Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
1.
J Oleo Sci ; 73(9): 1149-1158, 2024.
Article in English | MEDLINE | ID: mdl-39218636

ABSTRACT

This study used the Soxhlet apparatus to investigate honne oil (HO) extraction optimization. Twenty-four (24) experiments were formulated using the D-optimal design considering extraction time (2 - 6 h), honne weight (20 - 60 g), and particle size using acetone. The yield, functional groups, physical and chemical properties, and fatty acid composition of the HO were assessed. The optimal extraction conditions established were a time of 6 h, fine particle size, and honne weight of 20 g with a high HO yield of 70.85 wt.%. The HO had an acid value and kinematic viscosity of 35.68 mg KOH/g oil and 52.96 mm 2 /s, respectively. The observed coefficient of determination of 0.9870 suggests that the model developed for the process is efficient. The functional groups and fatty acids of the HO confirm that it is highly unsaturated with the regions of trans-unsaturation bending vibrations and double bond stretching. The properties of the HO demonstrate that it could be used to produce biodiesel, notwithstanding the necessity for pretreatment.


Subject(s)
Calophyllum , Particle Size , Plant Oils , Seeds , Plant Oils/isolation & purification , Plant Oils/chemistry , Seeds/chemistry , Calophyllum/chemistry , Viscosity , Fatty Acids/isolation & purification , Fatty Acids/analysis , Fatty Acids/chemistry , Time Factors , Acetone/chemistry , Biofuels , Chemical Phenomena
2.
Food Res Int ; 192: 114745, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147551

ABSTRACT

Chinese sour jujube is an important fruit for both medicine and food and effects various biological activities. Although the Chinese sour jujube seed (Ziziphi spinosae semen) is rich in oil, its lipid profiles is significantly affected by the extraction process. However, no studies to date have comprehensively analysed the lipid composition and bioactivity of Ziziphi spinosae semen oil processed using different methods. In this study, we compared the effects of commonly-used pressed, ultrasonic-assisted, and Soxhlet extraction methods on the lipid composition, characteristics, and antioxidant properties of Ziziphi spinosae semen oil. Nineteen subclasses and 390 lipid molecular species were identified, of which 24 lipid molecular species could potentially be used as biomarkers for different processing methods. Correlation analysis revealed that 57 lipids were significantly correlated with the antioxidant capacity (r > 0.9 and P < 0.05). These results indicate that Ziziphi spinosae semen oil is rich in bioactive lipids. These data greatly expand our understanding of the bioactive lipids of Ziziphi spinosae semen oil. Additionally, it could provide useful information for Ziziphi spinosae semen oil applications in functional products or the food industry and new insights into the effects of active vegetable oil processing.


Subject(s)
Antioxidants , Lipids , Plant Oils , Seeds , Ziziphus , Antioxidants/analysis , Antioxidants/chemistry , Ziziphus/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Seeds/chemistry
3.
J Chromatogr A ; 1733: 465240, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39154494

ABSTRACT

Supercritical fluid extraction (SFE) stands out as an incredibly efficient, environmentally conscious, and fast method for obtaining essential oils (EOs) from plants. These EOs are abundant in aromatic compounds that play a crucial role in various industries such as food, fragrances, cosmetics, perfumery, pharmaceuticals, and healthcare. While there is a wealth of existing literature on using supercritical fluids for extracting plant essential oils, there's still much to explore in terms of combining different techniques to enhance the SFE process. This comprehensive review presents a sophisticated framework that merges SFE with EO extraction methods. This inclusive categorization encompasses a range of methods, including the integration of pressurized liquid processes, ultrasound assistance, steam distillation integration, microfluidic techniques, enzyme integration, adsorbent facilitation, supercritical antisolvent treatments, molecular distillation, microwave assistance, milling process and mechanical pressing integration. Throughout this in-depth exploration, we not only elucidate these combined techniques but also engage in a thoughtful discussion about the challenges they entail and the array of opportunities they offer within the realm of SFE for EOs. By dissecting these complexities, our objective is to tackle the current challenges associated with enhancing SFE for commercial purposes. This endeavor will not only streamline the production of premium-grade essential oils with improved safety measures but also pave the way for novel applications in various fields.


Subject(s)
Chromatography, Supercritical Fluid , Oils, Volatile , Chromatography, Supercritical Fluid/methods , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Distillation/methods , Plant Oils/chemistry , Plant Oils/isolation & purification , Microwaves
4.
J Oleo Sci ; 73(8): 1113-1124, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39019619

ABSTRACT

The essential oil extracted from the flower buds of Lonicerae japonicae (LJEO) was employed in the high-temperature (65℃) accelerated preservation of sunflower oil. In the present investigation, the addition of the essential oil at a concentration of 800 ppm significantly inhibited the decrease in the oxidative stability of sunflower oil. This positive effect was achieved by significantly hindering the reduction in acidity value (AV), peroxide value (PV), p-anisidine value (AnV), the total oxidation value (TOTOX) (p < 0.01), and the levels of thiobarbituric acid reactive substance (TBARS), the absorbance at 232/268 nm (K232/K268) and total polar compounds (TPC) (p < 0.01). Besides, it also significantly enhances the sensory attributes of Maye, including taste, flavor, and appearance, improving its overall acceptability through the addition of certain potential fragrance molecules (p < 0.01). Furthermore, one of the primary chemical compounds in LJEO, eugenol, has demonstrated significant natural antioxidant properties in the traditional deep-frying procedure for the product, Maye. Consequently, together with eugenol, the essential oil LJEO could be employed as a possible effective antioxidant for the typical long-term preservation and even the traditional deep-frying procedures, and developed as effective antioxidant extracted from plants for the whole food industry.


Subject(s)
Antioxidants , Cooking , Flowers , Hot Temperature , Lonicera , Oils, Volatile , Oxidation-Reduction , Sunflower Oil , Oils, Volatile/pharmacology , Oils, Volatile/isolation & purification , Oils, Volatile/chemistry , Flowers/chemistry , Sunflower Oil/chemistry , Lonicera/chemistry , Antioxidants/pharmacology , Cooking/methods , Oxidation-Reduction/drug effects , Eugenol/pharmacology , Food Preservation/methods , Taste , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Thiobarbituric Acid Reactive Substances
5.
Ultrason Sonochem ; 109: 106992, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029210

ABSTRACT

The objective of this study was to optimize the ultrasound-assisted extraction (UAE) of Inula viscosa, focusing on the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant capacity and to evaluate its antioxidant effect in sunflower oil (SFO) storage. A water-ethanol binary solvent system was applied to extract bioactive components sustainably. Extraction parameters (temperature, time, ethanol concentration, and solvent-to-solid ratio) were optimized using a central composite rotatable design, achieving high accuracy (R2 > 0.974). Optimum conditions were 54 % (v/v) ethanol concentration, 60 °C, 31 min, and a 15 (mL/g) solvent-to-solid ratio resulting in a yield of 24.72 g/g (%), TPC of 489.54 mg gallic acid/g, TFC of 149.81 mg quercetin/g, and IC50 of 18.21 µg/mL. UAE outperformed Soxhlet extraction in yield, bioactive compound composition, and antioxidant capacity. Strong correlations were found between TPC, TFC, and antioxidant capacity, with TFC having a more significant impact. I. viscosa extract was found to be a potent antioxidant and delay the oxidation of SFO during accelerated storage due to peroxide value and oxidative induction time analysis. Microstructural analysis illuminated the structural changes induced by the extraction methods. In conclusion, this study not only optimized UAE of I.viscosa, showing superior efficiency and antioxidant capacity, but also demonstrated the practical application of I.viscosa in enhancing sunflower oil shelf life, thereby providing valuable insights for the field of food engineering and antioxidant research.


Subject(s)
Antioxidants , Chemical Fractionation , Inula , Plant Oils , Sunflower Oil , Ultrasonic Waves , Sunflower Oil/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Plant Oils/chemistry , Plant Oils/isolation & purification , Chemical Fractionation/methods , Inula/chemistry , Phenols/isolation & purification , Phenols/chemistry , Flavonoids/isolation & purification , Flavonoids/chemistry , Temperature
6.
Food Chem ; 457: 140146, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901338

ABSTRACT

A novel method is introduced for extracting and enriching Cd(II) and Pb(II) from edible oils using glutathione disulfide (GSSG) as both an extractant and a phase-separation agent. The ions in the oils were initially extracted into an aqueous solution containing GSSG. After mixing the solution with acetonitrile at the appropriate volume ratio, a new phase formed, resulting in enrichment of the analytes. The experimental conditions were optimized using response surface methodology with a central composite design. Under optimal conditions, the method offered a combined enrichment factor of >660, with combined extraction efficiencies of 84.31% and 83.35% for Cd(II) and Pb(II), respectively. Finally, the method was conjugated to capillary electrophoresis to determine Cd(II) and Pb(II) in edible oil samples, with detection limits of 0.45 and 1.24 ppb, respectively. In comparison to traditional approaches, the GSSG-based method demonstrates rapidity, efficiency, and recyclability in extracting heavy metal ions from complex matrices.


Subject(s)
Cadmium , Electrophoresis, Capillary , Food Contamination , Glutathione Disulfide , Lead , Plant Oils , Cadmium/isolation & purification , Cadmium/chemistry , Cadmium/analysis , Electrophoresis, Capillary/methods , Lead/isolation & purification , Lead/analysis , Lead/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Food Contamination/analysis , Glutathione Disulfide/analysis , Glutathione Disulfide/chemistry , Glutathione Disulfide/isolation & purification , Chemical Fractionation/methods
7.
J Oleo Sci ; 73(7): 963-976, 2024.
Article in English | MEDLINE | ID: mdl-38945925

ABSTRACT

The objective of this research was to evaluate the efficiency of aqueous enzymatic extraction (AEE) to obtain oil from hemp seeds (Cannabis sativa L.) grown in northern Morocco. Optimisation of AEE extraction parameters, including pH, enzyme concentration (hemicellulase, protease and pectinase), temperature and incubation time, to maximize oil yield was achieved using response surface methodology with a central composite design. For comparison, the solvent extraction (Soxhlet) (SE) method was also used. Optimized hydrolysis conditions involved incubation for 4 hours at 60°C with a pH of 6.5, using a multi-enzyme preparation comprising protease, hemicellulase and pectinase at concentrations of 55, 202.5 and 234 U/mg, respectively. Referring to the conventional Soxhlet extraction (SE), Aqueous Enzymatic Extraction (AEE) achieved a 30.65% oil recovery rate under the optimized parameters mentioned above. The use of enzymes produced an oil that was more stable against oxidation than the solvent-extracted oil, with a peroxide value (PV) of 19.54 and 47.87 meq O 2 /kg, respectively. Furthermore, HPLC-DAD analysis of tocopherol content indicated a higher total tocopherol content (547.2 mg/kg) in Aqueous Enzymatic Extraction (AEE) compared to Soxhlet Extraction (SE) (513.51 mg/kg), with γ-tocopherol being the predominant form. No significant differences in fatty acid composition were observed between the two extraction methods with linoleic acid and alpha-linolenic acid being the predominant constituents.


Subject(s)
Cannabis , Glycoside Hydrolases , Peptide Hydrolases , Plant Oils , Polygalacturonase , Seeds , Cannabis/chemistry , Polygalacturonase/metabolism , Plant Oils/chemistry , Plant Oils/isolation & purification , Glycoside Hydrolases/metabolism , Seeds/chemistry , Peptide Hydrolases/metabolism , Hydrolysis , Liquid-Liquid Extraction/methods , Food Quality , Water , Tocopherols/analysis , Tocopherols/isolation & purification , Hydrogen-Ion Concentration , Temperature , Solvents/chemistry , Green Chemistry Technology/methods
8.
J Sep Sci ; 47(11): e2400195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38819780

ABSTRACT

This study presents a comprehensive strategy for the selection and optimization of solvent systems in countercurrent chromatography (CCC) for the effective separation of compounds. With a focus on traditional organic solvent systems, the research introduces a "sweet space" strategy that merges intuitive understanding with mathematical accuracy, addressing the significant challenges in solvent system selection, a critical bottleneck in the widespread application of CCC. By employing a combination of volume ratios and graphical representations, including both regular and trirectangular tetrahedron models, the proposed approach facilitates a more inclusive and user-friendly strategy for solvent system selection. This study demonstrates the potential of the proposed strategy through the successful separation of gamma-linolenic acid, oleic acid, and linoleic acid from borage oil, highlighting the strategy's effectiveness and practical applicability in CCC separations.


Subject(s)
Countercurrent Distribution , Plant Oils , Solvents , Solvents/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/isolation & purification , gamma-Linolenic Acid
9.
Chem Biodivers ; 21(8): e202400591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795371

ABSTRACT

Assessment of Moroccan Cannabis sativa Seed Oil: Chemical Analysis and Evaluation of Antioxidant, Toxicological, and Antinociceptive Effects. by K. Raoui et al., Cadi Ayyad University, Marrakech, Morocco. Cannabis sativa L., locally known as "El kif", belongs to the Cannabaceae family. This study aims to conduct a chemical analysis of Cannabis sativa seed oil (CSSO) and assess its acute toxicity, antioxidant properties, and analgesic effects. The chemical analysis was performed using gas chromatography and mass spectrometry (GC/MS) to identify fatty acids (FAs) contents. Antioxidant activity was evaluated in vitro using the (2,2-diphenyl-1-picrylhydrazyl) DPPH radical scavenging method and the (ferric reducing antioxidant power) FRAP method. Concurrently, acute toxicity, along with antinociceptive activity, was studied through three distinct animal models: writhing test, formalin test, and hot plate test. The results revealed that linoleic acid, oleic acid, α-linolenic acid, and palmitic acid were the main components of CSSO. The LD50 of CSSO was greater than 5 g/kg, indicating low toxicity. Additionally, CSSO exhibited a significant content of flavonoids and total polyphenols, along with notable antioxidant activity with important values. The results indicated a significant increase in thermal stimulus latency, a reduction in the number of writhes induced by acetic acid, and a decrease in licking time in both phases of the formalin test. In conclusion, this study suggests promising results for CSSO, emphasizing its potential as a therapeutic agent.


Subject(s)
Analgesics , Antioxidants , Cannabis , Plant Oils , Seeds , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/isolation & purification , Cannabis/chemistry , Animals , Mice , Morocco , Seeds/chemistry , Male , Gas Chromatography-Mass Spectrometry , Biphenyl Compounds/antagonists & inhibitors , Picrates/antagonists & inhibitors , Female
10.
J Oleo Sci ; 73(5): 717-727, 2024.
Article in English | MEDLINE | ID: mdl-38692894

ABSTRACT

The anti-diabetic effect of Ficus carica (Fig) seed oil was investigated. 4 groups with 6 rats in each group were used in the experiment as control, diabetes (45 mg/kg streptozotocin), fig seed oil (FSO) (6 mL/ kg/day/rat by gavage) and diabetes+FSO groups. Glucose, urea, creatinine, ALT, AST, GSH, AOPP and MDA analyses were done. Pancreatic tissues were examined histopathologically. When fig seed oil was given to the diabetic group, the blood glucose level decreased. In the diabetes+FSO group, serum urea, creatinine, AOPP, MDA levels and ALT and AST activities decreased statistically significantly compared to the diabetes group, while GSH levels increased significantly, histopathological, immunohistochemical, and immunofluorescent improvements were observed. It has been shown for the first time that FSO has positive effects on blood glucose level and pancreatic health. It can be said that the protective effect of fig seed oil on tissues may be due to its antioxidant activity.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Ficus , Hypoglycemic Agents , Pancreas , Plant Oils , Seeds , Streptozocin , Animals , Ficus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Plant Oils/pharmacology , Plant Oils/isolation & purification , Seeds/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Blood Glucose/metabolism , Male , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Antioxidants/pharmacology , Rats , Rats, Wistar , Creatinine/blood
11.
Chem Biodivers ; 21(7): e202400062, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743868

ABSTRACT

Acrylamide (ACR), an industrial compound, causes both male and female reproductive toxicity. Lepidium sativum seeds (L. sativum) (Garden cress) are known for their health benefits as antioxidant, antiasthmatic, anticoagulant, anti-inflammatory, and analgesic agents. Therefore, this study aimed to investigate the phytochemistry and nutritional value of L. sativum seeds oil for attenuating the ovarian damage induced by acrylamide in rats. The phytochemical investigation of the seeds revealed the presence of vitamins, potassium, iron, sugar and amino acids. Twenty eight compounds from the unsaponifiable fraction and twenty three compounds from the saponifiable fraction were identified. Three sterols and two triterpenes were isolated and identified as ß-sitosterol (1), ▵5-avenasterol (2), friedelanol (3), stigmasta-4, 22-dien-3-one (4), and ursolic acid (5). Treatment of acrylamide-induced rats with L. sativum seeds oil ameliorated prolactin (PRL), progesterone (P4), estradiol (E2), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF- α) with variable degrees. The histopathological findings of ovaries supported these results. In conclusion, compounds (3-5) were isolated for the first time from L. sativum seeds oil. The seeds oil attenuated the ovarian damage and could potentially be a new supplemental agent against female infertility.


Subject(s)
Acrylamide , Lepidium sativum , Ovary , Oxidative Stress , Plant Oils , Seeds , Animals , Female , Rats , Acrylamide/toxicity , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , DNA Damage/drug effects , Lepidium sativum/chemistry , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Oxidative Stress/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Rats, Wistar , Seeds/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
12.
Chem Biodivers ; 21(7): e202400523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38814629

ABSTRACT

Cold-pressed Camelina oil is a traditional oil registered as a traditional food in Poland. Camelina oil has health-promoting properties and high oxidative stability. This may be due to the presence of various bioactive antioxidant compounds such as carotenoids, sterols and polyphenols. Bioactive compounds content in Camelina oil depends mainly on the varieties and on the conditions under which the crop was grown therefore the aim of the research was to analyse antioxidant bioactive compounds in oil from different cultivars of Camelina sativa seeds and to determine their relationship with oil parameters.


Subject(s)
Antioxidants , Brassicaceae , Plant Oils , Poland , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Plant Oils/chemistry , Plant Oils/isolation & purification , Plant Oils/pharmacology , Brassicaceae/chemistry , Brassicaceae/metabolism , Seeds/chemistry , Polyphenols/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Polyphenols/analysis
13.
Fitoterapia ; 175: 105937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565381

ABSTRACT

Misuse of synthetic pesticides and antimicrobials in agriculture and the food industry has resulted in food contamination, promoting resistant pests and pathogen strains and hazards for humanity and the environment. Therefore, ever-increasing concern about synthetic chemicals has stimulated interest in eco-friendly compounds. Ferulago angulata (Schltdl.) Boiss. and Ferula assa-foetida L., as medicinal species with restricted natural distribution and unknown biological potential, aimed at investigation of their essential oil (EO) biological properties, were subjected. Z-ß-Ocimene and Z-1-Propenyl-sec-butyl disulfide molecules were identified as the major composition of the essential oil of the fruits of F. angulata and F. assa-foetida, respectively. In vitro antimicrobial activity and membrane destruction investigation by scanning electron microscopy imaging illustrated that F. angulata EO had potent antibacterial activity. Besides, the EOs of both plants exhibited significant anti-yeast activity against Candida albicans. In relation to insecticidal activity, both EOs indicated appropriate potential against Ephestia kuehniella; however, the F. assa-foetida EO had more toxicity on the studied pest. Among several insecticidal-related targets, acetylcholinesterase was identified as the main target of EO based on the molecular docking approach. Hence, in line with in vitro results, in silico evaluation determined that F. assa-foetida has a higher potential for inhibiting acetylcholinesterase and, consequently, better insecticide properties. Overall, in addition to the antioxidant properties of both EO, F. angulata EO could serve as an effective prevention against microbial spoilage and foodborne pathogens, and F. assa-foetida EO holds promise as a multi-purpose and natural biocide for yeast contamination and pest management particularly against E. kuehniella.


Subject(s)
Ferula , Insecticides , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Ferula/chemistry , Insecticides/pharmacology , Insecticides/isolation & purification , Insecticides/chemistry , Animals , Candida albicans/drug effects , Fruit/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/isolation & purification , Molecular Docking Simulation , Food Microbiology , Microbial Sensitivity Tests , Plant Oils/pharmacology , Plant Oils/chemistry , Plant Oils/isolation & purification , Computer Simulation , Antifungal Agents/pharmacology , Antifungal Agents/isolation & purification , Antifungal Agents/chemistry
14.
J Sci Food Agric ; 104(9): 5001-5009, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38268087

ABSTRACT

BACKGROUND: Cumin (Cuminum cyminum L.) is one of the most important medicinal plants, and its essential oil (EO) varies between 2.5% to 5% depending on differences in climate. The extraction method plays a significant role in the market price of EOs. In this study, the effect of atmospheric cold plasma (ACP) pretreatments (using air and argon (Ar) gases) for different times on the EO yield and on the quality, color, surface morphology, and wettability of cumin seeds were studied. RESULTS: The scanning electron microscope analysis results revealed that the formation of fissures and cracks caused by ACP pretreatments was directly related to increasing the efficiency of EO extraction. Comparing the two gas treatments, the highest total color changes ΔE were related to the Ar and the lowest to the air treatment, and the highest amount of browning index was related to the Ar ACP pretreatment. In general, the ACP pretreatments improved the extraction efficiency compared with the control, so that the highest increase was observed in the Ar ACP pretreatment at the rate of 44%. Ar ACP pretreatments were observed to have a higher extraction efficiency than air ACP did. In the Ar ACP-treated samples, cumin aldehyde, as the most important component of EO, was increased compared with the control (47.9-56.4%). CONCLUSION: The data obtained in this study showed that ACP pretreatment of cumin seeds could increase EO extraction efficacy. Thus, ACP could be a promising technique to enhance the cumin seed EO extraction. © 2024 Society of Chemical Industry.


Subject(s)
Cuminum , Oils, Volatile , Plasma Gases , Seeds , Cuminum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plasma Gases/chemistry , Seeds/chemistry , Plant Oils/chemistry , Plant Oils/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification
15.
J Oleo Sci ; 71(2): 201-213, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35034941

ABSTRACT

Baru (Dipteryx alata) almond is an emerging nut from the Brazilian savannah, that presents unique flavor and an interesting specialty oil. In this study, we aimed at investigating the effects of pressure, temperature, type (alcohol and/or water), and concentration of polar cosolvent on the extraction yield and tocopherol contents of baru oil obtained by supercritical-CO2 extraction (SC-CO2); and to investigate the effect of temperature and pressure on phytosterol, phenolic, and volatile compounds' profile in the oil when H2O was the cosolvent. Baru oil extracted with SC-CO2 using alcohol as a cosolvent showed a higher extraction yield (20.5-31.1%) than when using H2O (4.16-22.7%). However, when 0.3% H2O was used as cosolvent, baru oils presented the highest γ-tocopherol (107 and 43.7 mg/100 g) and total tocopherol (212 and 48.7 mg/100 g) contents, depending on the temperature and pressure used (50°C and 10 MPa or 70°C and 30 MPa, respectively). Consequently, the lowest pressure (10 MPa) and temperature (50°C) values resulted in baru oils with better γ/α-ratio, and the highest contents of ß-sitosterol (107 mg/100 g) and phenolic compounds (166 mg/100 g). However, the highest pressure (30 MPa) and temperature (70°C) values improved the volatile profile of oils. Therefore, although alcohol as a cosolvent improved oil yield, small amounts of H2O provided a value-added baru oil with either high content of bioactive compounds or with a distinctive volatile profile by tuning temperature and pressure used during SC-CO2 extraction.


Subject(s)
Carbon Dioxide/chemistry , Dipteryx/chemistry , Liquid-Liquid Extraction/methods , Plant Oils/chemistry , Plant Oils/isolation & purification , Solvents/chemistry , Tocopherols/analysis , Water/chemistry , Alcohols/chemistry , Hydroxybenzoates/analysis , Phytosterols/analysis , Pressure , Temperature , Volatile Organic Compounds/analysis
16.
Sci Rep ; 12(1): 857, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039591

ABSTRACT

Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.


Subject(s)
Antifungal Agents , Fusarium/drug effects , Fusarium/pathogenicity , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gene Expression/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Lavandula/chemistry , Oils, Volatile/pharmacology , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Oils/pharmacology , Sorghum/genetics , Sorghum/microbiology , Transcription Factors/genetics , Drug Resistance, Fungal , Gene Expression/genetics , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Transcription Factors/metabolism
17.
PLoS One ; 17(1): e0262335, 2022.
Article in English | MEDLINE | ID: mdl-35073347

ABSTRACT

Zingiber ottensii, is widely used in Asian traditional remedies for the treatment of many diseases. The present study explores anticancer activity of Z. ottensii essential oil (ZOEO) and its nanoformulations. ZOEO obtained from hydrodistillation of Z. ottensii fresh rhizomes was analysis using gas chromatography mass spectroscopy. Zerumbone (25.21%) was the major compound of ZOEO followed by sabinene (23.35%) and terpene-4-ol (15.97%). Four types of ZOEO loaded nanoformulations; nanoemulsion, microemulsion, nanoemulgels, and microemulgel, were developed. The average droplet size of the nanoemulsion and microemulsion was significantly smaller than that of the nanoemulgel and microemulgel. Comparison with other essential oils of plants of the same family on anticancer activity against A549, MCF-7, HeLa, and K562, ZOEO showed the highest cytotoxicity with IC50 of 43.37±6.69, 9.77±1.61, 23.25±7.73, and 60.49±9.41 µg/mL, respectively. Investigation using flow cytometry showed that ZOEO significantly increased the sub-G1 populations (cell death) in cell cycle analysis and induced cell apoptosis by apoptotic analysis. The developed nanoformulations significantly enhanced cytotoxicity of ZOEO, particularly against MCF-7 with the IC50 of 3.08±2.58, 0.74±0.45, 2.31±0.91, and 6.45±5.84 µg/mL, respectively. Among the four nanoformulations developed in the present study, nanoemulsion and microemulsion were superior to nanoemulgel and microemulgel in delivering ZOEO into cancer cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Nanoparticle Drug Delivery System/therapeutic use , Oils, Volatile/therapeutic use , Plant Extracts/therapeutic use , Plant Oils/therapeutic use , Zingiberaceae/chemistry , A549 Cells/drug effects , Antineoplastic Agents/administration & dosage , Cell Line, Tumor/drug effects , Emulsions , Flow Cytometry , HeLa Cells/drug effects , Humans , MCF-7 Cells/drug effects , Oils, Volatile/isolation & purification , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Plant Oils/administration & dosage , Plant Oils/isolation & purification
18.
J Sci Food Agric ; 102(2): 732-739, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34173245

ABSTRACT

BACKGROUND: Ultrasound-assisted extraction of the intermediate product from the mechanical expression of hemp (Cannabis sativa L.) seed oil was investigated to improve the overall expression yield without compromising oil quality. Complementary ultrasound technology was used as an out-of-line treatment carried out at 20 kHz frequency and optimized with respect to amplitude (80 and 152 µm), sonication time (2, 10, 20 min) and to the hemp paste properties, in particular its particle size and hydration, which drive the compressibility of the press cake. RESULTS: Under the conditions evaluated, the optimal ultrasound treatment was found to be the one applied on the hydrated press cake for 2 min at 152 µm, which resulted in an oil yield of 13.4%, with an increase in extraction efficiency equal to 73% with respect to the control (untreated press cake). Sonication had a positive effect on the press cake texture and on the extracted oil antioxidant activity. Soaked samples treated for 2 min at 152 µm yielded the lowest hardness. Oil recovered from soaked samples treated at 80 µm and 152 µm ultrasound for 2 min had the highest antioxidant capacity. CONCLUSIONS: The technological results gathered in the present investigation are preliminary to the design and engineering of scaled-up equipment that combines the mechanical screw expression and the in-line ultrasound unit. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cannabis/chemistry , Food Handling/methods , Plant Oils/isolation & purification , Sonication/methods , Animals , Antioxidants/analysis , Antioxidants/isolation & purification , Food Handling/instrumentation , Plant Oils/analysis , Ultrasonics
19.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 83-88, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34817335

ABSTRACT

Depressive anxiety is one of the most emotional disorders in our industrial societies. Many treatments of phobias exist and are based on plant extracts therapies, which play an important role in the amelioration of the behavior. Our study aimed to evaluate the adaptogenic activity of different essential oils provided from local plants: Cinnamomum camphora (Camphora), Eucalyptus globulus (Blue gum), Lavandula stœchas (Topped lavender) and Rosmarinus officinalis (Rosemary) on Wistar rats. The adaptogenic activity was evaluated on the elevated plus-maze. The efficacy of the extract (200 mL/kg) was compared with the standard anxiolytic drug Diazepam® 1 mg. Animals administered by the essential oil of Lavandula stœchas, Cinnamomum camphora, Rosmarinus officinalis and Eucalyptus globulus showed a behavior similar to those treated with Diazepam®. For groups treated with the following essential oils: Rosmarinus officinalis, Lavandula stoechas and Cinnamomum camphora at a dose of 200 mL/kg, we notice an increase in the time spent on the open arms of the elevated plus-maze and a decrease in time spent on the closed arms of the elevated plus-maze, especially for Rosmarinus officinalis, which explains the anxiolytic effect of these plants. We also notice a decrease in the number of entries in closed arms, open arms and the number of passing to the central square. The increase in the number of entries to open arms with Eucalyptus globulus essential oil shows a reduction in anxiety behavior in rodents and this shows that these plants have an inhibitory effect.


Subject(s)
Cinnamomum camphora/chemistry , Eucalyptus/chemistry , Lavandula/chemistry , Medicine, Traditional/methods , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Rosmarinus/chemistry , Africa, Northern , Animals , Anxiety/physiopathology , Anxiety/prevention & control , Avoidance Learning/drug effects , Avoidance Learning/physiology , Humans , Maze Learning/drug effects , Maze Learning/physiology , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Rats, Wistar
20.
Molecules ; 26(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771092

ABSTRACT

Citrus species of plants are among the most commercially cultivated crops, mainly for their fruit. Besides, the generally consumed flesh inside the fruit, the peel is quite important too. Essential oils extracted from the peel have a history of being used by humankind for centuries. These essential oils are rich in antioxidants and antimicrobial agents. Comparative investigation of volatile constituents, and antioxidant and antimicrobial activities were undertaken. The essential oils were evaluated through gas chromatography-mass spectrometry (GC-MS), and enantiomeric composition by chiral GC-MS. Similarly, the antioxidant properties were evaluated by 2,2-diphenyl-1-picrylhydrazyl scavenging assay, and antimicrobial activities were assayed using the disk diffusion method. The highest extraction yield of 1.83% was observed in Citrus sinensis Osbeck. GC-MS analysis showed limonene (63.76-89.15%), γ-terpinene (0.24-6.43%), ß-pinene (0.15-6.09%), linalool (0.35-3.5%), sabinene (0.77-2.17%), myrcene (0.74-1.75%), α-terpineol (0.28-1.15%), and α-pinene (0.2-0.58%) as the major constituents of the essential oil of the Citrus species studied. For the first time, through our study, chiral terpenoids have been observed from Citrus grandis Osbeck essential oil. The order of antioxidant activity is as follows: Citrus grandis Osbeck red flesh > Citrus reticulata Blanco > Citrus sinensis Osbeck > Citrus grandis Osbeck white flesh. Except for Citrus grandis Osbeck white flesh (52.34 µL/mL), all samples demonstrated stronger antioxidant activities than those of the positive control, quercetin (5.60 µL/mL). Therefore, these essential oils can be used as a safe natural antioxidant to prevent product oxidation. Likewise, citrus peel essential oil showed antimicrobial activity against tested bacterial strains, albeit marginal.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Volatile Organic Compounds/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Citrus/chemistry , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Nepal , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Plant Oils/chemistry , Plant Oils/isolation & purification , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL