Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.365
Filter
1.
Cell Mol Life Sci ; 81(1): 413, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365457

ABSTRACT

The intricate connection between the gut and the brain involves multiple routes. Several viral families begin their infection cycle in the intestinal tract. However, amongst the long list of viral intestinal pathogens, picornaviruses, and astroviruses stand out for their ability to transition from the intestinal epithelia to central or peripheral nervous system cells. In immunocompromised, neonates and young children, these viral infections can manifest as severe diseases, such as encephalitis, meningitis, and acute flaccid paralysis. What confers this remarkable plasticity and makes them efficient in infecting cells of the gut and the brain axes? Here, we review the current understanding of the virus infection along the gut-brain axis for some enteric viruses and discuss the molecular mechanisms of their attenuation.


Subject(s)
Picornaviridae , Humans , Animals , Picornaviridae/physiology , Brain/virology , Astroviridae/genetics , Astroviridae/physiology , Enterovirus Infections/virology , Picornaviridae Infections/virology
2.
J Med Virol ; 96(9): e29902, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228345

ABSTRACT

The whole-genome sequence (WGS) analysis of Aichivirus (AiV) identified in Korea was performed in this study. Using Sanger and Nanopore sequencing, the 8228-nucleotide-long genomic sequence of AiV (OQ121963) was determined and confirmed to belong to genotype A. The full-length genome of OQ121963 consisted of a 7296 nt open reading frame (ORF) that encodes a single polyprotein, and 5' UTR (676 nt) and 3' UTR (256 nt) at 5' and 3' ends, respectively. The ORF consisted of leader protein (L), structural protein P1 (VP0, VP1, and VP3), and nonstructural protein P2 (2A, 2B, and 2C) and P3 (3A, 3B, 3C, and 3D). The secondary structure analysis of the 5' UTR identified only stem-loop C (SL-C) and not SL-A and SL-B. The variable region of the AiV genome was analyzed by MegAlign Pro and reconfirmed by SimPlot analysis using 16 AiV whole genomes known to date. Among the entire regions, structural protein region P1 showed the lowest amino acid identity (96.07%) with reference sequence AB040749 (originated in Japan; genotype A), while the highest amino acid identity (98.26%) was confirmed in the 3D region among nonstructural protein region P2 and P3. Moreover, phylogenetic analysis of the WGS of OQ121963 showed the highest homology (96.96%) with JX564249 (originated in Taiwan; genotype A) and lowest homology (90.14%) with DQ028632 (originated in Brazil; genotype B). Therefore, the complete genome characterization of OQ121963 and phylogenetic analysis of the AiV conducted in this study provide useful information allowing to improve diagnostic tools and epidemiological studies of AiVs.


Subject(s)
Genome, Viral , Genotype , Kobuvirus , Open Reading Frames , Phylogeny , Whole Genome Sequencing , Genome, Viral/genetics , Republic of Korea , Humans , Kobuvirus/genetics , Kobuvirus/classification , Kobuvirus/isolation & purification , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology , 5' Untranslated Regions/genetics , Adult , RNA, Viral/genetics , 3' Untranslated Regions/genetics
3.
J Med Virol ; 96(9): e29833, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233489

ABSTRACT

Rhinoviruses (RVs) are a leading cause of acute respiratory infections (ARI) in children. The relationship between RV viral loads (VL), RV/viral-co-detections and disease severity, is incompletely understood. We studied children and adolescents ≤21 years with RV-ARI that were identified as inpatients or outpatients using a PCR panel from 2011-2013. RV VL were stratified according to cycle threshold (CT) values in high (≤25), intermediate (26-32) and low (>32). Adjusted analyses were performed to assess the role RV VL and RV/viral codetections on hospital admission, oxygen requirement, PICU care, and length of stay. Of 1,899 children with RV-ARI, 78% had chronic comorbidities and 24% RV/viral co-detections. Single RV vs RV/viral co-detections was associated with higher VL (24.74 vs 26.62 CT; p = 0.001) and older age (14.9 vs 9.5 months; p = 0.0001). Frequency of RV/viral co-detections were inversely proportional to RV loads: 32% with low; 28% with intermediate, and 19% with high VL, p = 0.0001. Underlying conditions were independently associated with all clinical outcomes, high VL with PICU care, and single RV-ARI with higher odds of hospitalization. In summary, single RV vs RV/viral co-detections were associated with higher VL and older age. Underlying diseases, rather than RV loads or RV/viral co-detections, consistently predicted worse clinical outcomes.


Subject(s)
Coinfection , Comorbidity , Picornaviridae Infections , Respiratory Tract Infections , Rhinovirus , Severity of Illness Index , Viral Load , Humans , Rhinovirus/genetics , Rhinovirus/isolation & purification , Male , Female , Child , Child, Preschool , Adolescent , Infant , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Coinfection/virology , Coinfection/epidemiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Hospitalization/statistics & numerical data , Young Adult
4.
Sci Rep ; 14(1): 22298, 2024 09 27.
Article in English | MEDLINE | ID: mdl-39333386

ABSTRACT

The epidemiology and circulation patterns of various rhinovirus types within populations remains under-explored. We generated 803 VP4/VP2 gene sequences from rhinovirus-positive samples collected from acute respiratory illness (ARI) patients, including both in-patient and outpatient cases, between 1st January and 31st December 2014 from eleven surveillance sites across Kenya and used phylogenetics to characterise virus introductions and spread. RVs were detected throughout the year, with the highest detection rates observed from January to March and June to July. We detected a total of 114 of the 169 currently classified types. Our analysis revealed numerous virus introductions into Kenya characterized by local expansion and extinction, and extensive spatial mixing of types within the country due to the widespread transmission of the virus after an introduction. This work demonstrates that in a single year, the circulation of rhinovirus in Kenya was characterized by substantial genetic diversity, multiple introductions, and extensive geographical spread.


Subject(s)
Phylogeny , Picornaviridae Infections , Rhinovirus , Spatio-Temporal Analysis , Kenya/epidemiology , Rhinovirus/genetics , Rhinovirus/classification , Rhinovirus/isolation & purification , Humans , Retrospective Studies , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Genetic Variation , Male , Female
5.
Emerg Infect Dis ; 30(10): 2211-2214, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320235

ABSTRACT

Fort Sherman virus (FSV) was isolated in Panama in 1985 from a US soldier. We report a case of human FSV infection in a febrile patient from northern coastal Peru in 2020. FSV infections spanning ≈35 years and a distance of 2,000 km warrant diagnostics, genomic surveillance, and investigation of transmission cycles.


Subject(s)
Phylogeny , Humans , Peru/epidemiology , Male , Adult , Picornaviridae Infections/epidemiology , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , History, 21st Century
6.
Sci Rep ; 14(1): 22575, 2024 09 29.
Article in English | MEDLINE | ID: mdl-39343789

ABSTRACT

DHAV-1 is a highly infectious pathogen that can cause acute hepatitis in ducklings. MicroRNA (miRNA) plays an essential regulatory role in virus response. We characterized and compared miRNA and mRNA expression profiles in duck embryonic fibroblasts (DEF) and the liver of ducklings infected with DHAV-1. DHAV-1 infected DEF was divided into infection group (D group) and blank group (M group), and DHAV-1 infected duckling group was divided into infection group (H group) and blank group (N group). D vs. M have 130 differentially expressed (DE) miRNA (DEM) and 2204 differentially expressed (DE) mRNA (DEG), H vs. N have 72 DEM and 1976 DEG. By the intersection of D vs. M and H vs. N comparisons, 15 upregulated DEM, 5 downregulated DEM, 340 upregulated DEG and 50 downregulated DEG were found with both in vivo and in vitro DHAV-1 infection. In particular, we identified the same DE miRNA target genes and functional annotations of DE mRNA. We enriched with multiple gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, which may have important roles in viral virulence, host immunity, and metabolism. We selected miR-155, which is co-upregulated, and found that miR-155 targets SOCS1 to inhibit DHVA-1 replication.


Subject(s)
Ducks , Fibroblasts , MicroRNAs , Poultry Diseases , RNA, Messenger , Animals , Ducks/virology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fibroblasts/metabolism , Fibroblasts/virology , Poultry Diseases/virology , Poultry Diseases/genetics , Poultry Diseases/metabolism , Gene Expression Profiling , Picornaviridae Infections/virology , Picornaviridae Infections/genetics , Picornaviridae Infections/veterinary , Picornaviridae Infections/metabolism , Mardivirus/genetics , Liver/metabolism , Liver/virology , Host-Pathogen Interactions/genetics , Gene Expression Regulation
7.
Virus Res ; 349: 199461, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39278352

ABSTRACT

Human parechovirus (HPeV) is a common virus that can cause severe infections in newborns. Due to the limited knowledge of the prevalence of HPeV in different cities in China and the unknown association between HPeV infection and clinical characteristics of newborns, this research investigated the epidemiological and clinical characteristics of HPeV infection in hospitalized neonates in Changsha. From August to October 2023, 145 anal swab samples from 96 newborns and 38 pharyngeal swab samples from 33 newborns in the neonatal intensive care unit (NICU) were collected. The prevalence of HPeV was detected by reverse transcription-polymerase chain reaction (RT-PCR). The genomes of HPeV were sequenced and the viral protein 1 (VP1) region was used for genotyping. Phylogenetic analysis and recombination analysis of HPeV genome were performed. Finally, HPeV was detected in 10 out of 44 patients in October, all of them were HPeV-1. The sequenced 4 genomes of HPeV showed high genetic diversity with known strains. Additionally, a HPeV-1 recombinant strain was detected. Compared with HPeV negative patients, HPeV patients had higher prevalence of abdominal pain and diarrhea, intracranial hemorrhage, and purulent meningitis. Compared with HPeV negative patients, HPeV patients had higher peripheral blood lymphocytes, albumin, globulin, pH and lower peripheral blood neutrophils and hemoglobin. HPeV is an important viral cause of newborn infections and appears to be increasing in prevalence in recent years. Characteristic clinical pictures exist in HPeV infections, and further research is needed to accumulate more cases to obtain a comprehensive understanding of HPeV infections.


Subject(s)
Genetic Variation , Genotype , Parechovirus , Phylogeny , Picornaviridae Infections , Parechovirus/genetics , Parechovirus/classification , Parechovirus/isolation & purification , Humans , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Infant, Newborn , China/epidemiology , Male , Female , Prevalence , Genome, Viral
8.
Vet Res ; 55(1): 110, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300570

ABSTRACT

Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.


Subject(s)
Ducks , Hepatitis Virus, Duck , Picornaviridae Infections , Poultry Diseases , RNA-Binding Proteins , Virus Replication , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Hepatitis Virus, Duck/physiology , Hepatitis Virus, Duck/genetics , Poultry Diseases/virology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Hepatitis, Viral, Animal/virology , Protein Biosynthesis
9.
J Vet Sci ; 25(5): e59, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39237364

ABSTRACT

IMPORTANCE: Despite advancements in herd management, feeding, and pharmaceutical interventions, neonatal calf diarrhea (NCD) remains a major global health concern. Bacteria, viruses, and parasites are the major contributors to NCD. Although several pathogens have been identified in the Republic of Korea (ROK), the etiological agents of numerous NCD cases have not been identified. OBJECTIVE: To identify, for the first time, the prevalence and impact of Boosepivirus (BooV) on calf diarrhea in the ROK. METHODS: Here, the unknown cause of calf diarrhea was determined using metagenomics We then explored the prevalence of certain pathogens, including BooV, that cause NCD. Seventy diarrheal fecal samples from Hanwoo (Bos taurus coreanae) calves were analyzed using reverse transcriptase and quantitative real-time polymerase chain reaction for pathogen detection and BooV isolate sequencing. RESULTS: The complete genome of BooV was detected from unknown causes of calf diarrhea. And also, BooV was the most frequently detected pathogen (35.7%) among 8 pathogens in 70 diarrheic feces from Hanwoo calves. Co-infection analyses indicated that most BooV-positive samples were solely infected with BooV, indicating its significance in NCD in the ROK. All isolates were classified as BooV B in phylogenetic analysis. CONCLUSIONS AND RELEVANCE: This is the first study to determine the prevalence and molecular characteristics of BooV in calf diarrhea in the ROK, highlighting the potential importance of BooV as a causative agent of calf diarrhea and highlighting the need for further research on its epidemiology and pathogenicity.


Subject(s)
Cattle Diseases , Diarrhea , Phylogeny , Picornaviridae Infections , Picornaviridae , Animals , Cattle , Republic of Korea/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Picornaviridae/isolation & purification , Picornaviridae/genetics , Picornaviridae/classification , Diarrhea/veterinary , Diarrhea/virology , Diarrhea/epidemiology , Prevalence , Feces/virology , Genome, Viral , Animals, Newborn
10.
Vet Res ; 55(1): 115, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334325

ABSTRACT

Senecavirus A (SVA), an emerging virus that causes blisters on the nose and hooves, reduces the production performance of pigs. RSAD2 is a radical S-adenosylmethionine (SAM) enzyme, and its expression can suppress various viruses due to its broad antiviral activity. However, the regulatory relationship between SVA and RSAD2 and the mechanism of action remain unclear. Here, we demonstrated that SVA infection increased RSAD2 mRNA levels, whereas RSAD2 expression negatively regulated viral replication, as evidenced by decreased viral VP1 protein expression, viral titres, and infected cell numbers. Viral proteins that interact with RSAD2 were screened, and the interaction between the 2 C protein and RSAD2 was found to be stronger than that between other proteins. Additionally, amino acids (aa) 43-70 of RSAD2 were crucial for interacting with the 2 C protein and played an important role in its anti-SVA activity. RSAD2 was induced by type I interferon (IFN-I) via Janus kinase signal transducer and activator of transcription (JAK-STAT), and had antiviral activity. Ruxolitinib, a JAK-STAT pathway inhibitor, and the knockdown of JAK1 expression substantially reduced RSAD2 expression levels and antiviral activity. Taken together, these results revealed that RSAD2 blocked SVA infection by interacting with the viral 2 C protein and provide a strategy for preventing and controlling SVA infection.


Subject(s)
Picornaviridae Infections , Picornaviridae , Virus Replication , Animals , Virus Replication/drug effects , Picornaviridae/physiology , Swine , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Swine Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics
11.
Arch Virol ; 169(10): 200, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285064

ABSTRACT

Novel bovine parechoviruses (Bo ParVs) were isolated from the feces of Japanese black cattle. Phylogenetic analysis revealed that the novel Bo ParVs formed an independent cluster, exhibiting 72.2-75.6% nucleotide sequence identity to previous Bo ParVs, suggesting that they represent a new genotype. Bo ParVs, including the novel Bo ParVs, shared sequence similarity with each other in the 3' untranslated region (3'UTR) and exhibited low sequence similarity (<38.9% identity) to other parechoviruses. However, a secondary structure prediction of the 3'UTR revealed that the Bo ParVs shared conserved motifs in domain 2 with parechovirus B and E, suggesting some evolutionary constrains in this region.


Subject(s)
Cattle Diseases , Feces , Parechovirus , Phylogeny , Picornaviridae Infections , Animals , Cattle , Parechovirus/genetics , Parechovirus/isolation & purification , Parechovirus/classification , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Feces/virology , Cattle Diseases/virology , 3' Untranslated Regions/genetics , Japan , Genotype , Nucleic Acid Conformation , RNA, Viral/genetics
12.
Infect Genet Evol ; 124: 105665, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39233257

ABSTRACT

BACKGROUND: Senecavirus A (SVA) is the only member of the genus Senecavirus in the family Picornaviridae, and is one of the pathogens of porcine blistering disease. SVA has been reported in the United States, Canada, China, Thailand, and Colombia. METHODS: In this study, positive SVA infection was detected by RT-PCR in sick materials collected from pig farms of different sizes in Anhui Province. RESULTS: In this study, a virulent strain of SVA was successfully obtained by viral isolation on BHK21 cells and named SVA-CH-AHAU-1. Meanwhile, a simple, rapid and accurate nano-PCR method for the detection of SVA infection was established in this study, using the recombinant plasmid pClone-SVA-3D as a template. CONCLUSIONS: The complete genome of SVA-CH-AHAU-1 is 7286 bp, including a 5' non-coding region (UTR), an open reading frame (ORF) of 6546 nucleotides, encoding 2182 amino acids (aa), and a 3' UTR with Poly(A) features, and phylogenetic analysis showed that this isolate had the highest nucleotide homology (97.9 %) with the US isolate US-15-41901SD. In this study, the virulent strain SVA-CH-AHAU-1 was found to recombine in the ORF region with isolates SVA-CH-SDGT-2017 and SVA/Canada/ON/FMA-2015-0024 T2/2015. The complete genome has been submitted to GeneBank with the accession number OM654411. In addition, our results suggest that the established nano-PCR assay can be used as an economical, reliable and sensitive method for the field diagnosis of SVA method, especially in resource-limited areas.


Subject(s)
Genome, Viral , Phylogeny , Picornaviridae Infections , Picornaviridae , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae/isolation & purification , Animals , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/diagnosis , Swine , China , Evolution, Molecular , Swine Diseases/virology
13.
Virol J ; 21(1): 193, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175061

ABSTRACT

BACKGROUND: Emerging zoonotic diseases arise from cross-species transmission events between wild or domesticated animals and humans, with bats being one of the major reservoirs of zoonotic viruses. Viral metagenomics has led to the discovery of many viruses, but efforts have mainly been focused on some areas of the world and on certain viral families. METHODS: We set out to describe full-length genomes of new picorna-like viruses by collecting feces from hundreds of bats captured in different regions of Spain. Viral sequences were obtained by high-throughput Illumina sequencing and analyzed phylogenetically to classify them in the context of known viruses. Linear discriminant analysis (LDA) was performed to infer likely hosts based on genome composition. RESULTS: We found five complete or nearly complete genomes belonging to the family Picornaviridae, including a new species of the subfamily Ensavirinae. LDA suggested that these were true vertebrate viruses, rather than viruses from the bat diet. Some of these viruses were related to picornaviruses previously found in other bat species from distant geographical regions. We also found a calhevirus genome that most likely belongs to a proposed new family within the order Picornavirales, and for which genome composition analysis suggested a plant host. CONCLUSIONS: Our findings describe new picorna-like viral species and variants circulating in the Iberian Peninsula, illustrate the wide geographical distribution and interspecies transmissibility of picornaviruses, and suggest new hosts for calheviruses.


Subject(s)
Chiroptera , Feces , Genetic Variation , Genome, Viral , Phylogeny , Picornaviridae Infections , Picornaviridae , Chiroptera/virology , Animals , Spain , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae/isolation & purification , Feces/virology , Picornaviridae Infections/transmission , Picornaviridae Infections/virology , Picornaviridae Infections/veterinary , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Zoonoses/virology , Zoonoses/transmission
14.
Cell Genom ; 4(9): 100636, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39197446

ABSTRACT

Asthma is a complex disease caused by genetic and environmental factors. Studies show that wheezing during rhinovirus infection correlates with childhood asthma development. Over 150 non-coding risk variants for asthma have been identified, many affecting gene regulation in T cells, but the effects of most risk variants remain unknown. We hypothesized that airway epithelial cells could also mediate genetic susceptibility to asthma given they are the first line of defense against respiratory viruses and allergens. We integrated genetic data with transcriptomics of airway epithelial cells subject to different stimuli. We demonstrate that rhinovirus infection significantly upregulates childhood-onset asthma-associated genes, particularly in non-ciliated cells. This enrichment is also observed with influenza infection but not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or cytokine activation. Overall, our results suggest that rhinovirus infection is an environmental factor that interacts with genetic risk factors through non-ciliated airway epithelial cells to drive childhood-onset asthma.


Subject(s)
Asthma , Epithelial Cells , Genetic Predisposition to Disease , Picornaviridae Infections , Rhinovirus , Humans , Asthma/genetics , Asthma/virology , Asthma/immunology , Epithelial Cells/virology , Epithelial Cells/metabolism , Picornaviridae Infections/genetics , Picornaviridae Infections/immunology , Picornaviridae Infections/virology , Child , Risk Factors , SARS-CoV-2 , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/virology , COVID-19/genetics , COVID-19/virology , COVID-19/immunology
15.
Viruses ; 16(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39205161

ABSTRACT

The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.


Subject(s)
High-Throughput Nucleotide Sequencing , Phylogeny , Picornaviridae , Wastewater , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae/isolation & purification , Animals , Dogs , Wastewater/virology , Capsid Proteins/genetics , Capsid Proteins/chemistry , Genome, Viral , Capsid/immunology , Capsid/chemistry , United States/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology , Dog Diseases/virology , Dog Diseases/epidemiology , Genotype , Genetic Variation
16.
Viruses ; 16(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39205256

ABSTRACT

Rhinovirus C (RV-C) infects airway epithelial cells and is an important cause of acute respiratory disease in humans. To interrogate the mechanisms of RV-C-mediated disease, animal models are essential. Towards this, RV-C infection was recently reported in wild-type (WT) mice, yet, titers were not sustained. Therefore, the requirements for RV-C infection in mice remain unclear. Notably, prior work has implicated human cadherin-related family member 3 (CDHR3) and stimulator of interferon genes (STING) as essential host factors for virus uptake and replication, respectively. Here, we report that even though human (h) and murine (m) CDHR3 orthologs have similar tissue distribution, amino acid sequence homology is limited. Further, while RV-C can replicate in mouse lung epithelial type 1 (LET1) cells and produce infectious virus, we observed a significant increase in the frequency and intensity of dsRNA-positive cells following hSTING expression. Based on these findings, we sought to assess the impact of hCDHR3 and hSTING on RV-C infection in mice in vivo. Thus, we developed hCDHR3 transgenic mice, and utilized adeno-associated virus (AAV) to deliver hSTING to the murine airways. Subsequent challenge of these mice with RV-C15 revealed significantly higher titers 24 h post-infection in mice expressing both hCDHR3 and hSTING-compared to either WT mice, or mice with hCDHR3 or hSTING alone, indicating more efficient infection. Ultimately, this mouse model can be further engineered to establish a robust in vivo model, recapitulating viral dynamics and disease.


Subject(s)
Cadherin Related Proteins , Cadherins , Mice, Transgenic , Virus Replication , Animals , Mice , Humans , Cadherins/genetics , Cadherins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Epithelial Cells/virology , Disease Models, Animal , Enterovirus/physiology , Enterovirus/genetics , Cell Line , Picornaviridae Infections/virology , Mice, Inbred C57BL , Lung/virology
17.
Viruses ; 16(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39205178

ABSTRACT

Equine rhinitis A (ERAV) and B (ERBV) viruses are respiratory pathogens with worldwide distribution. The current study aimed to determine the frequency of infection of ERAV and ERBV among horses and foals at Polish national studs, and to determine genetic variability within the viruses obtained. Virus-specific quantitative RT-PCR assays targeting a 5' untranslated region were used to screen nasal swabs collected from 621 horses at 16 national horse studs from throughout Poland, including 553 healthy horses and 68 horses with respiratory disease. A partial DNA polymerase gene was amplified and sequenced from the qRT-PCR-positive samples. The obtained sequences were analysed using phylogeny and genetic network analysis. None of the nasal swabs were positive for ERAV, whereas ERBV was found in 11/621 (1.78%) samples collected from 10 healthy horses and one foal affected by respiratory disease. Partial DNA polymerase gene sequence variability was correlated with individual horses and studs from which samples were collected when only Polish sequences were analysed, but there was no correlation between country of origin and ERBV sequence when Polish and international sequences were included in the network. The report presents the first detection of ERBV in Poland.


Subject(s)
Horse Diseases , Phylogeny , Picornaviridae Infections , Horses/virology , Animals , Poland/epidemiology , Horse Diseases/virology , Horse Diseases/epidemiology , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/epidemiology , Prevalence , Genetic Variation , Erbovirus/genetics , Erbovirus/isolation & purification , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Sequence Analysis, DNA
18.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L557-L573, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39189801

ABSTRACT

Human coronavirus (HCoV)-NL63 causes respiratory tract infections in humans and uses angiotensin-converting enzyme 2 (ACE2) as a receptor. We sought to establish a mouse model of HCoV-NL63 and determine whether prior rhinovirus (RV)-A1B infection affected HCoV-NL63 replication. HCoV-NL63 was propagated in LLC-MK2 cells expressing human ACE2. RV-A1B was grown in HeLa-H1 cells. C57BL6/J or transgenic mice expressing human ACE2 were infected intranasally with sham LLC-MK2 cell supernatant or 1 × 105 tissue culture infectious dose (TCID50) units HCoV-NL63. Wild-type mice were infected with 1 × 106 plaque-forming units (PFU) RV-A1B. Lungs were assessed for vRNA, bronchoalveolar lavage (BAL) cells, histology, HCoV-NL63 nonstructural protein 3 (nsp3), and host gene expression by next-generation sequencing and qPCR. To evaluate sequential infections, mice were infected with RV-A1B followed by HCoV-NL63 infection 4 days later. We report that hACE2 mice infected with HCoV-NL63 showed evidence of replicative infection with increased levels of vRNA, BAL neutrophils and lymphocytes, peribronchial and perivascular infiltrates, and expression of nsp3. Viral replication peaked 3 days after infection and inflammation persisted 6 days after infection. HCoV-NL63-infected hACE2 mice showed increased mRNA expression of IFNs, IFN-stimulated proteins, and proinflammatory cytokines. Infection with RV-A1B 4 days before HCoV-NL63 significantly decreased both HCoV-NL63 vRNA levels and airway inflammation. Mice infected with RV-A1B prior to HCoV-NL63 showed increased expression of antiviral proteins compared with sham-treated mice. In conclusion, we established a mouse model of HCoV-NL63 replicative infection characterized by relatively persistent viral replication and inflammation. Prior infection with RV-A1B reduced HCoV-NL63 replication and airway inflammation, indicative of viral interference.NEW & NOTEWORTHY We describe a mouse model of human coronavirus (HCoV) infection. Infection of transgenic mice expressing human angiotensin-converting enzyme 2 (ACE2) with HCoV-NL63 produced a replicative infection with peribronchial inflammation and nonstructural protein 3 expression. Mice infected with RV-A1B 4 days before HCoV-NL63 showed decreased HCoV-NL63 replication and airway inflammation and increased expression of antiviral proteins compared with sham-treated mice. This research may shed light on human coronavirus infections, viral interference, and viral-induced asthma exacerbations.


Subject(s)
Angiotensin-Converting Enzyme 2 , Coronavirus NL63, Human , Disease Models, Animal , Mice, Inbred C57BL , Picornaviridae Infections , Rhinovirus , Animals , Humans , Mice , Coronavirus NL63, Human/physiology , Rhinovirus/physiology , Rhinovirus/pathogenicity , Picornaviridae Infections/virology , Picornaviridae Infections/metabolism , Picornaviridae Infections/pathology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Virus Replication , Coronavirus Infections/virology , Coronavirus Infections/pathology , Coronavirus Infections/metabolism , Mice, Transgenic , Lung/virology , Lung/pathology , Lung/metabolism , HeLa Cells , Bronchoalveolar Lavage Fluid/virology , Enterovirus
19.
Cell Host Microbe ; 32(9): 1608-1620.e4, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39181126

ABSTRACT

Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.


Subject(s)
Bacterial Shedding , Carrier State , Coinfection , Picornaviridae Infections , Pneumococcal Infections , Respiratory Syncytial Virus Infections , Rhinovirus , Streptococcus pneumoniae , Humans , Rhinovirus/physiology , Adult , Pneumococcal Infections/microbiology , Picornaviridae Infections/virology , Picornaviridae Infections/microbiology , Carrier State/microbiology , Male , Female , Respiratory Syncytial Virus Infections/virology , Coinfection/microbiology , Coinfection/virology , Young Adult , Bacterial Load , Middle Aged , Inflammation , Respiratory Syncytial Viruses/physiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Adolescent , Nasopharynx/microbiology , Nasopharynx/virology
20.
J Med Virol ; 96(8): e29804, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092809

ABSTRACT

Although rhinoviruses play a major role in exacerbations of childhood asthma, the presence of rhinovirus (RV) RNA in plasma, referred to as viremia, has been investigated in a few studies. The aim of the study was to investigate the presence of rhinovirus viremia at the time of asthma exacerbation and to describe the molecular characteristics of rhinoviruses associated with viremia. We conducted an observational, prospective, multicenter study in eight pediatric hospitals (VIRASTHMA2). Preschool-aged recurrent wheezers (1-5 years) hospitalized for a severe exacerbation were included. Reverse-transcription polymerase chain reaction (RT-PCR) and molecular typing for RV/enteroviruses (EV) were performed on nasal swabs and plasma. Plasma specimens were available for 105 children with positive RT-PCR for RV/EV in respiratory specimens. Thirty-six (34.3%) had positive viremia. In plasma, 28 (82.4%) of the typable specimens were RV-C, five (14.7%) were EV-D68, and one was RV-A (2.9%). In all cases, the RV/EV type was identical in the plasma and respiratory specimens. In conclusion, RV/EV viremia is frequent in severe exacerbations of preschool recurrent wheezers, particularly in RV-C infections.


Subject(s)
Asthma , Picornaviridae Infections , Rhinovirus , Viremia , Humans , Viremia/virology , Child, Preschool , Rhinovirus/genetics , Rhinovirus/isolation & purification , Rhinovirus/classification , Asthma/virology , Male , Female , Prospective Studies , Picornaviridae Infections/virology , Infant , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Plasma/virology
SELECTION OF CITATIONS
SEARCH DETAIL