Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.097
Filter
1.
Physiol Plant ; 176(4): e14421, 2024.
Article in English | MEDLINE | ID: mdl-38956781

ABSTRACT

The seasonal plasticity of resistance to xylem embolism has been demonstrated in leaves of some tree species, but is controversial in stems. In this study, we investigated the seasonality of stem xylem resistance to embolism in six temperate woody species (four deciduous and two evergreen tree species) that were grown at the same site. The xylem conduit anatomy, the concentrations, and ratios of the main cation in the xylem sap, as well as the content of nonstructural carbohydrates (including soluble sugars and starch) were measured in each species under each season to reveal the potential mechanisms of seasonal change in embolism resistance. The stem of all species showed increasing resistance to embolism as seasons progressed, with more vulnerable xylem in spring, but no significant adjustment in the other three seasons. The seasonal plasticity of stem embolism resistance was greater in deciduous species than in evergreen. On a seasonal scale, conduit diameter and conduit implosion resistance, the ratios of K+/Ca2+ and K+/Na+, and starch content were generally not correlated with embolism resistance, suggesting that these are probably not the main drivers of seasonal plasticity of stem embolism resistance. The seasonality of embolism resistance provides critical information for better understanding plant hydraulics in response to seasonal environments, especially under climate change.


Subject(s)
Plant Stems , Seasons , Trees , Plant Stems/physiology , Trees/physiology , Xylem/physiology
2.
BMC Plant Biol ; 24(1): 629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961339

ABSTRACT

Twisted trunks are not uncommon in trees, but their effects on tree growth are still unclear. Among coniferous tree species, the phenomenon of trunk distortion is more prominent in Pinus yunnanensis. To expand the germplasm of genetic resources, we selected families with excellent phenotypic traits to provide material for advanced generation breeding. The progeny test containing 93 superior families (3240 trees) was used as the research material. Phenotypic measurements and estimated genetic parameters (family heritability, realistic gain and genetic gain) were performed at 9, 15, and 18 years of age, respectively. The genetic evaluation yielded the following results (1) The intra-family variance component of plant height (PH) was greater than that of the inter-family, while the inter-family variance components of other traits (diameter at breast height (DBH), crown diameter (CD), height under branches (HUB), degree of stem-straightness (DS)) were greater than that of the intra-family, indicating that there was abundant variation among families and potential for selection. (2) At half rotation period (18 years old), there was a significant correlation among the traits. The proportion of trees with twisted trunks (level 1-3 straightness) reached 48%. The DS significantly affected growth traits, among which PH and DBH were the most affected. The volume loss rate caused by twisted trunk was 18.06-56.75%, implying that trunk distortion could not be completely eliminated after an artificial selection. (3) The influence of tree shape, crown width, and trunk on volume increased, and the early-late correlation between PH, DBH and volume was extremely significant. The range of phenotypic coefficient of variation, genetic variation coefficient and family heritability of growth traits (PH, DBH, and volume) were 44.29-127.13%, 22.88-60.87%, and 0.79-0.83, respectively. (4) A total of 21 superior families were selected by the method of membership function combined with independent selection. Compared with the mid-term selection (18 years old), the accuracy of early selection (9 years old) reached 77.5%. The selected families' genetic gain and realistic gain range were 5.79-19.82% and 7.12-24.27%, respectively. This study can provide some useful reference for the breeding of coniferous species.


Subject(s)
Phenotype , Pinus , Pinus/genetics , Pinus/growth & development , Pinus/physiology , Trees/growth & development , Trees/genetics , Plant Stems/growth & development , Plant Stems/genetics , Plant Stems/anatomy & histology , Plant Breeding
3.
PLoS One ; 19(7): e0305572, 2024.
Article in English | MEDLINE | ID: mdl-38954711

ABSTRACT

Green leafy vegetables are an essential component of Chinese leafy vegetables. Due to their crisp stems and tender leaves, orderly harvester generally causes significant mechanical clamping damage. The physical and mechanical properties of green leafy vegetables are one of the important basis to design the orderly harvester. At the same time, they provide important parameters for the simulation and optimization of harvester. So, this paper measured the physical characteristic parameters of roots and stems of green leafy vegetables. Then, based on the TMS-Pro texture analyzer, the elasticity modulus of the roots and stems of green leafy vegetables were measured. The static friction coefficient, dynamic friction coefficient, and restitution coefficient of green leafy vegetables root-root, stem-stem, root-steel, and stem-steel were measured separately using a combination method of inclined plane and high-speed photography. Uniaxial compression creep experiments were carried out on whole and single leaf of green leafy vegetables using the TA.XT plus C universal testing machine. The constitutive equation of the four-element Burgers model was used to fit the deformation curve of the sample with time during the constant-pressure loading stage. The fitting determination coefficients R2 were all higher than 0.996, which verified the reasonable validity of the selected model. The above experimental results provide a parameter basis and theoretical support for the design and discrete element simulation optimization of orderly harvester critical components of green leafy vegetables.


Subject(s)
Plant Leaves , Plant Roots , Vegetables , Viscosity , Plant Leaves/chemistry , Elasticity , Plant Stems/physiology
4.
PeerJ ; 12: e17633, 2024.
Article in English | MEDLINE | ID: mdl-38948208

ABSTRACT

Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.


Subject(s)
Disease Resistance , Genetic Variation , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/pathogenicity , Genetic Variation/genetics , Plant Stems/microbiology , Plant Stems/immunology , Plant Stems/genetics , Genes, Plant , Basidiomycota/pathogenicity
5.
Environ Sci Pollut Res Int ; 31(29): 41980-41989, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856857

ABSTRACT

Coal is one of the primary energy sources in China and is widely used for electricity generation. Crops growing in overlapped areas of farmland and coal resources (OAFCR) suffer from coal fly ash stress, especially during stem elongation, which is a key stage that impacts wheat yield and is sensitive to environmental stress. As a primary food crop of China, wheat is essential for food security. However, the characteristics of wheat under the combined stress of fly ash and various heavy metals have not been sufficiently investigated. In this study, we explored the response of stem elongation in wheat to different levels of coal fly ash stress and determined the content of heavy metals (HMs) in wheat leaves. We found that with an increase in fly ash content, the Cu content in the shoots increased, while that in the roots decreased. Coal fly ash exposure reduced the proportions of Pb and Zn in the cytoderm, and the proportion of Cu in the soluble constituents decreased from 58.3% to 45.7%. Total chlorophyll, chlorophyll a, and chlorophyll b levels decreased significantly, whereas peroxidase (POD) and catalase (CAT) activities generally increased with increasing fly ash dose. Meanwhile, chloroplasts, mitochondria, and their internal structures were damaged, and the cell structures of leaves, such as the internal membrane structure, were damaged.


Subject(s)
Coal Ash , Metals, Heavy , Photosynthesis , Triticum , Photosynthesis/drug effects , Coal , Plant Leaves , Plant Stems/drug effects , Chlorophyll , China , Stress, Physiological
6.
Plant Physiol Biochem ; 213: 108870, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914038

ABSTRACT

Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.


Subject(s)
MicroRNAs , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Xylem/metabolism , Xylem/genetics , Gene Expression Regulation, Plant , Lignin/metabolism , Lignin/biosynthesis , Plants, Genetically Modified , RNA, Plant/genetics , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Photosynthesis/genetics , Cell Wall/metabolism , Cell Wall/genetics
7.
Environ Microbiol ; 26(6): e16661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849711

ABSTRACT

Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.


Subject(s)
Bacteria , Droughts , Fungi , Plant Stems , Rivers , Salinity , Bacteria/metabolism , Bacteria/classification , Fungi/metabolism , Rivers/microbiology , Plant Stems/microbiology , Plant Stems/metabolism , Ecosystem
8.
Fungal Biol ; 128(4): 1815-1826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876534

ABSTRACT

Endophytic fungi, pivotal in facilitating plant co-evolution, significantly enhance plant growth, stress resistance, and environmental adaptability. Despite their importance, the spatial distribution of stem endophytic fungi (SEF) within host plants remains poorly characterized. Here, we employed high-throughput sequencing to conduct a comparative analysis of SEF communities in Mussaenda pubescens on a regional scale. Our findings reveal that whole-SEF communities were overwhelmingly dominated by members of the phylum Ascomycota, accounting for 85.9 %, followed by Basidiomycota at 13.9 %, and that alpha diversity within the whole-SEF community of M. pubescens remains relatively consistent across sampling sites. However, significant variation was observed within conditionally abundant taxa (CAT), conditionally rare or abundant taxa (CRAT), and conditionally rare taxa (CRT). Climatic factors emerged as the primary influence on SEF community distribution, followed by spatial distance and stem chemical properties. Neutral community modeling results suggested that both stochastic and deterministic processes play a role in shaping whole-SEF communities, with deterministic processes having a stronger influence on CRT subcommunities. Furthermore, the CRT co-occurrence network exhibited a more complex structure, characterized by higher values of network betweenness and degree relative to CAT and CRAT subcommunities. These findings enhance our understanding of community assembly and ecological interactions between stem fungal endophytes, presenting opportunities for harnessing fungal resources for the benefit of humanity.


Subject(s)
Endophytes , Plant Stems , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Plant Stems/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , High-Throughput Nucleotide Sequencing , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/isolation & purification , Biodiversity
9.
Fungal Biol ; 128(4): 1876-1884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876540

ABSTRACT

The endophytic fungus Chaetomium nigricolor culture filtrate's hexane extract was used to identify a cytotoxic very long-chain fatty acid. Based on multiple spectroscopic investigations, the structure of the compound was predicted to be an unsaturated fatty acid, Nonacosenoic acid (NA). Using the MTT assay, the compound's cytotoxic potential was evaluated against MCF-7, A-431, U-251, and HEK-293 T cells. The compound was moderately cytotoxic to breast carcinoma cell line, MCF-7 cells and negligibly cytotoxic to non-cancerous cell line HEK-293 T cells. The compound exhibited mild cytotoxic activity against A-431 and U-251 cells. The compound also induced ROS generation and mitochondrial depolarization in MCF-7 cells when assessed via the NBT and JC-1 assays, respectively. This is the first report on the production of nonacosenoic acid from the endophytic fungus Chaetomium nigricolor and the assessment of its bioactivity.


Subject(s)
Chaetomium , Endophytes , Fatty Acids, Unsaturated , Chaetomium/chemistry , Humans , Endophytes/chemistry , Endophytes/metabolism , Endophytes/isolation & purification , Fatty Acids, Unsaturated/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Plant Stems/microbiology , Plant Stems/chemistry , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Cell Line
10.
Theor Appl Genet ; 137(7): 151, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849610

ABSTRACT

Dwarfing is an ideal agronomic trait in crop breeding, which can improve lodging resistance and increase crop productivity. In this study, we identified a dwarf mutant cp-3 from an EMS-mutagenized population, which had extremely short internodes, and the cell length and number of internodes were significantly reduced. Meanwhile, exogenous GA3 treatment partially rescued the plant height of the cp-3. Inheritance analysis showed that the cp-3 mutant was regulated via a recessive nuclear locus. A candidate gene, CsERECTA, encoding an LRR receptor-like serine/threonine-protein kinase, was cloned through a map-based cloning strategy. Sequence analysis showed that a nucleotide mutation (C ~ T) in exon 26 of CsERECTA led to premature termination of the protein. Subsequently, two transgenic lines were generated using the CRISPR/Cas9 system, and they showed plant dwarfing. Plant endogenous hormones quantitative and RNA-sequencing analysis revealed that GA3 content and the expression levels of genes related to GA biosynthesis were significantly reduced in Cser knockout mutants. Meanwhile, exogenous GA3 treatment partially rescued the dwarf phenotype of Cser knockout mutants. These findings revealed that CsERECTA controls stem elongation by regulating GA biosynthesis in cucumber.


Subject(s)
Cucumis sativus , Gene Expression Regulation, Plant , Gibberellins , Phenotype , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/growth & development , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/growth & development , Genes, Plant , Plant Stems/growth & development , Plant Stems/genetics , Mutation , Cloning, Molecular
11.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1159-1168, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886413

ABSTRACT

To understand the responses of radial growth of Fraxinus mandshurica from different provenances to climatic factors, we used the dendrochronological method to establish the standard chronologies of F. mandshurica from 20 provenances in Maoershan provenance test forest, and analyzed the differences in radial growth and their correlation with climate factors. The results showed that the overall trend of F. mandshurica chronologies from 20 provenances was generally similar. There were differences in growth amplitude, with the average radial growth of F. mandshurica from Dailing, Lushuihe and Sanchazi being the highest. The radial growth of F. mandshurica from 20 provenances was significantly positively correlated with the highest temperature in July and the average temperature in July except for Huinan. The radial growth of F. mandshurica from 14 provenances was significantly positively correlated with the precipitation in August. The radial growth of F. mandshurica was constrained by temperature and precipitation during the growing season. There was difference in radial growth among F. mandshurica from different provenances under drought stress. F. mandshurica from Wangqing, Dailing, and Hailin had stronger resistance to drought, while that from Wandianzi, Zhanhe, and Xinglong had better recovery ability after drought.


Subject(s)
Climate , Fraxinus , Fraxinus/growth & development , China , Ecosystem , Droughts , Temperature , Plant Stems/growth & development
12.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1177-1186, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886415

ABSTRACT

The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.


Subject(s)
Climate Change , Larix , China , Larix/growth & development , Juniperus/growth & development , Abies/growth & development , Ecosystem , Trees/growth & development , Conservation of Natural Resources , Temperature , Plant Stems/growth & development , Altitude
13.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1205-1213, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886418

ABSTRACT

Global warming would significantly impact tree growth in the Tibetan Plateau. However, the specific effects of climate change on the radial growth of Pinus wallichiana in Mount Qomolangma are still uncertain. To investigate the responses of radial growth of P. wallichiana to climate change, we analyzed tree-ring samples in Mount Qomolangma. We removed the age-related growth trends and established three chronologies by using the modified negative exponential curve, basal area index, and regional curve standardization, and conducted Pearson correlation and moving correlation analyses to examine the association between radial growth of P. wallichiana and climatic factors. The results showed that this region had experienced a significant upward trend in temperature and that the Palmer drought severity index (PDSI) indicated a decreasing trend since 1980s, while the relative humi-dity changed from a significant upward to a downward trend around 2004, implying the climate shifted toward warmer and drier. Results of Pearson correlation analysis indicated a significant and positive relationship between the radial growth of P. wallichiana and the minimum temperature of April-June and July-September, and precipitation of January-April in the current year. The radial growth of P. wallichiana was significantly and negatively associated with the relative humidity of June, July, and August in the current year. As temperature rose after 1983, the relationship between radial growth of P. wallichiana and the minimum temperature in July and September of the current year increased from a non-significant association to a significant and positive association, while the relationship between radial growth of P. wallichiana and relative humidity in August and precipitation in September of the current year changed from non-significant correlation to a significant and negative correlation. Results of the moving correlation analysis suggested that the radial growth of P. wallichiana showed a significant and stable correlation with the July-September minimum temperature of the current year. Under the background of climate warming, the rapid increases of temperature would accelerate the radial growth of P. wallichiana in Mount Qomolangma.


Subject(s)
Climate Change , Tibet , Pinus/growth & development , Ecosystem , Temperature , Plant Stems/growth & development , Global Warming
14.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893387

ABSTRACT

The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.


Subject(s)
Cannabis , Pectins , Plant Extracts , Pectins/chemistry , Pectins/isolation & purification , Cannabis/chemistry , Plant Extracts/chemistry , Citric Acid/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Tartrates/chemistry , Plant Roots/chemistry , Hexuronic Acids/chemistry , Hexuronic Acids/analysis
15.
ScientificWorldJournal ; 2024: 8128813, 2024.
Article in English | MEDLINE | ID: mdl-38827814

ABSTRACT

The genus Hypericum comprises a large number of species. The flower, leaf, stem, and root of the Hypericum species are widely used in traditional medicine in different cultures. Many Hypericum species have been well investigated phytochemically and pharmacologically. However, only a few reports are available on the H. cordifolium native to Nepal. The present study aims to evaluate the phytochemical composition of different extracts, qualitative analysis of methanol extract of the flower and leaf using thin-layer chromatography (TLC), and the antioxidant properties of components by the TLC-DPPH. assay. The phenolic and flavonoid contents were estimated in different extracts of the leaf and stem, and their antioxidant and antibacterial activities were evaluated. In the phytochemical screening, phenolics and flavonoids were present in ethyl acetate, methanol, and 50% aq methanol extracts of both the leaf and stem. In TLC analysis, the methanol extract of flowers showed the presence of 11 compounds and the leaf extract showed the presence of 8 compounds. Both extracts contained chlorogenic acid and mangiferin. Hyperoside and quercetin were present only in the flower extract. In the TLC-DPPH. assay, almost all of the flower extracts and 5 compounds of the leaf extract showed radical scavenging potential. Estimation of phenolics and flavonoids showed that all the leaf extracts showed higher amounts of phenolics and flavonoids than stem extracts. Among leaf extracts, greater amounts of phenolics were detected in 50% aqueous methanol extract (261.25 ± 1.66 GAE/g extract) and greater amounts of flavonoids were detected in methanol extract (232.60 ± 10.52 CE/g extract). Among stem extracts, greater amounts of flavonoids were detected in the methanol extract (155.12 ± 4.30 CE/g extract). In the DPPH radical scavenging assay, the methanol extract of the leaf showed IC50 60.85 ± 2.67 µg/ml and 50% aq. methanol extract of the leaf showed IC50 63.09 ± 2.98 µg/ml. The methanol extract of the stem showed IC50 89.39 ± 3.23 µg/ml, whereas ethyl acetate and 50% aq. methanol extract showed IC50 > 100 µg/ml. In the antibacterial assay, the methanol extract of the leaf showed the inhibition zone of 12-13 mm and the stem extract showed the inhibition zone of 7-11 mm against S. aureus, E. coli, and S. sonnei, whereas both extracts were inactive against S. typhi. The findings of this study support the traditional use of this plant in Nepal for the treatment of diseases associated with bacterial infections. The present study revealed that the underutilized anatomical parts of H. cordifolium could be the source of various bioactive phytochemicals like other Hypericum species.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Flavonoids , Hypericum , Phytochemicals , Plant Extracts , Hypericum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/chemistry , Phytochemicals/analysis , Phytochemicals/pharmacology , Flavonoids/analysis , Flavonoids/chemistry , Plant Leaves/chemistry , Phenols/analysis , Phenols/chemistry , Microbial Sensitivity Tests , Chromatography, Thin Layer , Plant Stems/chemistry
16.
BMC Plant Biol ; 24(1): 581, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898382

ABSTRACT

Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.


Subject(s)
Asparagus Plant , Gene Expression Profiling , Plant Growth Regulators , Plant Stems , Asparagus Plant/genetics , Asparagus Plant/metabolism , Asparagus Plant/growth & development , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Transcriptome , Sugars/metabolism , Gibberellins/metabolism
17.
Science ; 384(6701): 1241-1247, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38870308

ABSTRACT

Plant stems comprise nodes and internodes that specialize in solute exchange and elongation. However, their boundaries are not well defined, and how these basic units arise remains elusive. In rice with clear nodes and internodes, we found that one subclade of class I knotted1-like homeobox (KNOX1) genes for shoot meristem indeterminacy restricts node differentiation and allows internode formation by repressing YABBY genes for leaf development and genes from another node-specific KNOX1 subclade. YABBYs promote nodal vascular differentiation and limit stem elongation. YABBY and node-specific KNOX1 genes specify the pulvinus, which further elaborates the nodal structure for gravitropism. Notably, this KNOX1 subclade organization is specific to seed plants. We propose that nodes and internodes are distinct domains specified by YABBY-KNOX1 cross-regulation that diverged in early seed plants.


Subject(s)
Gene Expression Regulation, Plant , Homeodomain Proteins , Meristem , Oryza , Plant Proteins , Plant Stems , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Plant Stems/anatomy & histology , Plant Stems/genetics , Plant Stems/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Meristem/genetics , Meristem/growth & development , Oryza/genetics , Oryza/growth & development , Gravitropism/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Genes, Plant
18.
Chem Pharm Bull (Tokyo) ; 72(6): 540-546, 2024.
Article in English | MEDLINE | ID: mdl-38866475

ABSTRACT

Three neo-clerodane diterpenoids, including two new tinocordifoliols A (1) and B (2) and one known tinopanoid R (3), were isolated from the ethyl acetate-soluble fraction of the 70% ethanol extract of Tinospora cordifolia stems. The structures were elucidated by various spectroscopic methods, including one dimensional (1D) and 2D-NMR, high resolution-electrospray ionization (HR-ESI)-MS, and electronic circular dichroism (ECD) data. The T. cordifolia extract and all isolated compounds 1-3 possessed arginase I inhibitory activities. Among them, 3 exhibited moderate competitive inhibition of human arginase I (IC50 = 61.9 µM). Furthermore, docking studies revealed that the presence of a ß-substituted furan in 3 may play a key role in the arginase I inhibitory activities.


Subject(s)
Arginase , Diterpenes, Clerodane , Enzyme Inhibitors , Molecular Docking Simulation , Plant Stems , Tinospora , Tinospora/chemistry , Arginase/antagonists & inhibitors , Arginase/metabolism , Diterpenes, Clerodane/pharmacology , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/isolation & purification , Humans , Plant Stems/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Structure-Activity Relationship , Molecular Structure , Molecular Conformation , Dose-Response Relationship, Drug
19.
Sci Rep ; 14(1): 13388, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862607

ABSTRACT

(1) Background: Endophytic bacteria represent an important component of plant wellness. They have been widely studied for their involvement in plant development and enhancement of stress tolerance. In this work, the endophytic communities of roots, stems, and leaves of blackberry (Rubus ulmifolius Schott) were studied in three different niches: natural, riverside, and human-impacted niches. (2) Results: The microbiome composition revealed that Sphingomonadaceae was the most abundant family in all samples, accounting for 9.4-45.8%. In contrast, other families seem to be linked to a specific tissue or niche. Families Microbacteriaceae and Hymenobacteraceae increased their presence in stem and leaf samples, while Burkholderiaceae abundance was important in riverside samples. Alpha and beta diversity analyses showed that root samples were the most diverse, and they gathered together in the same cluster, apart from the rest of the samples. (3) Conclusions: The analysis of the microbiome of R. ulmifolius plants revealed that the composition was essentially the same in different niches; the differences were primarily influenced by plant tissue factors with a core genome dominated by Sphingomonadaceae. Additionally, it was observed that R. ulmifolius can select its own microbiome, and this remains constant in all tissues evaluated regardless the niche of sampling.


Subject(s)
Bacteria , Endophytes , Microbiota , Plant Leaves , Rubus , Endophytes/genetics , Rubus/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology
20.
Sci Rep ; 14(1): 13557, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866843

ABSTRACT

A key process in forest management planning is the estimation of tree volume and, more specifically, merchantable volume. The ability to predict the cumulative stem volume relative to any upper stem diameter on standing trees or stands is essential for forest inventories and the management of forest resources. In the 1980s, the Hellenic Public Power Corporation (HPPC) started the rehabilitation of lignite post-mining areas in Greece by planting mainly black locust (Robinia pseudoacacia, L.). Today, these plantations occupy an area of approximately 2570 ha, but the stem volume has not yet been estimated. Therefore, we aimed to estimate the over- and under-bark stem volume using taper function models for 30 destructively sampled trees. Of the nineteen calibrated fixed-effects models, Kozak's (2004) equation performed best for both the over-bark and under-bark datasets, followed by Lee's (2003) and Muhairwe's (1999) equations. Two fixed effect models were compared with fitted coefficients from Poland and the United States confirming that the local model fits were better suited, as the foreign model coefficients caused an increase in root mean square error (RMSE) for stem diameter predictions of 13% and 218%, respectively. The addition of random effects on a single-stem basis for two coefficients of Kozak's (2004) equation improved the model fit significantly at 86% of the over-bark fixed effect RMSE and 69% for the under-bark model. Integrated taper functions were found to slightly outperform three volume equations for predictions of single stem volume over and under bark. Ultimately it was shown that these models can be used to precisely predict stem diameters and total stem volume for the population average as well as for specific trees of the black locust plantations in the study area.


Subject(s)
Robinia , Greece , Robinia/physiology , Robinia/growth & development , Mining , Forests , Conservation of Natural Resources/methods , Models, Theoretical , Plant Stems/growth & development , Plant Stems/physiology , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...