Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.873
Filter
1.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39020264

ABSTRACT

Babaco is a hybrid cultivar native to the Andean region of Ecuador and Colombia, commercially attractive for its fruit. Babaco production in Ecuador faces losses from plant pathogens like babaco mosaic virus (BabMV), an RNA virus that causes chlorosis, leaf mottling, and deformation. Phylogenetic studies link BabMV to papaya mosaic virus (PapMV), alternanthera mosaic virus, and senna mosaic virus. To address this threat, we developed novel species-specific primers to detect BabMV targeting a 165 bp region of the coat protein (CP). Genus-specific primers were designed to validate the species-specific primers and attest their ability to discriminate between BabMV and its closest relatives. These primers targeted a 175 bp fragment of the CP region. The most effective sets of primers were chosen for reverse transcription polymerase chain reaction (RT-PCR) and SYBR® Green-based quantitative reverse transcription polymerase chain reaction (RT-qPCR) in symptomatic and asymptomatic babaco plants. Among 28 plants tested, 25 were positive and 3 were negative for BabMV using species-specific and genus-specific primers in RT-PCR and RT-qPCR, while the PapMV positive control was detected with the genus-specific primers and was negative for the species-specific primers. These primers represent a valuable molecular tool for detecting BabMV, potentially enhancing crop management.


Subject(s)
DNA Primers , Plant Diseases , Plant Diseases/virology , DNA Primers/genetics , Ecuador , Capsid Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Phylogeny , Real-Time Polymerase Chain Reaction/methods , Species Specificity , Colombia
2.
Arch Virol ; 169(8): 161, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981885

ABSTRACT

Here, we report a novel ourmia-like mycovirus, named "Phomopsis asparagi magoulivirus 1" (PaMV1), derived from the phytopathogenic fungus Phomopsis asparagi. The genome of PaMV1 consists of a positive-sense single-stranded RNA (+ ssRNA) that is 2,639 nucleotides in length, with a GC content of 57.13%. It contains a single open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) consisting of 686 amino acids with a molecular mass of 78.57 kDa. Phylogenetic analysis based on RdRp sequences revealed that PaMV1 grouped together with Diaporthe gulyae magoulivirus 1 (DgMV1) in a distinct clade. Sequence comparisons and phylogenetic analysis suggest that PaMV1 is a novel member of the genus Magoulivirus, family Botourmiaviridae.


Subject(s)
Fungal Viruses , Genome, Viral , Open Reading Frames , Phomopsis , Phylogeny , RNA, Viral , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Phomopsis/virology , RNA, Viral/genetics , Whole Genome Sequencing , RNA-Dependent RNA Polymerase/genetics , Base Composition , Plant Diseases/microbiology , Plant Diseases/virology , Viral Proteins/genetics , Base Sequence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification
3.
Arch Virol ; 169(8): 165, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990253

ABSTRACT

Monilinia fructicola is one of the most devastating fungal diseases of rosaceous fruit crops, both in the field and postharvest, causing significant yield losses. Here, we report the discovery of a novel positive single-stranded RNA virus, Monilinia fructicola hypovirus 3 (MfHV3), in a strain (hf-1) of the phytopathogenic fungus Monilinia fructicola. The complete genome of MfHV3 is 9259 nucleotides (nt) in length and contains a single large open reading frame (ORF) from nt position 462 to 8411. This ORF encodes a polyprotein with three conserved domains, namely UDP-glycosyltransferase, RNA-dependent RNA polymerase (RdRp), and DEAD-like helicase. The MfHV3 polyprotein shares the highest similarity with Colletotrichum camelliae hypovirus 1. Phylogenetic analysis indicated that MfHV3 clustered with members of the genus Betahypovirus within the family Hypoviridae. Taken together, the results of genomic organization comparisons, amino acid sequence alignments, and phylogenetic analysis convincingly show that MfHV3 is a new member of the genus Betahypovirus, family Hypoviridae.


Subject(s)
Ascomycota , Fungal Viruses , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases , Ascomycota/virology , Ascomycota/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Plant Diseases/microbiology , Plant Diseases/virology , RNA, Viral/genetics , Viral Proteins/genetics , Whole Genome Sequencing , RNA Viruses/genetics , RNA Viruses/classification , RNA Viruses/isolation & purification , RNA-Dependent RNA Polymerase/genetics , Amino Acid Sequence
4.
Arch Virol ; 169(8): 168, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020218

ABSTRACT

The complete genome sequences of two poorly studied Prunus-infecting nepoviruses, apricot latent ringspot virus (ALRSV) and myrobalan latent ringspot virus (MLRSV) were determined, confirming that they are members of subgroup C. Serological, biological, and molecular data, in particular a low level (58.8%) of amino acid sequence identity in the coat protein, suggest that ALRSV and MLRSV should be considered taxonomically distinct. In addition, data mining of public RNASeq data from wild and ornamental Prunus identified two contigs representing the nearly complete genome of a new subgroup A nepovirus from a smooth stone peach (Prunus mira) dataset (SRR8369794) from the Himalayas, for which the name "Prunus mira virus A" is proposed.


Subject(s)
Genome, Viral , Nepovirus , Phylogeny , Plant Diseases , Prunus , Prunus/virology , Plant Diseases/virology , Nepovirus/genetics , Nepovirus/isolation & purification , Nepovirus/classification , Whole Genome Sequencing , RNA, Viral/genetics
5.
New Phytol ; 243(4): 1539-1553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021237

ABSTRACT

The interactions among plant viruses, insect vectors, and host plants have been well studied; however, the roles of insect viruses in this system have largely been neglected. We investigated the effects of MpnDV infection on aphid and PVY transmission using bioassays, RNA interference (RNAi), and GC-MS methods and green peach aphid (Myzus persicae (Sulzer)), potato virus Y (PVY), and densovirus (Myzus persicae nicotianae densovirus, MpnDV) as model systems. MpnDV increased the activities of its host, promoting population dispersal and leading to significant proliferation in tobacco plants by significantly enhancing the titer of the sesquiterpene (E)-ß-farnesene (EßF) via up-regulation of expression levels of the MpFPPS1 gene. The proliferation and dispersal of MpnDV-positive individuals were faster than that of MpnDV-negative individuals in PVY-infected tobacco plants, which promoted the transmission of PVY. These results combined showed that an insect virus may facilitate the transmission of a plant virus by enhancing the locomotor activity and population proliferation of insect vectors. These findings provide novel opportunities for controlling insect vectors and plant viruses, which can be used in the development of novel management strategies.


Subject(s)
Aphids , Densovirus , Nicotiana , Plant Diseases , Aphids/virology , Aphids/physiology , Animals , Nicotiana/virology , Nicotiana/parasitology , Plant Diseases/virology , Densovirus/physiology , Densovirus/genetics , Potyvirus/physiology , Potyvirus/pathogenicity , Sesquiterpenes/metabolism , Plant Viruses/physiology , Plant Viruses/pathogenicity
6.
J Math Biol ; 89(3): 30, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017723

ABSTRACT

To describe the transmission dynamics of maize streak virus infection, in the paper, we first formulate a stochastic maize streak virus infection model, in which the stochastic fluctuations are depicted by a logarithmic Ornstein-Uhlenbeck process. This approach is reasonable to simulate the random impacts of main parameters both from the biological significance and the mathematical perspective. Then we investigate the detailed dynamics of the stochastic system, including the existence and uniqueness of the global solution, the existence of a stationary distribution, the exponential extinction of the infected maize and infected leafhopper vector. Especially, by solving the five-dimensional algebraic equations corresponding to the stochastic system, we obtain the specific expression of the probability density function near the quasi-endemic equilibrium of the stochastic system, which provides valuable insights into the stationary distribution. Finally, the model is discretized using the Milstein higher-order numerical method to illustrate our theoretical results numerically. Our findings provide a groundwork for better methods of preventing the spread of this type of virus.


Subject(s)
Maize streak virus , Mathematical Concepts , Models, Biological , Plant Diseases , Stochastic Processes , Zea mays , Plant Diseases/virology , Plant Diseases/statistics & numerical data , Zea mays/virology , Animals , Maize streak virus/physiology , Computer Simulation , Insect Vectors/virology , Epidemics/statistics & numerical data , Hemiptera/virology
7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000098

ABSTRACT

Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.


Subject(s)
Capsid Proteins , Nicotiana , Plant Diseases , Potexvirus , Solanum tuberosum , Capsid Proteins/genetics , Capsid Proteins/metabolism , Nicotiana/genetics , Nicotiana/virology , Nicotiana/metabolism , Potexvirus/genetics , Potexvirus/pathogenicity , Plant Diseases/virology , Plant Diseases/genetics , Solanum tuberosum/virology , Solanum tuberosum/genetics , Solanum tuberosum/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
8.
Annu Rev Plant Biol ; 75(1): 655-677, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038248

ABSTRACT

Viruses, causal agents of devastating diseases in plants, are obligate intracellular pathogens composed of a nucleic acid genome and a limited number of viral proteins. The diversity of plant viruses, their diminutive molecular nature, and their symplastic localization pose challenges to understanding the interplay between these pathogens and their hosts in the currently accepted framework of plant innate immunity. It is clear, nevertheless, that plants can recognize the presence of a virus and activate antiviral immune responses, although our knowledge of the breadth of invasion signals and the underpinning sensing events is far from complete. Below, I discuss some of the demonstrated or hypothesized mechanisms enabling viral recognition in plants, the step preceding the onset of antiviral immunity, as well as the strategies viruses have evolved to evade or suppress their detection.


Subject(s)
Plant Diseases , Plant Immunity , Plant Viruses , Plants , Plant Viruses/physiology , Plant Viruses/pathogenicity , Plant Viruses/immunology , Plant Viruses/genetics , Plant Diseases/virology , Plant Diseases/immunology , Plants/virology , Plants/immunology , Host-Pathogen Interactions/immunology , Immune Evasion
9.
PLoS One ; 19(7): e0305402, 2024.
Article in English | MEDLINE | ID: mdl-38985801

ABSTRACT

Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic loss to tomato production, and the Sw-5b resistance gene is widely deployed for management. Here, we show (i) the emergence of resistance-breaking (RB) TSWV strains in processing and fresh market tomato production in California over the past ten years, and (ii) evolutionary relationships with RB strains from other areas. A specific RT-PCR test was used to show the C118Y RB strain that emerged in Fresno County in 2016 quickly became predominant in the central production area and remained so through this study. In 2021, the C118Y strain was detected in the Northern production area, and was predominant in 2022. However, in 2023, the C118Y strain was unexpectedly detected in fewer spotted wilt samples from resistant varieties. This was due to emergence of the T120N RB strain, previously known to occur in Spain. A specific RT-PCR test was developed and used to show that the T120N RB strain was predominant in Colusa and Sutter counties (detected in 75-80% of samples), and detected in ~50% of samples from Yolo County. Pathogenicity tests confirmed California isolates of the T120N strain infected Sw-5b tomato varieties and induced severe symptoms. Another RB strain, C118F, was associated with spotted wilt samples of Sw-5 varieties from fresh market tomato production in southern California. Phylogenetic analyses with complete NSm sequences revealed that the C118Y and T120N RB strains infecting resistant processing tomato in California emerged locally, whereas those from fresh market production were more closely related to isolates from Mexico. Thus, widespread deployment of this single dominant resistance gene in California has driven the local emergence of multiple RB strains in different tomato production areas and types. These results further emphasize the need for ongoing monitoring for RB strains, and identification of sources of resistance to these strains.


Subject(s)
Disease Resistance , Plant Diseases , Solanum lycopersicum , Tospovirus , Solanum lycopersicum/virology , Solanum lycopersicum/genetics , California , Plant Diseases/virology , Plant Diseases/genetics , Tospovirus/genetics , Tospovirus/pathogenicity , Disease Resistance/genetics , Phylogeny
10.
Arch Virol ; 169(8): 162, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985350

ABSTRACT

Using a high-throughput sequencing (HTS) approach, we report the discovery of a new alphasatellite identified in a winter barley plant collected in France in 2022 that was also infected by wheat dwarf virus (WDV). The presence of the satellite and of WDV was confirmed by several independent PCR assays, and the complete genome sequence was determined. The circular satellite genome is 1424 nt long and shows typical hallmarks of members of the subfamily Geminialphasatellitinae, including a replication-associated hairpin with a CAGTATTAC sequence and a Rep-encoding open reading frame (ORF). It also possesses a second ORF, embedded in a different frame within the Rep ORF, which is also observed in clecrusatellites and a few other members of the family Alphasatellitidae. Pairwise sequence comparisons and phylogenetic analysis showed that this satellite represents a novel species. Its closest relatives are in the genus Colecusatellite, but it likely represents a new genus given its divergence from other genera of the subfamily Geminialphasatellitinae. Given that WDV was the only virus observed in coinfection with the satellite, the name "wheat dwarf virus-associated alphasatellite" is proposed for this novel agent.


Subject(s)
Genome, Viral , Hordeum , Open Reading Frames , Phylogeny , Plant Diseases , France , Hordeum/virology , Plant Diseases/virology , Genome, Viral/genetics , Geminiviridae/genetics , Geminiviridae/classification , Geminiviridae/isolation & purification , Satellite Viruses/genetics , Satellite Viruses/classification , Satellite Viruses/isolation & purification , High-Throughput Nucleotide Sequencing
11.
Mol Plant Pathol ; 25(7): e13469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956901

ABSTRACT

Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.


Subject(s)
Genome, Viral , Plant Diseases , Solanum lycopersicum , Viroids , Solanum lycopersicum/virology , Plant Diseases/virology , Viroids/genetics , Viroids/pathogenicity , Genome, Viral/genetics , Algorithms , Genome, Plant
12.
BMC Microbiol ; 24(1): 267, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030475

ABSTRACT

BACKGROUND: Grapevine fanleaf virus (GFLV) is one of the most detrimental viral pathogens of grapevines worldwide but no information is available on its effect on the root system architecture (RSA) of plant hosts. We used two wildtype GFLV strains and their single amino acid mutants to assess RSA traits in infected Nicotiana benthamiana and evaluate transcriptomic changes in host root gene expression in replicated time course 3'RNA-Seq experiments. Mutations targeted the multi-functional GFLV-encoded protein 1EPol*/Sd, a putative RNA-dependent RNA polymerase and determinant of foliar symptoms in N. benthamiana plants. RESULTS: Plant infection with wildtype GFLV strain GHu and mutant GFLV strain F13 1EPol G802K, both carrying a lysine in position 802 of protein 1EPol*/Sd, resulted in a significantly lower number of root tips (-30%), and a significantly increased average root diameter (+ 20%) at 17 days post inoculation (dpi) in comparison with roots of mock inoculated plants. In contrast, the RSA of plants infected with wildtype GFLV strain F13 and mutant GFLV strain GHu 1EPol K802G, both carrying a glycine in position 802 of protein 1EPol*/Sd, resembled that of mock inoculated plants. Modifications of RSA traits were not associated with GFLV titer. Root tissue transcriptome analysis at 17 dpi indicated dysregulation of pattern recognition receptors, plant hormones, RNA silencing, and genes related to the production of reactive oxygen species (ROS). For wildtype GFLV strain GHu, RSA modifications were correlated with an abundant accumulation of ROS in the pericycle of primary roots at 7 dpi and the duration of vein clearing symptom expression in apical leaves. Dysegulation of a hypersensitive response was an overarching gene ontology found through enrichment analyses of 3'RNA-Seq data. CONCLUSIONS: Our findings revealed the causative role of lysine in position 802 of protein 1EPol*/Sd in a novel RSA phenotype during viral infection and documented GFLV-N. benthamiana interactions at the root level based on (i) antiviral response, (ii) receptor mediated production of ROS, and (iii) hormone regulation. A correlation between above and below ground symptoms was reported for the first time in plants infected with wildtype GFLV strain GHu. Further work is warranted to test whether the modified RSA of a plant host might impact GFLV acquisition and transmission by the ectoparasitic dagger nematode Xiphinema index.


Subject(s)
Nicotiana , Plant Diseases , Plant Roots , Plant Roots/virology , Plant Roots/genetics , Plant Diseases/virology , Plant Diseases/genetics , Nicotiana/virology , Nicotiana/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Nepovirus/genetics , Host-Pathogen Interactions , Mutation , Gene Expression Regulation, Plant , Vitis/virology , Vitis/genetics , Amino Acids/metabolism , Plant Leaves/virology , Plant Leaves/genetics , Transcriptome
13.
Viruses ; 16(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39066170

ABSTRACT

Tobacco mosaic virus (TMV) was the first virus to be studied in detail and, for many years, TMV and other tobamoviruses, particularly tomato mosaic virus (ToMV) and tobamoviruses infecting pepper (Capsicum spp.), were serious crop pathogens. By the end of the twentieth and for the first decade of the twenty-first century, tobamoviruses were under some degree of control due to introgression of resistance genes into commercial tomato and pepper lines. However, tobamoviruses remained important models for molecular biology, biotechnology and bio-nanotechnology. Recently, tobamoviruses have again become serious crop pathogens due to the advent of tomato brown rugose fruit virus, which overcomes tomato resistance against TMV and ToMV, and the slow but apparently inexorable worldwide spread of cucumber green mottle mosaic virus, which threatens all cucurbit crops. This review discusses a range of mainly molecular biology-based approaches for protecting crops against tobamoviruses. These include cross-protection (using mild tobamovirus strains to 'immunize' plants against severe strains), expressing viral gene products in transgenic plants to inhibit the viral infection cycle, inducing RNA silencing against tobamoviruses by expressing virus-derived RNA sequences in planta or by direct application of double-stranded RNA molecules to non-engineered plants, gene editing of host susceptibility factors, and the transfer and optimization of natural resistance genes.


Subject(s)
Disease Resistance , Plant Diseases , Plants, Genetically Modified , Tobamovirus , Tobamovirus/genetics , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , Plants, Genetically Modified/virology , Capsicum/virology , Capsicum/immunology , Crops, Agricultural/virology , Crops, Agricultural/genetics , Solanum lycopersicum/virology , Genetic Engineering , Tobacco Mosaic Virus/genetics
14.
Viruses ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39066236

ABSTRACT

A novel negative-sense single-stranded RNA virus showing genetic similarity to viruses of the genus Rubodvirus has been found in raspberry plants in the Czech Republic and has tentatively been named raspberry rubodvirus 1 (RaRV1). Phylogenetic analysis confirmed its clustering within the group, albeit distantly related to other members. A screening of 679 plant and 168 arthropod samples from the Czech Republic and Norway revealed RaRV1 in 10 raspberry shrubs, one batch of Aphis idaei, and one individual of Orius minutus. Furthermore, a distinct isolate of this virus was found, sharing 95% amino acid identity in both the full nucleoprotein and partial sequence of the RNA-dependent RNA polymerase gene sequences, meeting the species demarcation criteria. This discovery marks the first reported instance of a rubodvirus infecting raspberry plants. Although transmission experiments under experimental conditions were unsuccessful, positive detection of the virus in some insects suggests their potential role as vectors for the virus.


Subject(s)
Phylogeny , Plant Diseases , Rubus , Rubus/virology , Plant Diseases/virology , Animals , RNA, Viral/genetics , Czech Republic , Norway , Negative-Sense RNA Viruses/genetics , Negative-Sense RNA Viruses/classification , Negative-Sense RNA Viruses/isolation & purification , Sequence Analysis, DNA , Cluster Analysis
15.
Viruses ; 16(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39066241

ABSTRACT

Pospiviroids infect a wide range of plant species, and many pospiviroids can be transmitted to potato and tomato. Pospiviroids continue to be a major production constraint as well as of quarantine concern for the movement of germplasm, and are regulated in several countries/regions. The USDA APHIS issued a federal order requiring all imported tomato and pepper seeds be certified free of six pospiviroids of quarantine significance. The six pospiviroids of quarantine interest include CLVd, PCFVd, PSTVd, TASVd, TCDVd, TPMVd. Currently, those six viroids are detected by real-time RT-PCR. CRISPR/Cas-based genome editing has been increasingly used for virus detection in the past five years. We used a rapid Cas13-based Specific High-sensitivity Enzymatic Reporter unLOCKing (SHERLOCK) platform for pospiviroid detection, determined the limits of detection and specificity of CRISPR-Cas13a assays. This platform combines recombinase polymerase amplification (RPA) with CRISPR and CRISPR-associated (CRISPR-Cas) RNA-guided endoribonuclease that is rapid and does not require expensive equipment, and can be adapted for on-site detection.


Subject(s)
CRISPR-Cas Systems , Plant Diseases , Viroids , Plant Diseases/virology , Viroids/genetics , Viroids/isolation & purification , Sensitivity and Specificity , Solanum lycopersicum/virology , Gene Editing/methods , Clustered Regularly Interspaced Short Palindromic Repeats , Solanum tuberosum/virology
16.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066273

ABSTRACT

In this study, we investigated the potential involvement of endogenous viral elements (EVEs) in the development of apical tissue necrosis, resulting in the terminal abortion of upland cotton (Gossypium hirsutum L.) in Georgia. The high-throughput sequence analysis of symptomatic and asymptomatic plant tissue samples revealed near-complete EVE-Georgia (EVE-GA) sequences closely related to caulimoviruses. The analysis of EVE-GA's putative open reading frames (ORFs) compared to cotton virus A and endogenous cotton pararetroviral elements (eCPRVE) revealed their similarity in putative ORFs 1-4. However, in the ORF 5 and ORF 6 encoding putative coat protein and reverse transcriptase, respectively, the sequences from EVE-GA have stop codons similar to eCPRVE sequences from Mississippi. In silico mining of the cotton genome database using EVE-GA as a query uncovered near-complete viral sequence insertions in the genomes of G. hirsutum species (~7 kb) but partial in G. tomentosum (~5.3 kb) and G. mustelinum (~5.1 kb) species. Furthermore, cotton EVEs' episomal forms and messenger RNA (mRNA) transcripts were detected in both symptomatic and asymptomatic plants collected from cotton fields. No significant yield difference was observed between symptomatic and asymptomatic plants of the two varieties evaluated in the experimental plot. Additionally, EVEs were also detected in cotton seeds and seedlings. This study emphasizes the need for future research on EVE sequences, their coding capacity, and any potential role in host immunity or pathogenicity.


Subject(s)
Gossypium , Open Reading Frames , Plant Diseases , Gossypium/virology , Plant Diseases/virology , Georgia , Phylogeny , High-Throughput Nucleotide Sequencing
17.
Viruses ; 16(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39066307

ABSTRACT

The cultivation of pineapple (Ananas comosus) is threatened worldwide by mealybug wilt disease of pineapple (MWP), whose etiology is not yet fully elucidated. In this study, we characterized pineapple mealybug wilt-associated ampeloviruses (PMWaVs, family Closteroviridae) from a diseased pineapple plant collected from Reunion Island, using a high-throughput sequencing approach combining Illumina short reads and Nanopore long reads. Reads co-assembly resulted in complete or near-complete genomes for six distinct ampeloviruses, including the first complete genome of pineapple mealybug wilt-associated virus 5 (PMWaV5) and that of a new species tentatively named pineapple mealybug wilt-associated virus 7 (PMWaV7). Short reads data provided high genome coverage and sequencing depths for all six viral genomes, contrary to long reads data. The 5' and 3' ends of the genome for most of the six ampeloviruses could be recovered from long reads, providing an alternative to RACE-PCRs. Phylogenetic analyses did not unveil any geographic structuring of the diversity of PMWaV1, PMWaV2 and PMWaV3 isolates, supporting the current hypothesis that PMWaVs were mainly spread by human activity and vegetative propagation.


Subject(s)
Ananas , Closteroviridae , Genome, Viral , High-Throughput Nucleotide Sequencing , Phylogeny , Plant Diseases , Ananas/virology , Plant Diseases/virology , Closteroviridae/genetics , Closteroviridae/classification , Closteroviridae/isolation & purification , Reunion , RNA, Viral/genetics
18.
Viruses ; 16(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066314

ABSTRACT

Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.


Subject(s)
Oryza , Phylogeny , Plant Diseases , RNA Viruses , Rhizoctonia , Rhizoctonia/virology , Rhizoctonia/genetics , Plant Diseases/microbiology , Plant Diseases/virology , Oryza/microbiology , Oryza/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/classification , Genome, Viral , RNA, Viral/genetics , High-Throughput Nucleotide Sequencing , RNA, Double-Stranded/genetics , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Philippines , Transcriptome
19.
Sci Rep ; 14(1): 15596, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971939

ABSTRACT

Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers' ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.


Subject(s)
Deep Learning , Phaseolus , Plant Diseases , Phaseolus/virology , Phaseolus/microbiology , Plant Diseases/virology , Plant Diseases/microbiology , Agriculture/methods , Plant Leaves/virology , Plant Leaves/microbiology , Africa , Colombia
20.
Virologie (Montrouge) ; 28(3): 199-215, 2024 Jun 01.
Article in French | MEDLINE | ID: mdl-38970341

ABSTRACT

Viroids are the smallest non-coding infectious RNAs (between 246 and 401 nucleotides) known to be highly structured and replicate autonomously in the host plants. Although they do not encode any peptides, viroids induce visible symptoms in susceptible host plants. This article provides an overview of their physical and biological properties, the diseases they cause and their significance for the plants. The mechanisms underlying the expression of symptoms in host plants, their detection and various strategies employed for diseases prevention are also developed.


Subject(s)
Plant Diseases , Plants , RNA, Viral , Viroids , Viroids/genetics , Viroids/physiology , Plant Diseases/virology , Plant Diseases/prevention & control , RNA, Viral/genetics , RNA, Untranslated/genetics , RNA, Untranslated/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL