indoleacetic Acids/pharmacology , Kinetin/pharmacology , Nitrogen/metabolism , Phycocyanin/analysis , Stress, Physiological
4.
J Food Sci ; 85(3): 727-735, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31999367

ABSTRACT

Phycocyanin, a natural blue colorant, is typically extracted from liquid biomass of Arthrospira platensis, a blue-green algae called spirulina. In this study, we developed a scalable process to extract phycocyanin from dried spirulina biomass. First, we established the optimal ionic strength and pH for the extraction buffer. The results showed that a minimum ionic strength (>5 g/L NaCl) must be maintained to minimize the co-extraction of the green chlorophyll. The optimal pH of the phosphate buffer (100 mM) for phycocyanin extraction is 7.5; however, the pH should be immediately adjusted to 6.0 to 6.5 after the extraction to keep phycocyanin stable. Second, we also investigated three processing techniques, that is, high-pressure processing (HPP), pulsed electric field (PEF), and ultrasonication, to break the cell walls of spirulina and facilitate the release of phycocyanins into extraction buffers. HPP and PEF do not lead to the release of phycocyanin into the extraction buffer. However, ultrasonication breaks down the spirulina into fine particles and releases most of the phycocyanin, along with other impurities, immediately after the treatment. Last, it has been revealed that most of the phycocyanin can be extracted from biomass within 3 hr by phosphate buffer only (pH 7.5, 100 mM) at room temperature. It is concluded that there is no need to treat the rehydrated biomass solution by HPP, PEF, or ultrasonication due to the minimal benefits they brought for the extraction. Based on these results, we proposed an extraction process for the plant production of phycocyanin starting from dried spirulina biomass. PRACTICAL APPLICATIONS: Limited information can be found on the extraction of phycocyanin from dried spirulina biomass, especially how to better preserve the natural blue color of phycocyanin during extraction. We have investigated the method and presented a different view from previous processes. Pulsed electric field, high-pressure processing, and ultrasonication were employed to accelerate the extraction of phycocyanin from dried biomass. However, it was found that, unlike the extraction from live wet biomass, these techniques do not help with the extraction from dried biomass. Based on investigations, we have proposed a process that can be easily scaled up for the commercial production of phycocyanin from dried spirulina biomass.


Subject(s)
Chemical Fractionation/methods , Food Coloring Agents/isolation & purification , Food Handling/methods , Phycocyanin/isolation & purification , Spirulina/chemistry , Biomass , Chemical Fractionation/instrumentation , Chlorophyll/analysis , Chlorophyll/isolation & purification , Food Coloring Agents/analysis , Food Handling/instrumentation , Hydrogen-Ion Concentration , Phycocyanin/analysis , Spirulina/growth & development
5.
Methods Mol Biol ; 1980: 173-179, 2020.
Article in English | MEDLINE | ID: mdl-30484147

ABSTRACT

Phycocyanin is a blue-colored pigment-protein complex that exhibits numerous biofunctions such as anti-inflammation, antioxidation, antitumor, neuroprotective effect, and immunological enhancement. Purified phycocyanin has pharmaceutical and nutraceutical applications. In addition, as a nontoxic and non-carcinogenic natural coloring agent, phycocyanin has many applications in the food and cosmetic industries. This chapter describes a protocol for extraction and analytical grade purification of phycocyanin from cyanobacteria. The purification steps include (1) extraction of phycocyanin from biomass, (2) ammonium sulfate precipitation of phycocyanin and dialysis, and (3) purification of phycocyanin by gel filtration and ion-exchange chromatography.


Subject(s)
Cyanobacteria/metabolism , Phycocyanin/biosynthesis , Phycocyanin/isolation & purification , Ammonium Sulfate , Chromatography, Gel , Chromatography, Ion Exchange , Fractional Precipitation , Liquid-Liquid Extraction , Phycocyanin/analysis
6.
Article in English | MEDLINE | ID: mdl-30950358

ABSTRACT

BACKGROUND: Phycocyanin is an algae-derived protein, which binds to pigment for harvesting light. It has been reported in various different species, including that of red algae, dinoflagellates, and cryptophyta. Importantly, phycocyanin has enormous applications, including cosmetic colorant, food additive, biotechnology, diagnostics, fluorescence detection probe, an anticancer agent, anti-inflammatory, immune enhancer, etc. In addition, several different algae were utilized for the isolation of cyano-phycocyanin (C-PC), but most of the purification methods consist of several steps of crude extraction. AIM: To isolate C-PC from a new source of microalgae with better purity level and to evaluate its antimicrobial, algicidal, and antiradical activities. METHODS: Biological activity, permeability, pharmacokinetics, and toxicity profile of C-PC were predicted by in silico studies. C-PC was purified and isolated by using ammonium sulphate precipitation, ion-exchange chromatography and gel-filtration chromatography. C-PC was characterized by SDS-PAGE and elution profile (purity ratio) analysis. Antimicrobial and algicial activities of C-PC were evaluated by the microtitre plate based assays. Antiradical activity of C-PC was evaluated by DPPH- and ABTS*+ radical scavenging assays. CONCLUSION: C-PC was extracted from Oscillatoria minima for the first time, followed by its quantitative as well qualitative evaluation, indicating a new alternative source of this important protein. Furthermore, the antimicrobial, algicidal, and antiradical activities of the isolated C-PC extract have been demonstrated by both in silico as well as in vitro methods.


Subject(s)
Algal Proteins , Cyanobacteria , Phycocyanin , Algal Proteins/analysis , Algal Proteins/isolation & purification , Algal Proteins/pharmacology , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Biopharmaceutics/methods , Chemistry Techniques, Analytical/methods , Computer Simulation , Herbicides/pharmacology , In Vitro Techniques/methods , Microalgae , Phycocyanin/analysis , Phycocyanin/chemistry , Phycocyanin/pharmacology , Rhodophyta
7.
Nat Prod Res ; 33(11): 1659-1663, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29334254

ABSTRACT

This study explores the possibility to use the extremophilic microalga Galdieria sulphuraria (strain 064) as a source of natural biomolecules with beneficial and protective effects on human health. Galdieria was cultivated in heterotrophy conditions and cells extracts for their antioxidant and anti-proliferative properties were tested. Galdieria extracts showed high antioxidant power tested through ABTS assay and revealed high glutathione and phycocyanin contents. Based on Annexin-V FITC/propidium iodide and MTT analysis, algae extracts inhibited the proliferation of human adenocarcinoma A549 cells (51.2% inhibition) through the induction of apoptosis without cell cycle arrest. Besides, cytotoxicity and cytometry assays showed a positive pro-apoptotic mechanism. On these bases, we suggest that G. sulphuraria from heterotrophic culture, for its therapeutic potential, could be considered a good candidate for further studies with the aim to isolate bioactive anti-cancer molecules.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Rhodophyta/metabolism , A549 Cells , Apoptosis/drug effects , Cell Culture Techniques , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Glutathione/analysis , Heterotrophic Processes , Humans , Phycocyanin/analysis , Plant Extracts/analysis , Plant Extracts/pharmacology , Rhodophyta/chemistry , Rhodophyta/cytology
8.
Environ Monit Assess ; 190(10): 599, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30238229

ABSTRACT

East Lake is a shallow lake (in Wuhan, China) where cyanobacteria blooms occurred frequently from 1970 to 1985. During the study period, all Carlson trophic state index values were > 50, indicating that East Lake is in a eutrophic state. In this study, phycocyanin concentrations were measured through phycocyanin fluorometry for rapid assessment of cyanobacterial abundance. The smoothing splines of the optimal generalized additive model (GAM) indicated that Secchi depth (SD), total phosphorus (TP) and dissolved oxygen (DO) concentrations, electrical conductivity (EC), chemical oxygen demand (COD), and ratios of total nitrogen (TN) to TP (TN:TP) were the main environmental factors in a moderate nonlinear relationship with cyanobacterial phycocyanin concentrations in East Lake. The shape of the GAM smoother can be used to quantify the relationship between a response variable and an explanatory variable in the scatterplot. Phycocyanin concentrations were sharply and negatively related to both SD and EC when the SD was 20-80 cm and EC was > 270 mg/L. Phycocyanin concentrations increased with concentrations of TP, DO, and COD. Phycocyanin concentrations increased sharply with TP concentrations when TP concentrations were > 0.10 mg/L and approached to a constant when DO concentrations were > 8.20 mg/L. Approximately, 85% of the phycocyanin concentrations were negatively correlated with TN:TP of < 26. In summary, organic compounds and TP were inferred to the key factors limiting the potential growth of cyanobacteria in East Lake. These change points/thresholds of smoothing splines of aforementioned variables may serve as a framework for managing the cyanobacterial growth.


Subject(s)
Cyanobacteria/growth & development , Models, Statistical , Phycocyanin/analysis , China , Cyanobacteria/isolation & purification , Environmental Monitoring , Eutrophication , Fluorescence , Fluorometry , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis
9.
Environ Sci Pollut Res Int ; 25(2): 1079-1088, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29079975

ABSTRACT

Sensors to measure phycocyanin fluorescence in situ are becoming widely used as they may provide useful proxies for cyanobacterial biomass. In this study, we assessed five phycocyanin sensors from three different manufacturers. A combination of culture-based experiments and a 30-sample field study was used to examine the effect of temperature and cyanobacteria morphology on phycocyanin fluorescence. Phycocyanin fluorescence increased with decrease in temperature, although this varied with manufacturer and cyanobacterial density. Phycocyanin fluorescence and cyanobacterial biovolume were strongly correlated (R 2 > 0.83, P < 0.05) for single-celled and filamentous species. The relationship was generally weak for a colonial strain of Microcystis aeruginosa. The colonial culture was divided into different colony size classes and phycocyanin measured before and after manual disaggregation. No differences were measured, and the observation that fluorescence spiked when large colonial aggregates drifted past the light source suggests that sample heterogeneity, rather than lack of light penetration into the colonies, was the main cause of the poor relationship. Analysis of field samples showed a strong relationship between in situ phycocyanin fluorescence and spectrophotometrically measured phycocyanin (R 2 > 0.7, P < 0.001). However, there was only a weak relationship between phycocyanin fluorescence and cyanobacterial biovolume for two sensors (R 2 = 0.22-0.29, P < 0.001) and a non-significant relationship for the third sensor (R 2 = 0.29, P > 0.4). The five sensors tested in our study differed in their output of phycocyanin fluorescence, upper working limits (1200 to > 12,000 µg/L), and responses to temperature, highlighting the need for comprehensive sensor calibration and knowledge on the limitations of specific sensors prior to deployment.


Subject(s)
Cyanobacteria/chemistry , Environmental Monitoring/instrumentation , Fluorescence , Phycocyanin/analysis , Cyanobacteria/cytology , Fresh Water/analysis , Microcystis/chemistry , Microcystis/cytology , Temperature
10.
Environ Monit Assess ; 189(10): 495, 2017 Sep 09.
Article in English | MEDLINE | ID: mdl-28887739

ABSTRACT

A commercially available handheld spectroradiometer, the WISP-3, was assessed as a tool for monitoring freshwater cyanobacterial blooms for management purposes. Three small eutrophic urban ponds which displayed considerable within-pond and between-pond variability in water quality and cyanobacterial community composition were used as trial sites. On-board algorithms provide field measurements of phycocyanin (CPC) and chlorophyll-a (Chl-a) from surface reflectance spectra measured by the instrument. These were compared with laboratory measurements. Although significant but weak relationships were found between WISP-3 measured CPC and cyanobacterial biovolume measurements and WISP-3 and laboratory Chl-a measurements, there was considerable scatter in the data due likely to error in both WISP-3 and laboratory measurements. The relationships generally differed only slightly between ponds, indicating that different cyanobacterial communities had little effect on the pigment retrievals of the WISP-3. The on-board algorithms need appropriate modification for local conditions, posing a problem if it is to be used extensively across water bodies with differing optical properties. Although suffering a range of other limitations, the WISP-3 has a potential as a rapid screening tool for preliminary risk assessment of cyanobacterial blooms. However, such field assessment would still require adequate support by sampling and laboratory-based analysis.


Subject(s)
Cyanobacteria/growth & development , Environmental Monitoring/instrumentation , Eutrophication , Ponds/microbiology , Remote Sensing Technology/instrumentation , Algorithms , Australia , Chlorophyll/analysis , Chlorophyll A , Cyanobacteria/metabolism , Phycocyanin/analysis , Predictive Value of Tests , Risk Assessment , Urbanization , Water Quality
11.
Proc Natl Acad Sci U S A ; 114(37): 9779-9784, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847963

ABSTRACT

Phycobilisomes are highly organized pigment-protein antenna complexes found in the photosynthetic apparatus of cyanobacteria and rhodophyta that harvest solar energy and transport it to the reaction center. A detailed bottom-up model of pigment organization and energy transfer in phycobilisomes is essential to understanding photosynthesis in these organisms and informing rational design of artificial light-harvesting systems. In particular, heterogeneous photophysical behaviors of these proteins, which cannot be predicted de novo, may play an essential role in rapid light adaptation and photoprotection. Furthermore, the delicate architecture of these pigment-protein scaffolds sensitizes them to external perturbations, for example, surface attachment, which can be avoided by study in free solution or in vivo. Here, we present single-molecule characterization of C-phycocyanin (C-PC), a three-pigment biliprotein that self-assembles to form the midantenna rods of cyanobacterial phycobilisomes. Using the Anti-Brownian Electrokinetic (ABEL) trap to counteract Brownian motion of single particles in real time, we directly monitor the changing photophysical states of individual C-PC monomers from Spirulina platensis in free solution by simultaneous readout of their brightness, fluorescence anisotropy, fluorescence lifetime, and emission spectra. These include single-chromophore emission states for each of the three covalently bound phycocyanobilins, providing direct measurements of the spectra and photophysics of these chemically identical molecules in their native protein environment. We further show that a simple Förster resonant energy transfer (FRET) network model accurately predicts the observed photophysical states of C-PC and suggests highly variable quenching behavior of one of the chromophores, which should inform future studies of higher-order complexes.


Subject(s)
Cyanobacteria/metabolism , Energy Transfer/physiology , Photosynthesis/physiology , Phycobilins/analysis , Phycobilisomes/metabolism , Phycocyanin/chemistry , Light-Harvesting Protein Complexes/metabolism , Macromolecular Substances/metabolism , Models, Biological , Phycobilins/chemistry , Phycocyanin/analysis , Spectrometry, Fluorescence
12.
J Chromatogr A ; 1508: 169-175, 2017 Jul 28.
Article in English | MEDLINE | ID: mdl-28601364

ABSTRACT

In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution.


Subject(s)
Cytochromes c/analysis , Electrophoresis/methods , Hemoglobins/analysis , Phycocyanin/analysis , Electrophoresis/instrumentation
13.
Biochim Biophys Acta Bioenerg ; 1858(9): 742-749, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28576442

ABSTRACT

Heterocyst is a nitrogen-fixing cell differentiated from a cell for oxygen-evolving photosynthesis (vegetative cell) in some filamentous cyanobacteria when fixed nitrogen (e.g., ammonia and nitrate) is limited. Heterocysts appear at multiple separated positions in a single filament with an interval of 10-20 cells in some genera (including Anabaena variabilis). In other genera, a single heterocyst appears only at the basal terminal in a filament (including Rivularia M-261). Such morphological diversity may necessitate different properties of heterocysts. However, possible differences in heterocysts have largely remained unexplored due to the minority of heterocysts among major vegetative cells. Here, we have applied spectroscopic microscopy to Rivularia and A. variabilis to analyze their thylakoid membranes in individual cells. Absorption and fluorescence spectral imaging enabled us to estimate concentrations and interconnections of key photosynthetic components like photosystem I (PSI), photosystem II (PSII) and subunits of light-harvesting phycobilisome including phycocyanin (PC). The concentration of PC in heterocysts of Rivularia is far higher than that of A. variabilis. Fluorescence quantum yield of PC in Rivularia heterocysts was found to be virtually the same as those in its vegetative cells, while fluorescence quantum yield of PC in A. variabilis heterocysts was enhanced in comparison with its vegetative cells. PSI concentration in the thylakoid membranes of heterocysts seems to remain nearly the same as those of the vegetative cells in both the species. The average stoichiometric ratio between PSI monomer and PC hexamer in Rivularia heterocysts is estimated to be about 1:1.


Subject(s)
Cyanobacteria/ultrastructure , Microscopy/methods , Thylakoids/ultrastructure , Absorption, Radiation , Anabaena variabilis/metabolism , Anabaena variabilis/radiation effects , Anabaena variabilis/ultrastructure , Cyanobacteria/metabolism , Cyanobacteria/radiation effects , Intracellular Membranes/ultrastructure , Light , Microscopy, Fluorescence , Nitrogen Fixation , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/radiation effects , Phycobilisomes/radiation effects , Phycobilisomes/ultrastructure , Phycocyanin/analysis , Species Specificity , Spectrum Analysis/methods , Thylakoids/metabolism , Thylakoids/radiation effects
14.
Environ Microbiol ; 19(6): 2286-2300, 2017 06.
Article in English | MEDLINE | ID: mdl-28276185

ABSTRACT

The diversity and composition of photosynthetic picoeukaryotes (PPEs) in two large shallow lakes in China (Lake Taihu and Lake Chaohu) were investigated from flow cytometry sorted samples using Miseq high-throughput sequencing. We collected 65 samples covering different regions of the two lakes over four seasons to unveil spatial and temporal patterns of PPEs community composition. The use of flow cytometry sorting largely improved the efficiency of detecting PPEs sequences and over 70% of the retrieved reads belonged to PPEs. Chlorophyta and Bacillariophyta dominated PPEs in most of the samples. A distinct but complex seasonality of PPEs composition emerged at the OTUs level. NGS-based Miseq sequencing facilitates an in-depth view of numerous rare OTUs. Nearly 80% of the PPEs OTUs were rare and lots of them were detected only in one season, whereas most of the abundant OTUs were frequently detected in all seasons but only changed in relative abundances. Besides, a close relative of the marine PPEs species Ostreococcus sp. (OTU_1144, 99% identity) was discovered in freshwater systems for the first time and was abundant especially in winter. The diversity and community composition of PPEs were more dependent on season rather than sampling sites. Temperature, phycocyanin and NO3 N concentrations in Lake Taihu explained the PPE composition variations, whereas in Lake Chaohu TN/TP ratios, temperature, pH and nephelometric turbidity units (NTU) seemed to be the most important factors. In addition, a great number of OTUs belong to nonpigmented picoeukaryotes, especially Chytridiomycota, Perkinsozoa, Ciliophora and Cercozoa, which are known to include algae parasites as well as predators. The results of mantel test also showed that the community of photosynthetic and nonpigmented picoeukaryotes were significantly correlated in both lakes.


Subject(s)
Chlorophyta/classification , Diatoms/classification , Lakes/chemistry , Lakes/parasitology , China , Chlorophyta/physiology , Diatoms/physiology , Flow Cytometry , Nitrates/analysis , Photosynthesis/physiology , Phycocyanin/analysis , Seasons , Temperature
15.
J Diet Suppl ; 14(5): 573-588, 2017 Sep 03.
Article in English | MEDLINE | ID: mdl-28166438

ABSTRACT

Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, ß-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1ßΔ93 flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1ßΔ93 flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1ßΔ93 flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1ßΔ93 flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1ßΔ93 flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.


Subject(s)
Dietary Supplements , Locomotion/drug effects , Longevity/drug effects , Parkinson Disease/therapy , Spirulina/chemistry , Animals , Antioxidants/administration & dosage , Antioxidants/analysis , Disease Models, Animal , Drosophila melanogaster , Herbicides , Oxidation-Reduction/drug effects , Paraquat , Parkinson Disease/physiopathology , Phycocyanin/administration & dosage , Phycocyanin/analysis , Superoxide Dismutase/drug effects
16.
Electrophoresis ; 37(17-18): 2393-400, 2016 09.
Article in English | MEDLINE | ID: mdl-27465345

ABSTRACT

In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Animals , Buffers , Cattle , Hemoglobins/analysis , Hydrogen-Ion Concentration , Phycocyanin/analysis , Spirulina/chemistry
17.
J Agric Food Chem ; 64(24): 5060-70, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27223481

ABSTRACT

Selenium (Se) plays an important role in fine-tuning immune responses. Inflammatory bowel disease (IBD) involves hyperresponsive immunity of the digestive tract, and a low Se level might aggravate IBD progression; however, the beneficial effects of natural Se-enriched diets on IBD remain unknown. Previously, we developed high-yield Se-enriched Spirulina platensis (Se-SP) as an excellent organic nutritional Se source. Here we prepared Se-containing phycocyanin (Se-PC) from Se-SP and observed that Se-PC administration effectively reduced the extent of colitis in mouse induced by dextran sulfate sodium. Supplementation with Se-PC resulted in significant protective effects, including mitigation of body weight loss, bloody diarrhea, and colonic inflammatory damage. The anti-inflammatory effects of Se-PC supplementation were found to involve modulation of cytokines, including IL-6, TNF-α, MCP-1, and IL-10. Mechanistically, Se-PC inhibited the activation of macrophages by suppressing the nuclear translocation of NF-κB, which is involved in the transcription of these pro-inflammatory cytokines. These results together suggest potential benefits of Se-PC as a functional Se supplement to reduce the symptoms of IBD.


Subject(s)
Colitis/drug therapy , Phycocyanin/administration & dosage , Selenium/analysis , Spirulina/chemistry , Animals , Colitis/chemically induced , Colitis/genetics , Colitis/immunology , Dextran Sulfate/adverse effects , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/immunology , Phycocyanin/analysis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
18.
Environ Sci Pollut Res Int ; 23(17): 17210-25, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27221462

ABSTRACT

This paper proposes multilayer perceptron neural network (MLPNN) to predict phycocyanin (PC) pigment using water quality variables as predictor. In the proposed model, four water quality variables that are water temperature, dissolved oxygen, pH, and specific conductance were selected as the inputs for the MLPNN model, and the PC as the output. To demonstrate the capability and the usefulness of the MLPNN model, a total of 15,849 data measured at 15-min (15 min) intervals of time are used for the development of the model. The data are collected at the lower Charles River buoy, and available from the US Environmental Protection Agency (USEPA). For comparison purposes, a multiple linear regression (MLR) model that was frequently used for predicting water quality variables in previous studies is also built. The performances of the models are evaluated using a set of widely used statistical indices. The performance of the MLPNN and MLR models is compared with the measured data. The obtained results show that (i) the all proposed MLPNN models are more accurate than the MLR models and (ii) the results obtained are very promising and encouraging for the development of phycocyanin-predictive models.


Subject(s)
Neural Networks, Computer , Phycocyanin/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Linear Models , Multivariate Analysis , Oxygen/analysis , Water Quality
19.
Biosens Bioelectron ; 77: 624-30, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26485176

ABSTRACT

A facile strategy was developed to prepare molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin (PC) based on fluorescence resonance energy transfer (FRET), via a sol-gel polymerization process using nitrobenzoxadiazole (NBD) as fluorescent signal source. The ratio of two fluorescence peak emission intensities of NBD and PC was utilized to determine the concentration of PC, which could effectively reduce the background interference and fluctuation of diverse conditions. As a result, this sensor obtained high sensitivity with a low detection limit of 0.14 nM within 6 min, and excellent recognition specificity for PC over its analogues with a high imprinting factor of 9.1. Furthermore, the sensor attained high recoveries in the range of 93.8-110.2% at three spiking levels of PC, with precisions below 4.7% in seawater and lake water samples. The developed sensor strategy demonstrated simplicity, reliability, rapidity, high selectivity and high sensitivity, proving to be a feasible way to develop high efficient fluorescence sensors and thus potentially applicable for ultratrace analysis of complicated matrices.


Subject(s)
Cyanobacteria/isolation & purification , Fluorescence Resonance Energy Transfer/methods , Molecular Imprinting/methods , Phycocyanin/analysis , Polymers/chemistry , Water Pollutants, Chemical/analysis , Cyanobacteria/metabolism , Environmental Monitoring/instrumentation , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
20.
Microb Ecol ; 71(4): 860-72, 2016 May.
Article in English | MEDLINE | ID: mdl-26677166

ABSTRACT

The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.


Subject(s)
Microcystis/drug effects , Microcystis/metabolism , Mutation , Sulfides/pharmacology , Carotenoids/analysis , Carotenoids/metabolism , Chlorophyll/metabolism , Fresh Water/microbiology , Microcystis/genetics , Microcystis/ultrastructure , Microscopy, Electron, Transmission , Oxygen/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Phycocyanin/analysis , Phycoerythrin/analysis , Spain
SELECTION OF CITATIONS
SEARCH DETAIL