Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.314
Filter
1.
Proc Biol Sci ; 291(2031): 20241279, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39317323

ABSTRACT

Species traits greatly influence interactions between plants and pollinators where floral nectar is the primary energy source fostering this mutualism. However, very little is known about how nectar traits mediate interactions in pollination networks compared with morphological traits. Here, we evaluated the role of morphological and nectar traits in shaping plant-hummingbird interaction networks along an elevation gradient. For this, we assessed patterns in floral phenotypic traits and network properties of plant species across elevations in Costa Rica. We also analysed whether plant species with generalized flower traits are ecological generalists and how morphological trait matching versus nectar traits affect interactions. We found marked variation in floral phenotypic traits and flower abundance of hummingbird-visited plant species across 10 sites along the elevation gradient. We did not find evidence for a relationship between flower morphology and nectar traits or between morphological and ecological generalization of plant species. Plant-hummingbird interaction frequency increased when the lengths of hummingbird bill and flower corolla were similar, indicating morphological matching, whereas nectar traits were unrelated to interactions. While nectar may play a difficult-to-detect secondary role within plant-hummingbird networks, our results reinforce the idea that morphological matching is an important factor in structuring ecological communities.


Subject(s)
Birds , Flowers , Plant Nectar , Pollination , Birds/physiology , Birds/anatomy & histology , Flowers/anatomy & histology , Flowers/physiology , Costa Rica , Animals , Altitude , Phenotype
2.
Proc Biol Sci ; 291(2031): 20240843, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39288801

ABSTRACT

While most models of decision-making assume that individuals assign options absolute values, animals often assess options comparatively, violating principles of economic rationality. Such 'irrational' preferences are especially common when two rewards vary along multiple dimensions of quality and a third, 'decoy' option is available. Bumblebees are models of decision-making, yet whether they are subject to decoy effects is unknown. We addressed this question using bumblebees (Bombus impatiens) choosing between flowers that varied in their nectar concentration and reward rate. We first gave bees a choice between two flower types, one higher in concentration and the other higher in reward rate. Bees were then given a choice between these flowers and either a 'concentration' or 'rate' decoy, designed to be asymmetrically dominated on each axis. The rate decoy increased bees' preference in the expected direction, while the concentration decoy did not. In a second experiment, we manipulated choices along two single reward dimensions to test whether this discrepancy was explained by differences in how concentration versus reward rate were evaluated. We found that low-concentration decoys increased bees' preference for the medium option as predicted, whereas low-rate decoys had no effect. Our results suggest that both low- and high-value flowers can influence pollinator preferences in ways previously unconsidered.


Subject(s)
Choice Behavior , Flowers , Reward , Animals , Bees/physiology , Plant Nectar , Feeding Behavior , Decision Making , Pollination
3.
Sci Rep ; 14(1): 18263, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107328

ABSTRACT

The targeted pollination strategy has shown positive results in directing honey bees to crop flowers offering nectar along with pollen as reward. Kiwifruit is a functionally dioecious species, which relies on bees to transport pollen from staminate to pistillate nectarless flowers. Following the targeted pollination procedures recently validated, we first developed a mimic odor (KM) based on kiwifruit floral volatiles for which bees showed the highest level of generalization to the natural floral scent, although the response towards pistillate flowers was higher than towards staminate flowers. Then, in the field, feeding colonies KM-scented sucrose solution resulted in higher amounts of kiwifruit pollen collected by honey bees compared to control colonies fed unscented sucrose solution. Our results support the hypothesis that olfactory conditioning bees biases their foraging preferences in a nectarless crop, given the higher visitation to target flowers despite having provided the mimic odor paired with a sugar reward.


Subject(s)
Flowers , Odorants , Plant Nectar , Pollination , Animals , Bees/physiology , Odorants/analysis , Sugars/analysis , Sugars/metabolism , Pollen/chemistry , Feeding Behavior/physiology , Actinidia , Sucrose/metabolism , Volatile Organic Compounds/analysis
4.
BMC Plant Biol ; 24(1): 814, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210281

ABSTRACT

BACKGROUND: Pollination is crucial to obtaining optimal blueberry yield and fruit quality. Despite substantial investments in seasonal beekeeping services, blueberry producers consistently report suboptimal pollinator visitation and fruit set in some cultivars. Flower morphology and floral rewards are among the key factors that have shown to contribute to pollinator attraction, however little is known about their relative importance for improving yield in the context of plant breeding. Clarifying the relationships between flower morphology, nectar reward content, pollinator recruitment, and pollination outcomes, as well as their genetic components, can inform breeding priorities for enhancing blueberry production. In the present study, we measured ten flower and nectar traits and indices of successful pollination, including fruit set, seed count, and fruit weight in 38 southern highbush blueberry genotypes. Additionally, we assessed pollinator visitation frequency and foraging behavior over two growing seasons. Several statistical models were tested to optimize the prediction of pollinator visitation and pollination success, including partial least squares, BayesB, ridge-regression, and random forest. RESULTS: Random forest models obtained high predictive abilities for pollinator visitation frequency, with values of 0.54, 0.52, and 0.66 for honey bee, bumble bee, and total pollinator visits, respectively. The BayesB model provided the most consistent prediction of fruit set, fruit weight, and seed set, with predictive abilities of 0.07, -0.08, and 0.42, respectively. Variable importance analysis revealed that genotypic differences in nectar volume had the greatest impact on honey bee and bumble bee visitation, although preferences for flower morphological traits varied depending on the foraging task. Flower density was a major driving factor attracting nectar-foraging honey bees and bumble bees, while pollen-foraging bumble bees were most influenced by flower accessibility, specifically corolla length and the length-to-width ratio. CONCLUSIONS: Honey bees comprised the majority of pollinator visits, and were primarily influenced by nectar volume and flower density. Corolla length and the length-to-width ratio were also identified as the main predictors of fruit set, fruit weight, seed count, as well as pollen-foraging bumble bee visits, suggesting that these bees and their foraging preferences may play a pivotal role in fruit production. Moderate to high narrow-sense heritability values (ranging from 0.30 to 0.77) were obtained for all floral traits, indicating that selective breeding efforts may enhance cultivar attractiveness to pollinators.


Subject(s)
Blueberry Plants , Flowers , Genotype , Plant Nectar , Pollination , Pollination/physiology , Animals , Blueberry Plants/physiology , Blueberry Plants/genetics , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Bees/physiology , Genetic Variation , Plant Breeding , Fruit/physiology , Fruit/genetics
5.
J Plant Res ; 137(5): 863-875, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38982014

ABSTRACT

Reproductive isolation is one of the mechanisms of speciation. The two currently accepted subspecies of Parodia haselbergii (P. haselbergii subsp. haselbergii and P. haselbergii subsp. graessneri) were studied regarding flower traits, phenology, breeding systems and pollination. In addition, a principal component analysis with 18 floral characters and germination tests under controlled conditions were performed for both taxa. Pollination was studied in the field, in two localities of Southern Brazil. Pollinators were recorded through photos and film. Breeding system experiments were performed by applying controlled pollinations to plants excluded from pollinators. Both taxa mostly differ in asynchronous flowering periods, floral traits (including floral part measurements and nectar concentration) and pollinators. The flowers of both subspecies are functionally protogynous and perform remarkably long lifespans (≥ 15 days), both traits being novelties for Cactaceae. Whereas the reddish flowers of P. haselbergii subsp. haselbergii (nectar concentration: ca. 18%) are pollinated by hummingbirds of Thalurania glaucopis, the greenish flowers of P. haselbergii subsp. graessneri (nectar concentration: ca. 29%) are pollinated by Augochlora bees (Halictidae). Both subspecies are self-compatible, yet pollinator-dependent. The principal component analysis evidenced that both subspecies are separated, regarding flower traits. The seeds of both subspecies performed differently in the germination tests, but the best results were recovered at 20 °C and germination considerably decreased around 30 °C. In conclusion, all these results support that both taxa are in reproductive isolation, and can be treated as different species.


Subject(s)
Cactaceae , Flowers , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/growth & development , Pollination/physiology , Cactaceae/physiology , Brazil , Animals , Germination/physiology , Reproductive Isolation , Reproduction/physiology , Species Specificity , Principal Component Analysis , Plant Nectar , Birds/physiology
6.
PLoS One ; 19(7): e0306808, 2024.
Article in English | MEDLINE | ID: mdl-39046962

ABSTRACT

Vanilla planifolia is native to the Mexican tropics. Despite its worldwide economic importance as a source of vanilla for flavoring and other uses, almost all vanilla is produced by expensive hand-pollination, and minimal documentation exists for its natural pollination and floral visitors. There is a claim that vanilla is pollinated by Melipona stingless bees, but vanilla is more likely pollinated by orchid bees. Natural pollination has not been tested in the Yucatán region of Mexico, where both vanilla and potential native bee pollinators are endemic. We document for the first time the flowering process, nectar production and natural pollination of V. planiflora, using bagged flower experiments in a commercial planting. We also assessed the frequency and visitation rates of stingless bees and orchid bees on flowers. Our results showed low natural pollination rates of V. planifolia (~ 5%). Only small stingless bees (Trigona fulviventris and Nannotrigona perilampoides) were seen on flowers, but no legitimate visits were witnessed. We verified that there were abundant Euglossa and fewer Eulaema male orchid bees around the vanilla plants, but neither visited the flowers. The introduction of a colony of the stingless bee Melipona beecheii and the application of chemical lures to attract orchid bees failed to induce floral visitations. Melipona beecheii, and male orchid bees of Euglossa viridissima and E. dilemma may not be natural pollinators of vanilla, due to lack of attraction to flowers. It seems that the lack of nectar in V. planifolia flowers reduces the spectrum of potential pollinators. In addition, there may be a mismatch between the attractiveness of vanilla floral fragrances to the species of orchid bees registered in the studied area. Chemical studies with controlled experiments in different regions would be important to further elucidate the potential pollinators of vanilla in southern Mexico.


Subject(s)
Flowers , Pollination , Vanilla , Animals , Bees/physiology , Mexico , Flowers/physiology , Behavior, Animal/physiology , Plant Nectar
7.
Ecotoxicol Environ Saf ; 282: 116723, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39024947

ABSTRACT

Honey bees (Apis mellifera) have to withstand various environmental stressors alone or in combination in agriculture settings. Plant protection products are applied to achieve high crop yield, but residues of their active substances are frequently detected in bee matrices and could affect honey bee colonies. In addition, intensified agriculture could lead to resource limitation for honey bees. This study aimed to compare the response of full-sized and nucleus colonies to the combined stressors of fungicide exposure and resource limitation. A large-scale field study was conducted simultaneously at five different locations across Germany, starting in spring 2022 and continuing through spring 2023. The fungicide formulation Pictor® Active (active ingredients boscalid and pyraclostrobin) was applied according to label instructions at the maximum recommended rate on oil seed rape crops. Resource limitation was ensured by pollen restriction using a pollen trap and stressor responses were evaluated by assessing colony development, brood development, and core gut microbiome alterations. Furthermore, effects on the plant nectar microbiome were assessed since nectar inhabiting yeast are beneficial for pollination. We showed, that honey bee colonies were able to compensate for the combined stressor effects within six weeks. Nucleus colonies exposed to the combined stressors showed a short-term response with a less favorable brood to bee ratio and reduced colony development in May. No further impacts were observed in either the nucleus colonies or the full-sized colonies from July until the following spring. In addition, no fungicide-dependent differences were found in core gut and nectar microbiomes, and these differences were not distinguishable from local or environmental effects. Therefore, the provision of sufficient resources is important to increase the resilience of honey bees to a combination of stressors.


Subject(s)
Fungicides, Industrial , Pollen , Animals , Bees/drug effects , Bees/physiology , Fungicides, Industrial/toxicity , Strobilurins/toxicity , Germany , Stress, Physiological , Plant Nectar , Carbamates/toxicity , Microbiota/drug effects , Gastrointestinal Microbiome/drug effects , Biphenyl Compounds , Niacinamide/analogs & derivatives
8.
Plant Signal Behav ; 19(1): 2383823, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39066647

ABSTRACT

Sophora davidii is a cross-pollinated plant with important ecological protection and medicinal value in China, but its seed yield is low due to backward and nonstandard production technology. Therefore, we divide the flowering period of Sophora davidii into initial, full and final flowering period, measuring the floral morphology, pollen viability, stigma receptivity, nectar volume and nectar concentration, foraging behavior of pollinators, fertilization physiology, seed yield and quality through field observation and indoor testing to explore whether the flowering period affects the floral traits, pollinator behavior and seed production of plants. Our results revealed that the nectar volume, nectar concentration, pollen viability and stigma receptivity at full flowering period were the highest. The single visit time and visit time per flower of Chinese honey bees were the longest in the full flowering period, while the number of transfer, visit frequency and number of touching stigma were the least. The visiting number of the bees was the most and the most active in the full flowering period. The bees pollination not only improved the pollen amount, germination rate, pollen tube length and the ovule number of S. davidii, but also their effect was the most obvious in full flowering period. The principal component analysis showed that pollination by Chinese honey bees during the whole flowering period of S. davidii was the best way to produce seeds. We can conclude that flowering period affects flower traits, foraging behavior of pollinators, seed yield and quality of S. davidii.


Subject(s)
Flowers , Pollination , Seeds , Pollination/physiology , Flowers/physiology , Animals , Seeds/physiology , Seeds/growth & development , Bees/physiology , Plant Nectar/metabolism , Pollen/physiology
9.
New Phytol ; 243(5): 2008-2020, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38952269

ABSTRACT

The diversity of plant-pollinator interactions is grounded in floral resources, with nectar considered one of the main floral rewards plants produce for pollinators. However, a global evaluation of the number of animal-pollinated nectar-producing angiosperms and their distribution world-wide remains elusive. We compiled a thorough database encompassing 7621 plant species from 322 families to estimate the number and proportion of nectar-producing angiosperms reliant on animal pollination. Through extensive sampling of plant communities, we also explored the interplay between nectar production, floral resource diversity, latitudinal and elevational gradients, contemporary climate, and environmental characteristics. Roughly 223 308 animal-pollinated angiosperms are nectar-producing, accounting for 74.4% of biotic-pollinated species. Global distribution patterns of nectar-producing plants reveal a distinct trend along latitudinal and altitudinal gradients, with increased proportions of plants producing nectar in high latitudes and altitudes. Conversely, tropical communities in warm and moist climates exhibit greater floral resource diversity and a lower proportion of nectar-producing plants. These findings suggest that ecological trends driven by climate have fostered the diversification of floral resources in warmer and less seasonal climates, reducing the proportion of solely nectar-producing plants. Our study provides a baseline for understanding plant-pollinator relationships, plant diversification, and the distribution of plant traits.


Subject(s)
Magnoliopsida , Plant Nectar , Pollination , Plant Nectar/metabolism , Pollination/physiology , Magnoliopsida/physiology , Animals , Altitude , Flowers/physiology , Climate , Geography
10.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38873739

ABSTRACT

Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.


Subject(s)
Feeding Behavior , Learning , Plant Nectar , Pollen , Reward , Animals , Bees/physiology , Pollen/physiology , Feeding Behavior/physiology , Learning/physiology , Flowers/physiology , Sucrose/metabolism
11.
Planta ; 260(1): 21, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847829

ABSTRACT

MAIN CONCLUSION: Petal developmental characteristics in Fumarioideae were similar at early stages, and the specialized nectar holder/pollen container formed by the outer/inner petals. The micro-morphology of these two structures, however, shows diversity in seven species. Elaborate petals have been modified to form different types, including petal lobes, ridges, protuberances, and spurs, each with specialized functions. Nectar holder and pollen container presumably have a function in plant-pollinator interactions. In Fumarioideae, four elaborate petals of the disymmetric/zygomorphic flower present architecture forming the "nectar holder" and "pollen container" structure at the bottom and top separately. In the present study, the petals of seven species in Fumarioideae were investigated by scanning electron microscopy, light microscope, and transmission electron microscopes. The results show that petal development could divided into six stages: initiation, enlargement, adaxial/abaxial differentiation, elaborate specializations (sacs, spurs, and lobes formed), extension, and maturation, while the specialized "nectar holder" and "pollen container" structures mainly formed in stage 4. "Nectar holder" is developed from the shallow sac/spur differentiated at the base of the outer petal, eventually forming a multi-organized complex structure, together with staminal nectaries (1-2) with individual sizes. A semi-closed ellipsoidal "pollen container" is developed from the apical part of the 3-lobed inner petals fused by middle lobes and attain different sizes. The adaxial epidermis cells are specialized, with more distinct punctate/dense columnar protrusions or wavy cuticles presented on obviously thickening cell walls. In addition, a large and well-developed cavity appears between the inner and outer epidermis of the petals. As an exception, Hypecoum erectum middle lobes present stamen mimicry. Elaborate petal structure is crucial for comprehending the petal diversity in Fumarioideae and provides more evidence for further exploration of the reproductive study in Papaveraceae.


Subject(s)
Flowers , Microscopy, Electron, Scanning , Plant Nectar , Pollen , Flowers/anatomy & histology , Flowers/ultrastructure , Flowers/growth & development , Pollen/ultrastructure , Microscopy, Electron, Transmission , Pollination
12.
PLoS One ; 19(6): e0303227, 2024.
Article in English | MEDLINE | ID: mdl-38924018

ABSTRACT

Animals should maximize their energy uptake while reducing the costs for foraging. For flower-visitors these costs and benefits are rather straight forward as the energy uptake equals the caloric content of the consumed nectar while the costs equal the handling time at the flower. Due to their energetically demanding lifestyle, flower-visiting bats face particularly harsh energetic conditions and thus need to optimize their foraging behavior at the flowers of the different plant species they encounter within their habitat. In flight cage experiments we examined the nectar-drinking behavior (i.e. hovering duration, nectar uptake, and the resulting feeding efficiency) of the specialized nectar-feeding bat Hylonycteris underwoodi and the more generalistic Glossophaga commissarisi at flowers of two plant species that constitute important nectar resources in the Caribbean lowland rainforests of Costa Rica and compared nectar-drinking behavior between both bat species and at both plant species. We hypothesized that the 1) specialized bat should outperform the more generalistic species and that 2) bats should generally perform better at flowers of the nectar-rich flowers of the bromeliad Werauhia gladioliflora than at the relatively nectar-poor flowers of the Solanaceae Merinthopodium neuranthum that has an extremely long flowering phase and therefore is an extremely reliable nectar resource, particularly for the specialized Hylonycteris. While we did not find substantial differences in the feeding efficiency of the generalist G. commissarisi, we observed an increased feeding efficiency of the specialized H. underwoodi at flowers of the nectar-poor M. neuranthum. This suggests that familiarity and ecological importance are more important determinants of the interaction than just morphological traits. Our results demonstrate that in addition to morphology, behavioral adaptations are also important drivers that determine the fitness of nectar-feeding bats. Both familiarity with and the ecological importance of a resource seem to contribute to shaping the interactions between pollinating bats and their plants.


Subject(s)
Chiroptera , Feeding Behavior , Flowers , Plant Nectar , Animals , Chiroptera/physiology , Feeding Behavior/physiology , Species Specificity , Costa Rica
13.
J Environ Manage ; 365: 121598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944961

ABSTRACT

This study was prompted by recent reports of the ubiquity of neonicotinoids (neonics) in environment and the likelihood of exposures and health hazards to non-target organisms. We aimed to quantify neonics levels in time- and location-match pollen and nectar samples foraged by honeybees (Apis mellifera) and characterized the temporal and spatial variations using a relative potency factor method to determine the total neonic levels, expressed as the imidacloprid-adjusted total neonics, IMIRPF (ng/g). Six pairs of pollen and nectar samples, a total of twelve samples, were collected from each of the thirty-two experimental hives during the active foraging months of March, April, and June and analyzed for eight neonics. We found 59% and 64% of pollen and nectar contained at least one neonic, respectively. Among those neonic-detected pollen and nectar samples, 45% and 77% of them contained more than one neonic, respectively. Imidacloprid and acetamiprid in pollen and clothianidin and thiamethoxam in nectar accounted for 60% and 83% detection, respectively. The highest 3-month average of IMIRPF in pollen (6.56 ng/g) and nectar (11.19 ng/g) were detected in a location with the predominant production of citrus fruit. The temporal and spatial variations of IMIRPF levels demonstrated the robustness of using paired pollen and nectar data as the bio-sensing matrices to facilitate the assessment of near-field exposure to total neonics and the delineation of risks.


Subject(s)
Pesticide Residues , Bees , Animals , Pesticide Residues/analysis , Pollen/chemistry , Neonicotinoids/analysis , Nitro Compounds/analysis , Environmental Monitoring/methods , Plant Nectar/chemistry
14.
Proc Biol Sci ; 291(2024): 20232771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864334

ABSTRACT

Land use change alters floral resource availability, thereby contributing to declines in important pollinators. However, the severity of land use impact varies by species, influenced by factors such as dispersal ability and resource specialization, both of which can correlate with body size. Here. we test whether floral resource availability in the surrounding landscape (the 'matrix') influences bee species' abundance in isolated remnant woodlands, and whether this effect varies with body size. We sampled quantitative flower-visitation networks within woodland remnants and quantified floral energy resources (nectar and pollen calories) available to each bee species both within the woodland and the matrix. Bee abundance in woodland increased with floral energy resources in the surrounding matrix, with strongest effects on larger-bodied species. Our findings suggest important but size-dependent effects of declining matrix floral resources on the persistence of bees in remnant woodlands, highlighting the need to incorporate landscape-level floral resources in conservation planning for pollinators in threatened natural habitats.


Subject(s)
Bees , Body Size , Energy Metabolism , Forests , Pollination , Population Density , Bees/anatomy & histology , Bees/metabolism , Plant Nectar/metabolism , Biodiversity , Animals
15.
New Phytol ; 243(5): 1991-2007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38874372

ABSTRACT

A few Capsicum (pepper) species produce yellow-colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown. A combination of analytical biochemistry techniques was used to identify the pigment that gives Capsicum baccatum and Capsicum pubescens nectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment. High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin. Some Capsicum nectars contain a yellow-colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar-feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in some Capsicum nectars has several functions.


Subject(s)
Capsicum , Plant Nectar , Riboflavin , Capsicum/physiology , Capsicum/growth & development , Riboflavin/metabolism , Plant Nectar/chemistry , Bees/physiology , Animals , Flowers/physiology , Reactive Oxygen Species/metabolism , Color
16.
Sci Rep ; 14(1): 13856, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879632

ABSTRACT

Floral nectar sugar composition is assumed to reflect the nutritional demands and foraging behaviour of pollinators, but the relative contributions of evolutionary and abiotic factors to nectar sugar composition remain largely unknown across the angiosperms. We compiled a comprehensive dataset on nectar sugar composition for 414 insect-pollinated plant species across central Europe, along with phylogeny, paleoclimate, flower morphology, and pollinator dietary demands, to disentangle their relative effects. We found that phylogeny was strongly related with nectar sucrose content, which increased with the phylogenetic age of plant families, but even more strongly with historic global surface temperature. Nectar sugar composition was also defined by floral morphology, though it was not related to our functional measure of pollinator dietary demands. However, specialist pollinators of current plant-pollinator networks predominantly visited plant species with sucrose-rich nectar. Our results suggest that both physiological mechanisms related to plant water balance and evolutionary effects related to paleoclimatic changes have shaped floral nectar sugar composition during the radiation and specialisation of plants and pollinators. As a consequence, the high velocity of current climate change may affect plant-pollinator interaction networks due to a conflicting combination of immediate physiological responses and phylogenetic conservatism.


Subject(s)
Biological Evolution , Flowers , Phylogeny , Plant Nectar , Pollination , Plant Nectar/metabolism , Plant Nectar/chemistry , Pollination/physiology , Flowers/metabolism , Flowers/physiology , Sugars/metabolism , Sugars/analysis , Animals , Insecta/physiology , Sucrose/metabolism , Europe , Magnoliopsida/physiology , Magnoliopsida/metabolism , Climate Change
17.
Food Microbiol ; 122: 104544, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839230

ABSTRACT

The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.


Subject(s)
Enterohemorrhagic Escherichia coli , Fragaria , Fruit , Hot Temperature , Fruit/microbiology , Fragaria/microbiology , Enterohemorrhagic Escherichia coli/growth & development , Food Microbiology , Colony Count, Microbial , Microbial Viability , Plant Nectar/chemistry , Escherichia coli O157/growth & development , Food Contamination/analysis , Food Contamination/prevention & control , Kinetics
18.
J Chem Ecol ; 50(7-8): 397-408, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38760625

ABSTRACT

Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.


Subject(s)
Honey , Pyrethrins , Animals , Bees/drug effects , Honey/analysis , Pyrethrins/toxicity , Pyrethrins/analysis , Phytochemicals/chemistry , Phytochemicals/analysis , Insecticides/toxicity , Insecticides/analysis , Lethal Dose 50 , Plant Nectar/chemistry , Robinia/chemistry
19.
Environ Toxicol Chem ; 43(7): 1497-1508, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38819074

ABSTRACT

After regulation of pesticides, determination of their persistence in the environment is an important indicator of effectiveness of these measures. We quantified concentrations of two types of systemic insecticides, neonicotinoids (imidacloprid, acetamiprid, clothianidin, thiacloprid, and thiamethoxam) and butenolides (flupyradifurone), in off-crop nontarget media of hummingbird cloacal fluid, honey bee (Apis mellifera) nectar and honey, and wildflowers before and after regulation of imidacloprid on highbush blueberries in Canada in April 2021. We found that mean total pesticide load increased in hummingbird cloacal fluid, nectar, and flower samples following imidacloprid regulation. On average, we did not find evidence of a decrease in imidacloprid concentrations after regulation. However, there were some decreases, some increases, and other cases with no changes in imidacloprid levels depending on the specific media, time point of sampling, and site type. At the same time, we found an overall increase in flupyradifurone, acetamiprid, thiamethoxam, and thiacloprid but no change in clothianidin concentrations. In particular, flupyradifurone concentrations observed in biota sampled near agricultural areas increased twofold in honey bee nectar, sevenfold in hummingbird cloacal fluid, and eightfold in flowers after the 2021 imidacloprid regulation. The highest residue detected was flupyradifurone at 665 ng/mL (parts per billion [ppb]) in honey bee nectar. Mean total pesticide loads were highest in honey samples (84 ± 10 ppb), followed by nectar (56 ± 7 ppb), then hummingbird cloacal fluid (1.8 ± 0.5 ppb), and least, flowers (0.51 ± 0.06 ppb). Our results highlight that limited regulation of imidacloprid does not immediately reduce residue concentrations, while other systemic insecticides, possibly replacement compounds, concurrently increase in wildlife. Environ Toxicol Chem 2024;43:1497-1508. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Insecticides , Neonicotinoids , Nitro Compounds , Neonicotinoids/analysis , Animals , Insecticides/analysis , Nitro Compounds/analysis , Pyridines/analysis , Bees , Environmental Monitoring , Birds , Plant Nectar/chemistry , Honey/analysis , Thiamethoxam , Flowers/chemistry , Guanidines , Thiazines , Thiazoles , 4-Butyrolactone/analogs & derivatives
20.
New Phytol ; 243(2): 753-764, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714871

ABSTRACT

Plants can evolve rapidly after pollinator changes, but the response of different floral traits to novel selection can vary. Floral morphology is often expected to show high integration to maintain pollination accuracy, while nectar traits can be more environmentally sensitive. The relative role of genetic correlations and phenotypic plasticity (PP) in floral evolution remains unclear, particularly for nectar traits, and can be studied in the context of recent pollinator changes. Digitalis purpurea shows rapid recent evolution of corolla morphology but not nectar traits following a range expansion with hummingbirds added as pollinators. We use this species to compare PP, heritability, evolvability and integration of floral morphology and nectar in a common garden. Morphological traits showed higher heritability than nectar traits, and the proximal section of the corolla, which regulates access to nectar and underwent rapid change in introduced populations, presented lower integration than the rest of the floral phenotype. Nectar was more plastic than morphology, driven by highly plastic sugar concentration. Nectar production rate showed high potential to respond to selection. These results explain the differential rapid evolution of floral traits previously observed in this species and show how intrafloral modularity determines variable evolutionary potential in morphological and nectar traits.


Subject(s)
Biological Evolution , Flowers , Phenotype , Plant Nectar , Pollination , Flowers/anatomy & histology , Flowers/physiology , Pollination/physiology , Quantitative Trait, Heritable , Environment , Animals , Birds/anatomy & histology , Birds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL