Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 628
Filter
1.
Environ Pollut ; 360: 124656, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39116927

ABSTRACT

The aim of this study was to investigate the presence of alien phytoplankton species transported through ballast water of ships that docked on the Amazon coast. Phytoplankton samples were collected from 25 ships between 2012 and 2014, revealing 215 identified species, mostly comprising oceanic planktonic marine species. However, several coastal and freshwater species not yet documented on the Maranhão coast were also observed. The identification of several coastal and freshwater species not yet recorded for Amazonian environments in the ballast water of the Ponta da Madeira Maritime Terminal (TMPM), as well as toxic microalgae genera such as the dinoflagellates Alexandrium and Gymnodinium and of some diatom species from the genus Pseudo-nitzchia, raises concerns regarding the possibility of introducing species. This indicates that ballast water can be responsible for the introduction of alien species in Amazonian aquatic environments, thereby highlighting the TMPM as a critical hotspot in the Amazonian region.


Subject(s)
Environmental Monitoring , Introduced Species , Phytoplankton , Brazil , Ships , Diatoms , Dinoflagellida , Seawater/chemistry , Fresh Water
2.
Ecotoxicology ; 33(8): 884-892, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38992211

ABSTRACT

We experimentally tested the effects of different concentrations of cigarette butt leachate on freshwater phytoplankton chlorophyll-a, species richness, cell density, and community composition. For this, we sampled the phytoplankton from a eutrophic lake and acclimated it for 24 h in microcosms. We then conducted the experiment in microcosms maintained for 96 h. The experiment consisted of four treatments: control and leachate from 1 butt L-1 (T1), 5 butts L-1 (T5), and 10 butts L-1 (T10), which were prepared by diluting a stock solution of leachate from 50 butts L-1. We found that algal chlorophyll-a content was not affected by different leachate concentrations. In contrast, phytoplankton cell density decreased in a dose-dependent manner as concentrations of the leachate increased. Similarly, the number of species was highest in the control group relative to all other treatments, with T1 and T5 showing higher species richness than T10. Additionally, the exposition to different concentrations of the leachate impacted community composition across all treatments in comparison to the control group. Our results suggest that cigarette butt leachate alters the number of cells and species, as well as the distribution of abundance, without necessarily reducing chlorophyll-a concentrations. Our findings indicate that to gain a comprehensive understanding of the effects of cigarette butt leachate on freshwater ecosystems, it is essential to evaluate more realistic scenarios that incorporate aquatic communities, rather than isolated species.


Subject(s)
Phytoplankton , Water Pollutants, Chemical , Phytoplankton/drug effects , Water Pollutants, Chemical/toxicity , Chlorophyll A , Fresh Water , Lakes , Chlorophyll , Tobacco Products
3.
An Acad Bras Cienc ; 96(3): e20220870, 2024.
Article in English | MEDLINE | ID: mdl-38958359

ABSTRACT

The littoral zone is an essential compartment for lake biota because of its high productivity and diversity. Moreover, phytoplankton is expected to have non-equilibrium dynamics on it. The study's aimed to explore phytoplankton in the littoral zone of a shallow lake over a short-term scale. Daily sampling was conducted for 25 consecutive summer days in 2016, at two marginal points of a continuously warm, polymictic, and oligo-mesotrophic subtropical lake (Lake Mangueira, Brazil). Cyanobacteria and Chlorophyta contributed 86% of total biomass. We observed high variability in phytoplankton structure, with species turnover over diel cycles. Redundancy analysis indicated spatial differentiation for phytoplankton structure in relation to abiotic conditions. Nutrient dynamics and humic substances were significant drivers for phytoplankton variability. Phytoplankton was positively correlated with SRP and negatively with humic substances. Our results showed a non- equilibrium state for the littoral phytoplankton of Lake Mangueira, given the high variability of abiotic conditions, even at short distances. Due to its high temporal and spatial variability, the littoralzone seems to contribute to the recruitment and maintenance of phytoplankton biodiversity in shallow lakes. Further studies should consider the functional attributes of species and the complex biological interactions of phytoplankton and macrophytes along the littoral zone.


Subject(s)
Biomass , Lakes , Phytoplankton , Seasons , Phytoplankton/classification , Brazil , Biodiversity , Cyanobacteria/classification , Environmental Monitoring/methods , Chlorophyta/classification
4.
An Acad Bras Cienc ; 96(suppl 2): e20230744, 2024.
Article in English | MEDLINE | ID: mdl-39016362

ABSTRACT

The Brazil-Malvinas Confluence (BMC) is a significant biological frontier where distinct currents meet, fostering optimal conditions for phytoplankton development. In this study we tested the hypothesis that eddys promote an increase in phytoplankton biomass at the Brazil-Malvinas Confluence (BMC), altering species diversity. Phytoplankton were collected with Niskin bottles and nutrient concentrations assessed at two depths (Surface and Deep Chlorophyll Maximum Layer - DCML) in areas outside and under the influence of Cold-Core (CCE) and Warm-Core (WCE) Eddies. Environmental variables were determined in situ using a CTD profiler. Four regions were separated based on environmental variables and phytoplankton species, namely, the Brazil Current (BC), Malvinas Current (MC), CCE, and WCE. Species diversity was higher in the eddies. The conditions of the WCE were different from those of the CCE, with low temperature and salinity and high cell density values in the latter. The phylum Bacillariophyta was predominant in terms of species richness in all regions and was responsible for the higher cell density in the MC, while dinoflagellates were dominant in the BC and eddies. Therefore, eddy activity alters the structure, diversity and biomass of the phytoplankton community in the BMC.


Subject(s)
Biodiversity , Biomass , Phytoplankton , Phytoplankton/classification , Phytoplankton/growth & development , Brazil , Seasons , Chlorophyll/analysis , Water Movements , Temperature
5.
Environ Sci Pollut Res Int ; 31(30): 43309-43322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898349

ABSTRACT

Eutrophication has become a recurrent concern in reservoirs worldwide. This problem is intensified in tropical semiarid regions, where the reservoirs have high seasonal and annual variability of water level and volume. Therefore, an extensive understanding of the diel variation of water quality key-parameters can help improve management of such reservoirs. This study focuses on Castanhão reservoir with the largest multipurpose dam in the Brazilian semiarid. Its main water uses are irrigation, fish farming, and human supply. The reservoir faced a decline in water quality due to a prolonged drought period. While previous research has predominantly emphasized the seasonal dynamics of thermal and chemical stratification, our investigation provides diel assessments of multiple water quality parameters, including nutrient concentrations and phytoplankton abundance. Our primary objective is to compare seasonal and diel variations in stratification and nutrient distribution within the reservoir. Key findings reveal a diel cycle of thermal stratification, primarily during dry season, driven by higher wind speeds. This is corroborated by a significant negative correlation between wind speed and the relative water column stability index. In contrast, during the rainy season, the reservoir experiences continuous thermal stratification due to inflowing water being warmer than the reservoir's water temperature. Notably, a significant negative correlation between total phosphorus and chlorophyll-a, along with a two-fold increase of this nutrient throughout the day during the rainy season, underscores the influence of the phytoplankton community dynamics on the diel nutrient variation. Chemical stratification of dissolved oxygen occurred during dry and rainy seasons, indicating that even during the dry season, where there is no significant inflow, the internal nutrient loading can also significantly impact the water quality of a reservoir. This study advances the understanding of diel water quality dynamics in tropical semiarid reservoirs, shedding light on both climatic and anthropogenic influences on water resources.


Subject(s)
Phytoplankton , Seasons , Water Quality , Brazil , Environmental Monitoring , Tropical Climate , Water Supply , Eutrophication
6.
Oecologia ; 205(2): 271-279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822197

ABSTRACT

Concordance occurs when two or more biological groups are correlated to each other. Examining the degree of concordance between communities has been a central goal in ecology. However, few studies have assessed the levels of community concordance at large spatial scales. We used a dataset obtained by the National Lakes Assessment (United States Environmental Protection Agency) to evaluate whether (i) the levels of concordance between aquatic communities were higher at the continental scale than within individual ecoregions of the United States and (ii) whether the levels of concordance between phytoplankton and zooplankton were higher than those between the plankton and macroinvertebrates communities. At the continental scale, the levels of concordance between different pairs of aquatic communities were low and did not exceed those within the ecoregions. Furthermore, levels of concordance varied considerably among ecoregions. Our results suggest that interactions between aquatic communities likely determined concordance patterns; however, the expectation of higher levels of concordance between the phytoplankton and zooplankton communities than between them and the macroinvertebrates community was not supported. The consistently low and variable levels of concordance suggest that using surrogate groups is not recommendable for monitoring lakes in the United States, both at the continental and regional scales. According to our results, the prospect of using the surrogacy approach was low even for aquatic communities that are highly interactive or driven by similar environmental factors.


Subject(s)
Lakes , Phytoplankton , Zooplankton , United States , Animals , Invertebrates , Ecosystem
7.
PeerJ ; 12: e17393, 2024.
Article in English | MEDLINE | ID: mdl-38799067

ABSTRACT

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Subject(s)
Carbon Dioxide , Lakes , Seasons , Lakes/chemistry , Carbon Dioxide/analysis , Carbon Dioxide/metabolism , Spain , Environmental Monitoring/methods , Carbon Cycle , Phytoplankton/metabolism
8.
Sci Rep ; 14(1): 12527, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822023

ABSTRACT

Invasive species are often generalists that can take advantage of formerly unexploited resources. The existence of such vacant niches is more likely in species-poor systems like the Baltic Sea. The suspension feeding wedge clam, Rangia cuneata, native to estuarine environments in the Gulf of Mexico, was sighted for the first time in the southeastern Baltic in 2010 and a few years later in the northern Baltic along the Swedish coast. To explore possible competition for food resources between R. cuneata and the three native clams inhabiting Baltic shallow soft bottoms, stable isotope and fatty acid analyses were conducted. There was no overlap between R. cuneata and any of the native species in either stable isotope or fatty acid niches. This suggests efficient partitioning of resources; multivariate analyses indicate that separation was driven mainly by δ13C and by fatty acids reflecting diatoms and cyanobacteria, respectively (e.g. 16:1ω7 and 18:3ω3). R. cuneata reflected seasonal variation in phytoplankton more than other clams reflecting higher trophic plasticity. In conclusion, the addition of R. cuneata to the Baltic shallow soft bottoms suggests the existence of a vacant trophic niche in these sediment habitats, however the long-term effects on other species and nutrient cycling requires further studies focusing on the population dynamics of R. cuneata and its impact on the Baltic Sea ecosystem.


Subject(s)
Bivalvia , Ecosystem , Geologic Sediments , Animals , Geologic Sediments/analysis , Fatty Acids/analysis , Fatty Acids/metabolism , Carbon Isotopes/analysis , Introduced Species , Seasons , Food Chain , Oceans and Seas , Phytoplankton
9.
Sci Total Environ ; 928: 172374, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38615760

ABSTRACT

The Reloncaví estuary in southern Chile is famous for its aquaculture. However, recurring harmful algal blooms have adversely affected mussel production. Therefore, regular monitoring of algal toxins is urgently needed to better understand the contamination status of the estuary. In this study, we quantified 15 types of lipophilic shellfish toxins in Metri Bay in the Reloncaví estuary on a biweekly basis for 4 years. We identified algal species using microscopy and metabarcoding analysis. We also measured water temperature, salinity, chlorophyll-a, and dissolved oxygen to determine the potential relationships of these parameters with algal toxin production. Our results revealed the presence of a trace amount of pectenotoxin and the causal phytoplankton Dinophysis, as well as yessotoxin and the causal phytoplankton Protoceratium. Statistical analysis indicated that fluctuations in water temperature affected the detection of these toxins. Additionally, metabarcoding analysis detected the highly toxic phytoplankton Alexandrium spp. in some samples. Although our results suggest that the level of lipophilic shellfish toxins in Metri Bay during the study period was insignificantly low using our current LC-MS method, the confirmed presence of highly toxic algae in Metri Bay raises concerns, given that favorable environmental conditions could cause blooms.


Subject(s)
Environmental Monitoring , Estuaries , Harmful Algal Bloom , Marine Toxins , Phytoplankton , Chile , Marine Toxins/analysis , Animals , Dinoflagellida
10.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
11.
An Acad Bras Cienc ; 96(1): e20220413, 2024.
Article in English | MEDLINE | ID: mdl-38597497

ABSTRACT

This study aimed to analyze the application of the Phytoplankton Community Index-PCI and Functional Groups-FG in determining the water quality of the Guamá River (Pará, Amazônia, Brazil). Samplings occurred monthly for analyses of phytoplankton and physical and chemical parameters, for two years, at the station where water was collected for human supply consumption. Seasonality influenced electrical conductivity, total suspended solids, dissolved oxygen, transparency, winds, true color, and N-ammoniacal. The ebb tide showed high turbidity and suspended solids. The density varied seasonally with the highest values occurring in September and December (61.1 ind mL-1 and 60.2 ind mL-1, respectively). Chlorophyll-a was more elevated in December (21.0 ± 4.7 µg L-1) and chlorophyll-c higher in relation to clorophyll- b indicated the dominance of diatoms. Functional Group P prevailed in the study months. Through the PCI índex the waters of Guamá River varied from reasonable to excellent and the TSI ranged from oligo to mesotrophic. The use of Functional Groups proved to be a promising tool in the determination of water quality since it covered the most abundant species in the Environment, but the PCI is not adequate to characterize Amazonian white-waters rivers, which have diatoms as the leading dominant group.


Subject(s)
Diatoms , Percutaneous Coronary Intervention , Humans , Phytoplankton , Rivers/chemistry , Brazil , Chlorophyll/analysis , Seasons , Environmental Monitoring
12.
Glob Chang Biol ; 30(3): e17238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38497342

ABSTRACT

The Western Antarctic Peninsula (WAP) experiences one of the highest rates of sea surface warming globally, leading to potential changes in biological communities. Long-term phytoplankton monitoring in Potter Cove (PC, King George Island, South Shetlands) from the 1990s to 2009 revealed consistently low biomass values, and sporadic blooms dominated by cold-water microplankton diatoms. However, a significant change occurred between 2010 and 2020, marked by a notable increase in intense phytoplankton blooms in the region. During this period, the presence of a nanoplankton diatom, Shionodiscus gaarderae, was documented for the first time. In some instances, this species even dominated the blooms. S. gaarderae is recognized for producing blooms in temperate waters in both hemispheres. However, its blooming in the northern Southern Ocean may suggest either a recent introduction or a range shift associated with rising temperatures in the WAP, a phenomenon previously observed in experimental studies. The presence of S. gaarderae could be viewed as a warning sign of significant changes already underway in the northern WAP plankton communities. This includes the potential replacement of microplankton diatoms by smaller nanoplankton species. This study, based on observations along the past decade, and compared to the previous 20 years, could have far-reaching implications for the structure of the Antarctic food web.


Subject(s)
Diatoms , Phytoplankton , Antarctic Regions , Plankton , Biomass
13.
Sci Rep ; 14(1): 6995, 2024 03 24.
Article in English | MEDLINE | ID: mdl-38523196

ABSTRACT

The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species' biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications.


Subject(s)
Ecosystem , Phytoplankton , Chile , Food Chain , Biomass
14.
Sci Total Environ ; 924: 171621, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38467252

ABSTRACT

A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.


Subject(s)
Chlorophyta , Cyanobacteria , Phytoplankton , Ecosystem , Carbon Dioxide , Biomass , Eutrophication , Lakes
15.
Sci Total Environ ; 926: 171663, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38485007

ABSTRACT

The ecological attributes of phytoplankton in freshwater environments are strongly influenced by limnological factors and temporal variability. In this study, we investigated the importance of local environmental and regional (spatial and landscape) predictors in structuring stream phytoplankton from the perspective of metacommunity theory. We seasonally sampled phytoplankton and abiotic variables from nine streams in three subtropical basins. Variation partitioning was used to investigate the influence of environmental, landscape, and spatial predictors on phytoplankton biovolume. Independent of the hydrological period (dry and rainy), the phytoplankton communities were predominantly structured by local environmental factors. In addition, the different land uses considered (landscape) showed weak significance during the dry season, with emphasis on the rural category. Biovolume values remained low, and diatoms and green algae were the most representative groups. Our findings are consistent with recognized ecological patterns for potamoplankton and emphasize local environmental filters as a fundamental regulator of phytoplankton biodiversity in lotic environments.


Subject(s)
Chlorophyta , Diatoms , Phytoplankton , Brazil , Biodiversity , Seasons , Ecosystem , Environmental Monitoring
16.
Environ Sci Pollut Res Int ; 31(15): 22994-23010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413525

ABSTRACT

The historical impacts of eutrophication processes were investigated in six subtropical reservoirs (São Paulo, Brazil) using a paleolimnological approach. We questioned whether the levels of pigment indicators of algal biomass could provide information about trophic increase and whether carotenoid pigments could offer additional insights. The following proxies were employed: organic matter, total phosphorus, total nitrogen, photosynthetic pigments (by high-performance liquid chromatography), sedimentation rates, and geochronology (by 210 Pb technique). Principal component analysis indicated a gradient of eutrophication. In eutrophic reservoirs (e.g., Rio Grande and Salto Grande), levels of lutein and zeaxanthin increased over time, suggesting growth of Chlorophyta and Cyanobacteria. These pigments were significantly associated with algal biomass, reflecting their participation in phytoplankton composition. In mesotrophic reservoirs, Broa and Itupararanga, increases and significative linear correlations (r > 0.70) between pigments and nutrients are mainly linked to agricultural and urban activities. In the oligotrophic reservoir Igaratá, lower pigment and nutrient levels reflected lesser human impact and good water quality. This study underscores eutrophication's complexity across subtropical reservoirs. Photosynthetic pigments associated with specific algal groups were informative, especially when correlated with nutrient data. The trophic increase, notably in the 1990s, may have been influenced by neoliberal policies. Integrated pigment and geochemical analysis offers a more precise understanding of eutrophication changes and their ties to human factors. Such research can aid environmental monitoring and sustainable policy development.


Subject(s)
Chlorophyll , Water Quality , Humans , Chlorophyll/analysis , Brazil , Phytoplankton , Environmental Monitoring , Eutrophication , Phosphorus/analysis , Nitrogen/analysis , China
17.
Mar Pollut Bull ; 201: 116173, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382324

ABSTRACT

Harmful algal bloom (HAB) events in front of Pisco River, inside Paracas Bay and Lagunillas inlet on the southern coast of Peru was identified from a satellite index (IOPifa) generated with daily high-resolution satellite data of phytoplankton absorption (aphy,GIOP) and non-algal detrital material plus CDOM (adCDOM,GIOP) from the Generalized Inherent Optical Properties (GIOP) model of Modis-Aqua, Viirs-Snpp and Viirs-Jpss1 satellites were used. Phytoplankton density field data sampling from HAB's monitoring programs of IMARPE of 2018 and 2019 were used to validate and identify the extent and spatio-temporal variability of these events. The satellite index (IOPifa) identified for Modis-Aqua 9 active HABs, 8 events in final conditions and 6 events that do not represent HAB conditions, while for Viirs-Snpp found 14 active HABs, 7 events in decaying bloom conditions and 13 events that do not represent HABs; and for Viirs-Jpss1 the index identified 7 active events, 14 in final bloom conditions and 6 that do not represent HABs conditions. The one-factor anova model was applied (p-value = 0.32 > 0.05), indicating that there is no evidence of a difference in the population means of the indices for each sensor. Subsequently, the pairwise multiple comparisons analysis with a 95 % confidence level of Tukey's test confirmed that there are no significant differences in the satellite index value, the differences could be associated with the spectral characteristics of the cell density of the species community and the oceanographic and environmental conditions. The spatial overlap between the in situ harmful algal blooms areas and the calculated satellite index, shows the capacity of the IOP satellite data for the HABs detection. However, it was also evidenced that some HAB events with high phytoplankton cell density had low IOPifa values, while other events with lower cell density were easily identified by the satellite index. This would indicate the ability of the ocean inherent optical properties to differentiate the phytoplankton types that cause algal blooms.


Subject(s)
Bays , Harmful Algal Bloom , Peru , Phytoplankton
18.
Environ Sci Pollut Res Int ; 31(3): 3754-3762, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091224

ABSTRACT

Insecticides are widely used for pest control and frequently reach aquatic systems, imposing a risk to the biota. In this work, the effect of environmental concentrations of bifenthrin on the grazing capacity of Simocephalus vetulus (Cladocera) and Argyrodiaptomus falcifer (Copepoda) on phytoplankton was evaluated. Fifteen microcrustacean individuals and a natural phytoplankton assemblage dominated by Cyanobacteria were exposed during 46 h to three concentrations of bifenthrin (C0 0 µg L-1, C1 0.02 µg L-1, and C2 0.05 µg L-1). A significant decrease in both microcrustaceans grazing rates on total phytoplankton was observed in C2 compared to C0 and C1. The filtration rate (ml ind-1 h-1) of S. vetulus decreased significantly for the cyanobacteria Anabaenopsis arnoldii, Dolichospermum circinale, and Glaucospira sp. in C2 compared to C0 and C1. The ingestion rate (org ind-1 h-1) of A. falcifer decreased significantly in C1 and C2 compared to C0 only for A. arnoldii. Regarding phytoplankton morphological groups, the filtration rate of S. vetulus decreased in C1 and C2 compared to C0 for Colonies and Coenobiums in C2 concerning C0 and C1 for Filaments and in C2 compared to C0 for Silicified. For A. falcifer, the ingestion rate was reduced in C2 compared to C0 for Silicified, Flagellated, and Sessile. The results showed that bifenthrin affected both microcrustaceans grazing capacity on phytoplankton, especially at the highest insecticide concentration.


Subject(s)
Cladocera , Copepoda , Cyanobacteria , Insecticides , Pyrethrins , Humans , Animals , Phytoplankton , Zooplankton , Insecticides/pharmacology
19.
Mar Pollut Bull ; 194(Pt B): 115388, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37595454

ABSTRACT

The influence of the phytoplankton community in the light absorption budget was quantified in coastal waters of the North region of the San Jorge Gulf (Argentinian Patagonia). The phytoplanktonic composition and their absorption spectra were determined. Nanoflagellates and diatoms were the dominant groups. The toxigenic dinoflagellate Dinophysis acuminata was recorded in all the sampling sites. The optical characterization of the particulate material showed that 60 % of the absorption at 443 nm and 88 % of absorption at 675 nm was due to phytoplankton. The contributions of phytoplankton to total absorption at 443 nm wavelengths reached 50 %. The absorption by chromophoric dissolved organic matter (CDOM) and non-algal particles (NAP) was predominant in turbulent waters (>60 %). This study shows the influence of submesoscale physical-biological interactions in the light absorption budget. The field absorption spectra of active optical components are of interest in the assessment and development of regional ocean color satellite algorithms.


Subject(s)
Diatoms , Dinoflagellida , Phytoplankton , Algorithms , Dissolved Organic Matter
20.
Ecol Lett ; 26(6): 919-928, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37006190

ABSTRACT

Pest outbreaks, harmful algal blooms and population collapses are extreme events with critical consequences for ecosystems. Therefore, understanding the ecological mechanisms underlying these extreme events is crucial. We evaluated theoretical predictions on the size scaling and variance of extreme population abundance by combining (i) the generalized extreme value (GEV) theory and (ii) the resource-limited metabolic restriction hypothesis for population abundance. Using the phytoplankton data from the L4 station in the English Channel, we showed a negative size scaling of the expected value of maximal density, whose confidence interval included the predicted metabolic scaling (α = -1) supporting theoretical predictions. The role of resources and temperature in the distribution of the size-abundance pattern and residuals was well characterized by the GEV distribution. This comprehensive modelling framework will allow to elucidate community structure and fluctuations and provide unbiased return times estimates, thereby improving the prediction accuracy of the timing of the population outbreaks.


Subject(s)
Ecosystem , Phytoplankton , Population Density , Body Size , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL