Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.440
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article En | LILACS | ID: biblio-1538020

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Article En | LILACS | ID: biblio-1538056

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Plant Leaves/chemistry , Croton/chemistry , Plant Extracts/metabolism , Plant Extracts/chemistry , Plant Structures/metabolism , Plant Structures/chemistry , Plant Leaves/metabolism , Croton/metabolism , Anti-Inflammatory Agents , Antioxidants
3.
Sci Rep ; 14(1): 12759, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834771

Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) µmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.


Ocimum basilicum , Plant Leaves , Secondary Metabolism , Ocimum basilicum/metabolism , Ocimum basilicum/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Secondary Metabolism/drug effects , Gene Expression Regulation, Plant , Metabolomics/methods , Flavonoids/metabolism , Eugenol/analogs & derivatives , Eugenol/metabolism , Oxylipins/metabolism
4.
Physiol Plant ; 176(3): e14356, 2024.
Article En | MEDLINE | ID: mdl-38828569

Halophyte Halogeton glomeratus mostly grows in saline desert areas in arid and semi-arid regions and is able to adapt to adverse conditions such as salinity and drought. Earlier transcriptomic studies revealed activation of the HgS2 gene in the leaf of H. glomeratus seedlings when exposed to saline conditions. To identify the properties of HgS2 in H. glomeratus, we used yeast transformation and overexpression in Arabidopsis. Yeast cells genetically transformed with HgS2 exhibited K+ uptake and Na+ efflux compared with control (empty vector). Stable overexpression of HgS2 in Arabidopsis improved its resistance to salt stress and led to a notable rise in seed germination in salinity conditions compared to the wild type (WT). Transgenic Arabidopsis regulated ion homeostasis in plant cells by increasing Na+ absorption and decreasing K+ efflux in leaves, while reducing Na+ absorption and K+ efflux in roots. In addition, overexpression of HgS2 altered transcription levels of stress response genes and regulated different metabolic pathways in roots and leaves of Arabidopsis. These results offer new insights into the role of HgS2 in plants' salt tolerance.


Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Tolerance , Salt-Tolerant Plants , Sodium , Arabidopsis/genetics , Arabidopsis/physiology , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/metabolism , Sodium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Potassium/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Sodium Chloride/pharmacology , Germination/genetics , Germination/drug effects , Amaranthaceae/genetics , Amaranthaceae/physiology
5.
Physiol Plant ; 176(3): e14369, 2024.
Article En | MEDLINE | ID: mdl-38828612

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Oryza , Photosynthesis , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Chloroplasts/metabolism , Hot Temperature , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology , Chlorophyll/metabolism , Mutation , Heat-Shock Response/genetics , Loss of Function Mutation , Phenotype , Oxidoreductases Acting on CH-CH Group Donors
6.
Physiol Plant ; 176(3): e14377, 2024.
Article En | MEDLINE | ID: mdl-38837251

One of the most devastating diseases of apples is scab, caused by the fungus Venturia inaequalis. Most commercial apple varieties are susceptible to this disease; only a few are resistant. Breeding approaches are being used to develop better apple varieties that are resistant to scab. Volatile organic compounds (VOCs) contribute greatly to a plant's phenotype, and their emission profile largely depends on the genotype. In the non-destructive phenotyping of plants, VOCs can be used as biomarkers. In this study, we assessed non-destructively the scab tolerance potential of resistant (cv. 'Prima') and susceptible (cv. 'Oregon Spur') apple cultivars by comparing their major leaf VOC compositions and relative proportions. A comparison of the leaf VOC profiles of the two cultivars revealed 16 different VOCs, with cis-3-hexenyl acetate (3HA) emerging as a biomarker of cultivar differences. V. inaequalis growth was significantly inhibited in vitro by 3HA treatment. 3HA was significantly effective in reducing scab symptoms on V. inaequalis-inoculated leaves of 'Oregon Spur.' The resistant cultivar 'Prima' also exhibited higher lipoxygenase (LOX) activity and α-linolenic acid (ALA) levels, suggesting that V. inaequalis resistance is linked to LOX activity and 3HA biosynthesis. This study proposes 3HA as a potential biomarker for rapid non-destructive screening of scab-resistant apple germplasm of 'Prima' based on leaf VOCs.


Ascomycota , Disease Resistance , Malus , Phenotype , Plant Diseases , Plant Leaves , Volatile Organic Compounds , Malus/microbiology , Malus/genetics , Malus/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Plant Diseases/microbiology , Ascomycota/physiology , Ascomycota/pathogenicity , Plant Leaves/microbiology , Plant Leaves/metabolism , Disease Resistance/genetics , Lipoxygenase/metabolism , Lipoxygenase/genetics
7.
Physiol Plant ; 176(3): e14374, 2024.
Article En | MEDLINE | ID: mdl-38837422

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
8.
Physiol Plant ; 176(3): e14376, 2024.
Article En | MEDLINE | ID: mdl-38837784

Variations in light intensity induce cytosol pH changes in photosynthetic tissues, providing a possible signal to adjust a variety of biochemical, physiological and developmental processes to the energy status of the cells. It was shown that these pH changes are partially due to the transport of protons in or out of the thylakoid lumen. However, the ion transporters in the chloroplast that transmit these pH changes to the cytosol are not known. KEA1 and KEA2 are K+/H+ antiporters in the chloroplast inner envelope that adjust stromal pH in light-to-dark transitions. We previously determined that stromal pH is higher in kea1kea2 mutant cells. In this study, we now show that KEA1 and KEA2 are required to attenuate cytosol pH variations upon sudden light intensity changes in leaf mesophyll cells, showing they are important components of the light-modulated pH signalling module. The kea1kea2 mutant mesophyll cells also have a considerably less negative membrane potential. Membrane potential is dependent on the activity of the plasma membrane proton ATPase and is regulated by secondary ion transporters, mainly potassium channels in the plasma membrane. We did not find significant differences in the activity of the plasma membrane proton pump but found a strongly increased membrane permeability to protons, especially potassium, of the double mutant plasma membranes. Our results indicate that chloroplast envelope K+/H+ antiporters not only affect chloroplast pH but also have a strong impact on cellular ion homeostasis and energization of the plasma membrane.


Arabidopsis , Chloroplasts , Cytosol , Potassium-Hydrogen Antiporters , Hydrogen-Ion Concentration , Cytosol/metabolism , Chloroplasts/metabolism , Potassium-Hydrogen Antiporters/metabolism , Potassium-Hydrogen Antiporters/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Light , Membrane Potentials , Potassium/metabolism , Mesophyll Cells/metabolism , Mutation/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/radiation effects
9.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838018

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Arabidopsis Proteins , Arabidopsis , Phloem , Plant Leaves , Signal Transduction , Plant Leaves/metabolism , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Phloem/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Receptors, Glutamate/metabolism , Xylem/metabolism , Gene Expression Regulation, Plant
10.
BMC Plant Biol ; 24(1): 501, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840062

BACKGROUND: Peanut (Arachis hypogaea), a vital oil and food crop globally, is susceptible to web blotch which is a significant foliar disease caused by Phoma arachidicola Marasas Pauer&Boerema leading to substantial yield losses in peanut production. Calcium treatment has been found to enhance plant resistance against pathogens. RESULTS: This study investigates the impact of exogenous calcium on peanut resistance to web blotch and explores its mechanisms. Greenhouse experiments revealed that exogenous calcium treatment effectively enhanced resistance to peanut web blotch. Specifically, amino acid calcium and sugar alcohol calcium solutions demonstrated the best induced resistance effects, achieving reduction rates of 61.54% and 60% in Baisha1016, and 53.94% and 50% in Luhua11, respectively. All exogenous calcium treatments reduced malondialdehyde (MDA) and relative electrical conductivity (REC) levels in peanut leaves, mitigating pathogen-induced cell membrane damage. Exogenous calcium supplementation led to elevated hydrogen peroxide (H2O2) content and superoxide anion (O2∙-) production in peanut leaves, facilitating the accumulation of reactive oxygen species (ROS) crucial for plant defense responses. Amino acid calcium and sugar alcohol calcium treatments significantly boosted activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in peanut leaves. Activation of these antioxidant enzymes effectively scavenged excess ROS, maintaining ROS balance and mitigating cellular damage. CONCLUSIONS: In summary, exogenous calcium treatment triggered ROS production, which was subsequently eliminated by the activation of antioxidant enzymes, thereby reducing cell membrane damage and inducing defense responses against peanut web blotch.


Arachis , Calcium , Cell Membrane , Disease Resistance , Plant Diseases , Reactive Oxygen Species , Arachis/metabolism , Arachis/physiology , Reactive Oxygen Species/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Ascomycota/physiology , Plant Leaves/metabolism , Hydrogen Peroxide/metabolism
11.
BMC Plant Biol ; 24(1): 499, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840069

BACKGROUND: Murraya tetramera Huang is a traditional Chinese woody medicine. Its leaves contain flavonoids, alkaloids, and other active compounds, which have anti-inflammatory and analgesic effects, as well as hypoglycemic and lipid-lowering effects, and anti-tumor effects. There are significant differences in the content of flavonoids and alkaloids in leaves during different growth cycles, but the synthesis mechanism is still unclear. RESULTS: In April 2021, new leaves (one month old) and old leaves (one and a half years old) of M. tetramera were used as experimental materials to systematically analyze the changes in differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) with transcriptomics and metabolomics technology. This was done to identify the signaling pathways of flavonoid and alkaloid synthesis. The results showed that the contents of total alkaloids and flavonoids in old leaves were significantly higher than those in new leaves. Thirteen flavonoid compounds, three isoflavone compounds, and nineteen alkaloid compounds were identified, and 125 and 48 DEGs related to flavonoid and alkaloid synthesis were found, respectively. By constructing the KEGG (Kyoto Encyclopedia of Genes and Genomes) network of DEGs and DAMs, it was shown that the molecular mechanism of flavonoid biosynthesis in M. tetramera mainly focuses on the "flavonoid biosynthetic pathway" and the "flavonoid and flavonol biosynthetic pathway". Among them, p-Coumaryl alcohol, Sinapyl alcohol, Phloretin, and Isoquercitrin were significantly accumulated in old leaves, the up-regulated expression of CCR (cinnamoyl-CoA reductase) might promote the accumulation of p-Coumaryl alcohol, upregulation of F5H (ferulate-5-hydroxylase) might promote Sinapyl alcohol accumulation. Alkaloids, including indole alkaloids, pyridine alkaloids, imidazole alkaloids, and quinoline alkaloids, were significantly accumulated in old leaves, and a total of 29 genes were associated with these substances. CONCLUSIONS: These data are helpful to better understand the biosynthesis of flavonoids and alkaloids in M. tetramera and provide a scientific basis for the development of medicinal components in M. tetramera.


Alkaloids , Flavonoids , Gene Expression Profiling , Metabolomics , Murraya , Plant Leaves , Flavonoids/biosynthesis , Flavonoids/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Alkaloids/metabolism , Alkaloids/biosynthesis , Murraya/genetics , Murraya/metabolism , Transcriptome , Gene Expression Regulation, Plant
12.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842600

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Cucumis melo , Cyclopentanes , Fruit , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Plant Proteins , Plants, Genetically Modified , Cucumis melo/genetics , Cucumis melo/growth & development , Cucumis melo/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Promoter Regions, Genetic , Oxylipins/pharmacology , Oxylipins/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Acetates/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
14.
Plant Cell Rep ; 43(6): 162, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38837057

KEY MESSAGE: A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.


Agrobacterium , Glycine max , Plant Leaves , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Agrobacterium/genetics , Gene Expression Regulation, Plant , Nicotiana/genetics , Genetic Vectors/genetics
15.
PLoS One ; 19(6): e0304503, 2024.
Article En | MEDLINE | ID: mdl-38843246

Drought stress is a prominent abiotic factor that adversely influences the growth and development of Bupleurum chinense during its seedling stage, negatively impacting biomass and secondary metabolite production, thus affecting yield and quality. To investigate the molecular mechanism underlying the response of B. chinense seedlings under drought stress, this study employed comprehensive physiological, transcriptomic, and metabolomic analyses. The results revealed that under drought stress, the root soluble sugar and free proline content in B. chinense seedlings significantly increased, while the activities of SOD, POD, and CAT increased in the leaves. These findings indicate the presence of distinct response mechanisms in B. chinense to cope with drought stress. Integrated analysis further identified significant correlations between genes and metabolites related to amino acid biosynthesis in the leaves, as well as genes and metabolites associated with acetaldehyde and dicarboxylic acid metabolism. In the roots, genes and metabolites related to plant hormone signaling and the tricarboxylic acid (TCA) cycle showed significant correlations. These findings provide vital views into the molecular-level response mechanisms of B. chinense under drought stress. Moreover, this study establishes the groundwork for identifying drought-tolerant genes and breeding drought-resistant varieties, which could improve the drought tolerance of medicinal plants and have broader implications for agriculture and crop production in water-scarce areas.


Bupleurum , Droughts , Gene Expression Regulation, Plant , Metabolomics , Seedlings , Stress, Physiological , Bupleurum/genetics , Bupleurum/metabolism , Seedlings/metabolism , Seedlings/genetics , Stress, Physiological/genetics , Transcriptome , Plant Roots/metabolism , Plant Roots/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Gene Expression Profiling , Metabolome
16.
Chem Biol Drug Des ; 103(6): e14564, 2024 Jun.
Article En | MEDLINE | ID: mdl-38845574

The leaves of Araucaria cunninghamii are known to be nonedible and toxic. Previous studies have identified biflavones in various Araucaria species. This study aimed to investigate the in vitro cytotoxicity of the isolated compounds from Araucaria cunninghamii after metabolomics and network pharmacological analysis. Methanol extract of Araucaria cunninghamii leaves was subjected to bioassay-guided fractionation. The active fraction was analyzed using LC-HRMS, through strategic database mining, by comparing the data to the Dictionary of Natural Products to identify 12 biflavones, along with abietic acid, beta-sitosterol, and phthalate. Eight compounds were screened for network pharmacology study, where in silico ADME analysis, prediction of gene targets, compound-gene-pathway network and hierarchical network analysis, protein-protein interaction, KEGG pathway, and Gene Ontology analyses were done, that showed PI3KR1, EGFR, GSK3B, and ABCB1 as the common targets for all the compounds that may act in the gastric cancer pathway. Simultaneously, four biflavones were isolated via chromatography and identified through NMR as dimeric apigenin with varying methoxy substitutions. Cytotoxicity study against the AGS cell line for gastric cancer showed that AC1 biflavone (IC50 90.58 µM) exhibits the highest cytotoxicity and monomeric apigenin (IC50 174.5 µM) the lowest. Besides, the biflavones were docked to the previously identified targets to analyze their binding affinities, and all the ligands were found to bind with energy ≤-7 Kcal/mol.


Data Mining , Metabolomics , Molecular Docking Simulation , Humans , Cell Line, Tumor , Plant Leaves/chemistry , Plant Leaves/metabolism , Network Pharmacology , Biflavonoids/chemistry , Biflavonoids/pharmacology , Biflavonoids/metabolism , Biflavonoids/isolation & purification , Tracheophyta/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Chromatography, Liquid , ATP Binding Cassette Transporter, Subfamily B/metabolism , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Mass Spectrometry
17.
Plant Signal Behav ; 19(1): 2361174, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38825852

Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.


Foeniculum , Gene Expression Regulation, Plant , MicroRNAs , Plant Leaves , Salt Stress , Foeniculum/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Salt Stress/genetics , Gene Expression Profiling , RNA, Plant/genetics , RNA, Plant/metabolism
18.
BMC Plant Biol ; 24(1): 492, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831289

Non-hydraulic root source signaling (nHRS) is a unique positive response to soil drying in the regulation of plant growth and development. However, it is unclear how the nHRS mediates the tradeoff between source and sink at the late growth stages and its adaptive mechanisms in primitive wheat. To address this issue, a root-splitting design was made by inserting solid partition in the middle of the pot culture to induce the occurrence of nHRS using four wheat cultivars (MO1 and MO4, diploid; DM22 and DM31, tetraploid) as materials. Three water treatments were designed as 1) both halves watered (CK), 2) holistic root system watered then droughted (FS), 3) one-half of the root system watered and half droughted (PS). FS and PS were designed to compare the role of the full root system and split root system to induce nHRS. Leaves samples were collected during booting and anthesis to compare the role of nHRS at both growth stages. The data indicated that under PS treatment, ABA concentration was significantly higher than FS and CK, demonstrating the induction of nHRS in split root design and nHRS decreased cytokinin (ZR) levels, particularly in the PS treatment. Soluble sugar and proline accumulation were higher in the anthesis stage as compared to the booting stage. POD activity was higher at anthesis, while CAT was higher at the booting stage. Increased ABA (nHRS) correlated with source-sink relationships and metabolic rate (i.e., leaf) connecting other stress signals. Biomass density showed superior resource acquisition and utilization capabilities in both FS and PS treatment as compared to CK in all plants. Our findings indicate that nHRS-induced alterations in phytohormones and their effect on source-sink relations were allied with the growth stages in primitive wheat.


Diploidy , Plant Roots , Signal Transduction , Tetraploidy , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Growth Regulators/metabolism , Abscisic Acid/metabolism , Cytokinins/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/genetics
19.
Sci Rep ; 14(1): 10556, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719847

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Fertilizers , Glycine max , Nickel , Soil , Glycine max/growth & development , Glycine max/drug effects , Glycine max/metabolism , Fertilizers/analysis , Soil/chemistry , Urease/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Nitrogen Fixation/drug effects , Nitrogen/metabolism , Photosynthesis/drug effects , Seeds/growth & development , Seeds/drug effects , Seeds/metabolism , Agriculture/methods
20.
Sci Rep ; 14(1): 10675, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724667

Trillium govanianum is traditionally used to treat innumerable alignments like sexual disorders, cancer, inflammation etc. Mainly rhizomes of T. govanianum have been explored for phytochemical profiling but comprehensive metabolomics of other parts has not been yet deeply investigated. Thus, current study was aimed for organs-specific (roots, rhizomes, rhizomatous buds, stems, leaves, and fruits) phytochemical profiling of T. govanianum via metabolomics approach. Targeted (steroidal saponins and free sugars) and non-targeted metabolomics were performed by UPLC-PDA/ELSD & UHPLC-Q-TOF-IMS. Among steroidal compounds, 20-hydroxyecdysone, pennogenin-3-O-ß-chacotrioside, dioscin were found predominantly in all samples while diosgenin was identified only in rhizomes. Further, four free sugars viz. 2-deoxyribose (116.24 ± 1.26 mg/g: leaves), fructose (454.76 ± 12.14 mg/g: rhizomes), glucose (243.21 ± 7.53 mg/g: fruits), and galactose (69.06 ± 2.14 mg/g: fruits) were found significant in respective parts of T. govanianum. Elemental analysis of targeted samples was determined by atomic absorption spectrophotometer. Heavy metals (Cd, Hg, Pd, As) were absent while micro- (Mn, Na, Zn, Cu) and macro- (Ca, Fe, Mg, K) elements were found in all samples. Furthermore, UHPLC-Q-TOF-IMS had identified 103 metabolites based on their mass fragmentation patterns and 839 were tentatively predicted using METLIN database. The multivariate statistical analysis showed organs specific clustering and variance of metabolites. Apart from this, extracts were evaluated for in vitro anticholinesterase activity, and found potentials inhibitors with IC50 values 2.02 ± 0.15 to 27.65 ± 0.89 mg/mL and 3.58 ± 0.12 to 16.81 ± 2.48 mg/mL of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme, respectively. Thus, comprehensive metabolomics and anti-cholinesterase activity of different parts of T. govanianum would lay the foundation for improving medicinal importance and health benefits of T. govanianum.


Cholinesterase Inhibitors , Metabolomics , Trillium , Metabolomics/methods , Cholinesterase Inhibitors/pharmacology , Trillium/chemistry , Trillium/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/metabolism , Phytochemicals/analysis , Chromatography, High Pressure Liquid , Rhizome/chemistry , Plant Roots/chemistry , Plant Roots/metabolism
...