Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Molecules ; 27(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35208983

ABSTRACT

Social insects are in mutualism with microorganisms, contributing to their resistance against infectious diseases. The fungus Pseudallescheria boydii SNB-CN85 isolated from termites produces ovalicin derivatives resulting from the esterification of the less hindered site of the ovalicin epoxide by long-chain fatty acids. Their structures were elucidated using spectroscopic analysis and semisynthesis from ovalicin. For ovalicin, these compounds displayed antiprotozoal activities against Plasmodium falciparum and Trypanosoma brucei, with IC50 values of 19.8 and 1.1 µM, respectively, for the most active compound, i.e., ovalicin linoleate. In parallel, metabolomic profiling of a collection of P. boydii strains associated with termites made it possible to highlight this class of compounds together with tyroscherin derivatives in all strains. Finally, the complete genome of P. boydii strains was obtained by sequencing, and the cluster of potential ovalicin and ovalicin biosynthesis genes was annotated. Through these metabolomic and genomic analyses, a new ovalicin derivative named boyden C, in which the 6-membered ring of ovalicin was opened by oxidative cleavage, was isolated and structurally characterized.


Subject(s)
Antimalarials , Isoptera/microbiology , Plasmodium falciparum/growth & development , Scedosporium , Sesquiterpenes , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , French Guiana , Scedosporium/chemistry , Scedosporium/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
2.
PLoS Negl Trop Dis ; 15(8): e0009672, 2021 08.
Article in English | MEDLINE | ID: mdl-34449764

ABSTRACT

BACKGROUND: Understanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission. METHODOLOGY/PRINCIPAL FINDINGS: Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44-94% for P. falciparum and from 23-72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37-100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398). CONCLUSIONS/SIGNIFICANCE: Interventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling.


Subject(s)
Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Asymptomatic Diseases , Brazil/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Male , Papua New Guinea/epidemiology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/physiology , Plasmodium vivax/genetics , Plasmodium vivax/growth & development , Plasmodium vivax/physiology , Thailand/epidemiology , Young Adult
3.
Am J Trop Med Hyg ; 104(5): 1811-1813, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782210

ABSTRACT

In November 2018, we diagnosed a cluster of falciparum malaria cases in three Chilean travelers returning from Nigeria. Two patients were treated with sequential intravenous artesunate plus oral atovaquone/proguanil (AP) and one with oral AP. The third patient, a 23-year-old man, presented with fever on day 29 after oral AP treatment and was diagnosed with recrudescent falciparum malaria. The patient was then treated with oral mefloquine, followed by clinical recovery and resolution of parasitemia. Analysis of day 0 and follow-up blood samples, collected on days 9, 29, 34, 64, and 83, revealed that parasitemia had initially decreased but then increased on day 29. Sequencing confirmed Tyr268Cys mutation in the cytochrome b gene, associated with atovaquone resistance, in isolates collected on days 29 and 34 and P. falciparum dihydrofolate reductase mutation Asn51Ile, associated with proguanil resistance in all successfully sequenced samples. Molecular characterization of imported malaria contributes to clinical management in non-endemic countries, helps ascertain the appropriateness of antimalarial treatment policies, and contributes to the reporting of drug resistance patterns from endemic regions.


Subject(s)
Antimalarials/therapeutic use , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Parasitemia/drug therapy , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Adult , Artesunate/therapeutic use , Atovaquone/therapeutic use , Chile , Cytochromes b/genetics , Drug Combinations , Female , Gene Expression , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Mefloquine/therapeutic use , Mutation , Nigeria , Parasitemia/diagnosis , Parasitemia/parasitology , Parasitemia/pathology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity , Proguanil/therapeutic use , Recurrence , Tetrahydrofolate Dehydrogenase/genetics , Travel
4.
Nat Immunol ; 22(3): 347-357, 2021 03.
Article in English | MEDLINE | ID: mdl-33432229

ABSTRACT

Activated Vγ9Vδ2 (γδ2) T lymphocytes that sense parasite-produced phosphoantigens are expanded in Plasmodium falciparum-infected patients. Although previous studies suggested that γδ2 T cells help control erythrocytic malaria, whether γδ2 T cells recognize infected red blood cells (iRBCs) was uncertain. Here we show that iRBCs stained for the phosphoantigen sensor butyrophilin 3A1 (BTN3A1). γδ2 T cells formed immune synapses and lysed iRBCs in a contact, phosphoantigen, BTN3A1 and degranulation-dependent manner, killing intracellular parasites. Granulysin released into the synapse lysed iRBCs and delivered death-inducing granzymes to the parasite. All intra-erythrocytic parasites were susceptible, but schizonts were most sensitive. A second protective γδ2 T cell mechanism was identified. In the presence of patient serum, γδ2 T cells phagocytosed and degraded opsonized iRBCs in a CD16-dependent manner, decreasing parasite multiplication. Thus, γδ2 T cells have two ways to control blood-stage malaria-γδ T cell antigen receptor (TCR)-mediated degranulation and phagocytosis of antibody-coated iRBCs.


Subject(s)
Antigens, Protozoan/immunology , Cytotoxicity, Immunologic , Erythrocytes/immunology , Intraepithelial Lymphocytes/immunology , Lymphocyte Activation , Malaria, Falciparum/immunology , Phagocytosis , Plasmodium falciparum/microbiology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Antigens, Protozoan/blood , Boston , Brazil , Butyrophilins/metabolism , Cells, Cultured , Erythrocytes/metabolism , Erythrocytes/parasitology , Female , Granzymes/metabolism , Host-Parasite Interactions , Humans , Immunological Synapses/metabolism , Immunological Synapses/parasitology , Intraepithelial Lymphocytes/metabolism , Intraepithelial Lymphocytes/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/growth & development
5.
J Pineal Res ; 70(1): e12700, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33025644

ABSTRACT

Half of the world's population lives in countries at risk of malaria infection, which results in approximately 450,000 deaths annually. Malaria parasites infect erythrocytes in a coordinated manner, with cycle durations in multiples of 24 hours, which reflects a behavior consistent with the host's circadian cycle. Interference in cycle coordination can help the immune system to naturally fight infection. Consequently, there is a search for new drugs that interfere with the cycle duration for combined treatment with conventional antimalarials. Melatonin appears to be a key host hormone responsible for regulating circadian behavior in the parasite cycle. In addition to host factors, there are still unknown factors intrinsic to the parasite that control the cycle duration. In this review, we present a series of reports of indole compounds and melatonin derivatives with antimalarial activity that were tested on several species of Plasmodium to evaluate the cytotoxicity to parasites and human cells, in addition to the ability to interfere with the development of the erythrocytic cycle. Most of the reported compounds had an IC50 value in the low micromolar range, without any toxicity to human cells. Triptosil, an indole derivative of melatonin, was able to inhibit the effect of melatonin in vitro without causing changes to the parasitemia. The wide variety of tested compounds indicates that it is possible to develop a compound capable of safely eliminating parasites from the host and interfering with the life cycle, which is promising for the development of new combined therapies against malaria.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Melatonin/pharmacology , Plasmodium falciparum/drug effects , Animals , Drug Resistance, Multiple , Host-Pathogen Interactions , Humans , Malaria, Falciparum/parasitology , Melatonin/analogs & derivatives , Plasmodium falciparum/growth & development
6.
Biochim Biophys Acta Gen Subj ; 1865(3): 129813, 2021 03.
Article in English | MEDLINE | ID: mdl-33321150

ABSTRACT

BACKGROUND: Malaria is a parasitic disease that compromises the human host. Currently, control of the Plasmodium falciparum burden is centered on artemisinin-based combination therapies. However, decreased sensitivity to artemisinin and derivatives has been reported, therefore it is important to identify new therapeutic strategies. METHOD: We used human erythrocytes infected with P. falciparum and experimental cerebral malaria (ECM) animal model to assess the potential antimalarial effect of eugenol, a component of clove bud essential oil. RESULTS: Plasmodium falciparum cultures treated with increasing concentrations of eugenol reduced parasitemia in a dose-dependent manner, with IC50 of 532.42 ± 29.55 µM. This effect seems to be irreversible and maintained even in the presence of high parasitemia. The prominent effect of eugenol was detected in the evolution from schizont to ring forms, inducing important morphological changes, indicating a disruption in the development of the erythrocytic cycle. Aberrant structural modification was observed by electron microscopy, showing the separation of the two nuclear membrane leaflets as well as other subcellular membranes, such as from the digestive vacuole. Importantly, in vivo studies using ECM revealed a reduction in blood parasitemia and cerebral edema when mice were treated for 6 consecutive days upon infection. CONCLUSIONS: These data suggest a potential effect of eugenol against Plasmodium sp. with an impact on cerebral malaria. GENERAL SIGNIFICANCE: Our results provide a rational basis for the use of eugenol in therapeutic strategies to the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Brain Edema/drug therapy , Eugenol/pharmacology , Life Cycle Stages/drug effects , Malaria, Cerebral/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/parasitology , Brain Edema/parasitology , Disease Models, Animal , Erythrocytes/drug effects , Erythrocytes/parasitology , Humans , Inhibitory Concentration 50 , Life Cycle Stages/physiology , Malaria, Cerebral/parasitology , Malaria, Falciparum/parasitology , Male , Mice , Mice, Inbred C57BL , Plasmodium berghei/drug effects , Plasmodium berghei/growth & development , Plasmodium berghei/parasitology , Plasmodium falciparum/growth & development , Plasmodium falciparum/pathogenicity
7.
Future Med Chem ; 13(3): 233-250, 2021 02.
Article in English | MEDLINE | ID: mdl-33295837

ABSTRACT

Malaria is still a life-threatening public health issue, and the upsurge of resistant strains requires continuous generation of active molecules. In this work, 35 sulfonylhydrazone derivatives were synthesized and evaluated against Plasmodium falciparum chloroquine-sensitive (3D7) and resistant (W2) strains. The most promising compound, 5b, had an IC50 of 0.22 µM against W2 and was less cytotoxic and 26-fold more selective than chloroquine. The structure-activity relationship model, statistical analysis and molecular modeling studies suggested that antiplasmodial activity was related to hydrogen bond acceptor count, molecular weight and partition coefficient of octanol/water and displacement of frontier orbitals to the heteroaromatic ring beside the imine bond. This study demonstrates that the synthesized molecules with a simple scaffold allow the hit-to-lead process for new antimalarials to commence.


Subject(s)
Antimalarials/pharmacology , Hydrazones/chemistry , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Cell Line , Cell Survival/drug effects , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/drug effects , Humans , Hydrazones/pharmacology , Life Cycle Stages/drug effects , Machine Learning , Malaria/drug therapy , Parasitic Sensitivity Tests , Plasmodium falciparum/growth & development , Quantum Theory , Structure-Activity Relationship
8.
Exp Cell Res ; 397(2): 112370, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33186602

ABSTRACT

The mechanical properties of erythrocytes have been investigated by different techniques. However, there are few reports on how the viscoelasticity of these cells varies during malaria disease. Here, we quantitatively map the viscoelastic properties of Plasmodium falciparum-parasitized human erythrocytes. We apply new methodologies based on optical tweezers to measure the viscoelastic properties and defocusing microscopy to measure the erythrocyte height profile, the overall cell volume, and its form factor, a crucial parameter to convert the complex elastic constant into complex shear modulus. The storage and loss shear moduli are obtained for each stage of parasite maturation inside red blood cells, while the former increase, the latter decrease. Employing a soft glassy rheology model, we obtain the power-law exponent for the storage and loss shear moduli, characterizing the soft glassy features of red blood cells in each parasite maturation stage. Ring forms present a liquid-like behavior, with a slightly lower power-law exponent than healthy erythrocytes, whereas trophozoite and schizont stages exhibit increasingly solid-like behaviors. Finally, the surface elastic shear moduli, low-frequency surface viscosities, and shape recovery relaxation times all increase not only in a stage-dependent manner but also when compared to healthy red blood cells. Overall, the results call attention to the soft glassy characteristics of Plasmodium falciparum-parasitized erythrocyte membrane and may provide a basis for future studies to better understand malaria disease from a mechanobiological perspective.


Subject(s)
Elastic Modulus , Erythrocyte Membrane/pathology , Erythrocytes, Abnormal/pathology , Erythrocytes/pathology , Malaria/blood , Plasmodium falciparum/growth & development , Blood Viscosity , Erythrocyte Membrane/parasitology , Erythrocytes/parasitology , Erythrocytes, Abnormal/parasitology , Humans , Malaria/parasitology , Plasmodium falciparum/pathogenicity , Rheology
9.
Biomolecules ; 10(9)2020 08 27.
Article in English | MEDLINE | ID: mdl-32867164

ABSTRACT

The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host's immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host-parasite biology.


Subject(s)
Malaria, Falciparum/parasitology , Melatonin/physiology , Plasmodium falciparum/physiology , Animals , Antimalarials/pharmacology , Humans , Life Cycle Stages , Malaria, Falciparum/immunology , Melatonin/pharmacology , Plasmodium falciparum/growth & development , Plasmodium falciparum/immunology , Reproduction, Asexual , Signal Transduction
10.
Biomolecules ; 10(8)2020 08 18.
Article in English | MEDLINE | ID: mdl-32824696

ABSTRACT

The search for new compounds with antimalarial activity is urgent, as resistance to ones in the classical drug, has already been described in more than one continent. Compounds derived from 1,2,3-triazoles are effective against parasites and bacteria. Here, we evaluated the potential antimalarial activity against the human malaria parasite Plasmodium falciparum in a culture of fifty-four triazole compounds derived from 1H-and 2H-1,2,3-triazole. We identified thirty-one compounds with potential antimalarial activity at concentrations in the micromolar order (µM) and IC50 values ranging from 2.80 µM (9) to 29.27 µM (21). Then, we selected some of these compounds to perform the same tests on the PfSR25- strain (knockout for P. falciparum G-protein coupled receptor-like, SR25). Our experiences with the PfSR25- strain showed that both compounds with higher antimalarial activity for the 3D7 strain and those with less activity resulted in lower IC50 values for the knockout strain. The cytotoxicity of the compounds was evaluated in human renal embryonic cells (HEK 293), using MTT assays. This demonstrated that the compounds with the highest activity (9, 13, 19, 22, 24, 29), showed no toxicity at the tested concentrations.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/growth & development , Receptors, G-Protein-Coupled/genetics , Triazoles/pharmacology , Antimalarials/chemistry , Cell Proliferation , Gene Knockout Techniques , HEK293 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Triazoles/chemistry
11.
PLoS One ; 15(6): e0235119, 2020.
Article in English | MEDLINE | ID: mdl-32574179

ABSTRACT

BACKGROUND: Colombia has officially adopted the parasite density levels of severe malaria established by the WHO (>50,000 parasites/µl). These values have been inferred from areas of high transmission in Africa and are not consistent with the dynamics of low and unstable transmission in Colombia. The objective of this study was therefore to determine the parasite density values observed in patients with severe malaria and their distribution in the different ecoepidemiological regions of Colombia. METHODS: A retrospective and descriptive study of confirmed cases of severe malaria was conducted in endemic areas of malaria in Colombia over the period 2014-2017. Data were collected from secondary sources of the Subnational Programs of Malaria Prevention and Control. Person, place, and time variables were selected. The official definition of severe malaria was adopted, and compliance with these criteria was determined. Univariate and bivariate analyses were conducted with absolute and relative frequency measures, and the relevant statistical tests were applied. RESULTS: The overall parasite density values in Colombia showed a geometric mean of 5,919 parasites/µl (95% CI: 5,608-6,248). By parasite species, the values were 6,151 (95% CI: 5,631-6,718) for Plasmodium falciparum and 5,815 (95% CI: 5,428-6,230) for Plasmodium vivax. The highest parasite density values were recorded in the Amazon ecoepidemiological region (8,177; 95% CI: 6,015-11,116), and the lowest values were recorded in the Andean region (5,026; 95% CI: 2,409-10,480). CONCLUSIONS: In endemic areas of low and unstable malaria transmission in the Colombian territory, the parasite density levels observed in populations with severe malaria are lower than the officially established values. The parasite density criterion is not really a relevant criterion for the definition of severe cases in Colombia and it certainly not be used to make a clinical decision about the severity of the disease.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/growth & development , Plasmodium vivax/growth & development , Population Density , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Colombia/epidemiology , Endemic Diseases/prevention & control , Female , Geography , Humans , Infant , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Male , Middle Aged , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Prevalence , Retrospective Studies , Severity of Illness Index , Young Adult
12.
Elife ; 92020 05 12.
Article in English | MEDLINE | ID: mdl-32394893

ABSTRACT

Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016-2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.


All recommended treatments against malaria include a drug called artemisinin or some of its derivatives. However, there are concerns that Plasmodium falciparum, the parasite that causes most cases of malaria, will eventually develop widespread resistance to the drug. A strain of P. falciparum partially resistant to artemisinin was seen in Cambodia in 2008, and it has since spread across Southeast Asia. The resistance appears to be frequently linked to a mutation known as pfk13 C580Y. Southeast Asia and Amazonia are considered to be hotspots for antimalarial drug resistance, and the pfk13 C580Y mutation was detected in the South American country of Guyana in 2010. To examine whether the mutation was still circulating in this part of the world, Mathieu et al. collected and analyzed 854 samples across Guyana between 2016 and 2017. Overall, 1.6% of the samples had the pfk13 C580Y mutation, but this number was as high as 8.8% in one region. Further analyses revealed that the mutation in Guyana had not spread from Southeast Asia, but that it had occurred in Amazonia independently. To better understand the impact of the pfk13 C580Y mutation, Mathieu et al. introduced this genetic change into non-resistant parasites from a country neighbouring Guyana. As expected, the mutation made P. falciparum highly resistant to artemisinin, but it also slowed the growth rate of the parasite. This disadvantage may explain why the mutation has not spread more rapidly through Guyana in recent years. Artemisinin and its derivatives are always associated with other antimalarial drugs to slow the development of resistance; there are concerns that reduced susceptibility to artemisinin leads to the parasites becoming resistant to the partner drugs. Further research is needed to evaluate how the pfk13 C580Y mutation affects the parasite's response to the typical combination of drugs that are given to patients.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance/genetics , Genes, Protozoan , Genetic Fitness , Guyana/epidemiology , Haplotypes , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Whole Genome Sequencing
13.
Malar J ; 19(1): 56, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32013956

ABSTRACT

Worldwide strategies between 2010 and 2017 aimed at controlling malarial parasites (mainly Plasmodium falciparum) led to a reduction of just 18% regarding disease incidence rates. Many biologically-derived anti-malarial vaccine candidates have been developed to date; this has involved using many experimental animals, an immense amount of work and the investment of millions of dollars. This review provides an overview of the current state and the main results of clinical trials for sporozoite-targeting vaccines (i.e. the parasite stage infecting the liver) carried out by research groups in areas having variable malaria transmission rates. However, none has led to promising results regarding the effective control of the disease, thereby making it necessary to complement such efforts at finding/introducing new vaccine candidates by adopting a multi-epitope, multi-stage approach, based on minimal subunits of the main sporozoite proteins involved in the invasion of the liver.


Subject(s)
Malaria Vaccines , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Animals , Anopheles/parasitology , Erythrocytes/parasitology , Humans , Liver/parasitology , Malaria Vaccines/administration & dosage , Malaria, Falciparum/transmission , Mosquito Vectors/parasitology , Plasmodium falciparum/growth & development , Sporozoites/immunology , Sporozoites/radiation effects , Vaccines, Attenuated , Vaccines, Subunit , Vaccines, Synthetic
14.
Malar J ; 19(1): 57, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32014000

ABSTRACT

BACKGROUND: The epidemiological control of malaria has been hampered by the appearance of parasite resistance to anti-malarial drugs and by the resistance of mosquito vectors to control measures. This has also been associated with weak transmission control, mostly due to poor control of asymptomatic patients associated with host-vector transmission. This highlights the importance of studying the parasite's sexual forms (gametocytes) which are involved in this phase of the parasite's life-cycle. Some African and Asian strains of Plasmodium falciparum have been fully characterized regarding sexual forms' production; however, few Latin-American strains have been so characterized. This study was aimed at characterizing the Colombian FCB2 strain as a gametocyte producer able to infect mosquitoes. METHODS: Gametocyte production was induced in in vitro cultured P. falciparum FCB2 and 3D7 strains. Pfap2g and Pfs25 gene expression was detected in FCB2 strain gametocyte culture by RT-PCR. Comparative analysis of gametocytes obtained from both strains was made (counts and morphological changes). In vitro zygote formation from FCB2 gametocytes was induced by incubating a gametocyte culture sample at 27 °C for 20 min. A controlled Anopheles albimanus infection was made using an artificial feed system with cultured FCB2 gametocytes (14-15 days old). Mosquito midgut dissection was then carried out for analyzing oocysts. RESULTS: The FCB2 strain expressed Pfap2g, Pfs16, Pfg27/25 and Pfs25 sexual differentiation-related genes after in vitro sexual differentiation induction, producing gametocytes that conserved the expected morphological features. The amount of FCB2 gametocytes produced was similar to that from the 3D7 strain. FCB2 gametocytes were differentiated into zygotes and ookinetes after an in vitro low-temperature stimulus and infected An. albimanus mosquitoes, developing to oocyst stage. CONCLUSIONS: Even with the history of long-term FCB2 strain in vitro culture maintenance, it has retained its sexual differentiation ability. The gametocytes produced here preserved these parasite forms' usual characteristics and An. albimanus infection capability, thus enabling its use as a tool for studying sexual form biology, An. albimanus infection comparative analysis and anti-malarial drug and vaccine development.


Subject(s)
Anopheles/parasitology , Malaria, Falciparum/parasitology , Mosquito Vectors/parasitology , Plasmodium falciparum/growth & development , Animals , Colombia/epidemiology , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Erythrocytes/parasitology , Female , Gametogenesis , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Polymerase Chain Reaction , RNA, Protozoan/genetics , RNA, Protozoan/isolation & purification , Sequence Analysis, DNA , Spectrophotometry
15.
Article in English | MEDLINE | ID: mdl-31844010

ABSTRACT

Mefloquine shows a high capacity to bind plasma proteins, which influences the amount of drug in erythrocytes. The study investigated the association of lipids levels with plasma concentrations of mefloquine and carboxy-mefloquine in 85 Brazilian patients with uncomplicated falciparum malaria. There were no significant associations between the total cholesterol or triglycerides with plasma concentrations of mefloquine and of carboxy-mefloquine. Lipoprotein levels explained 25.68% and 18.31% of mefloquine and carboxy-mefloquine plasma concentrations, respectively.


Subject(s)
Antimalarials/blood , Artesunate/blood , Malaria, Falciparum/drug therapy , Mefloquine/analogs & derivatives , Mefloquine/blood , Plasmodium falciparum/drug effects , Adult , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Artesunate/pharmacokinetics , Artesunate/pharmacology , Biotransformation , Brazil , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cholesterol, VLDL/blood , Drug Therapy, Combination , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Male , Mefloquine/pharmacokinetics , Mefloquine/pharmacology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Severity of Illness Index , Triglycerides/blood
16.
Int J Mol Sci ; 20(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744112

ABSTRACT

The presence of hemoglobin A-S (HbAS) in erythrocytes has been related to the high production of reactive oxygen species (ROS) and an increased in intracellular oxidative stress that affects the progress of Plasmodium erythrocytic cycle life and attenuates its serious clinical symptoms. Nevertheless, oxidative effects on P. falciparum proteome across the intraerythrocytic cycle in the presence of HbAS traits have not been described yet. Here, an immune dot-blot assay was used to quantify the carbonyl index (C.I) on P. falciparum 3D7 proteome at the different asexual erythrocytic stages. Protein carbonylation on parasites cultivated in erythrocytes from two donors with HbAS increased 5.34 ± 1.42 folds at the ring stage compared to control grown in hemoglobin A-A (HbAA) red blood cells. Whereas at trophozoites and schizonts stages were augmented 2.80 ± 0.52 and 3.05 ± 0.75 folds, respectively. Besides proteins involved in processes of the stress response, recognition and invasion were identified from schizonts carbonylated bands by combining SDS-PAGE with MALDI-TOF-TOF analysis. Our results reinforce the hypothesis that such oxidative modifications do not appear to happen randomly, and the sickle cell trait affects mainly a small fraction of parasite proteins particularly sensitive to ROS.


Subject(s)
Erythrocytes/metabolism , Plasmodium falciparum/growth & development , Proteome/analysis , Sickle Cell Trait/pathology , Electrophoresis, Polyacrylamide Gel , Erythrocytes/parasitology , Hemoglobin A/chemistry , Hemoglobin A/metabolism , Hemoglobin, Sickle/chemistry , Hemoglobin, Sickle/metabolism , Humans , Life Cycle Stages , Oxidative Stress , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protein Carbonylation , Proteome/metabolism , Protozoan Proteins/analysis , Protozoan Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Mem Inst Oswaldo Cruz ; 113(10): e180174, 2018.
Article in English | MEDLINE | ID: mdl-30110072

ABSTRACT

Farnesyl diphosphate synthase/geranylgeranyl diphosphate synthase (FPPS/GGPPS) is a key enzyme in the synthesis of isoprenic chains. Risedronate, a bisphosphonate containing nitrogen (N-BP), is a potent inhibitor of blood stage Plasmodium. Here, we show that P. falciparum parasites overexpressing FPPS/GGPPS are more resistant to risedronate, suggesting that this enzyme is an important target, and bisphosphonate analogues can be used as potential antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Farnesyltranstransferase/biosynthesis , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Risedronic Acid/pharmacology , Analysis of Variance , Animals , Antimalarials/analysis , Blotting, Western , Drug Resistance , Farnesyltranstransferase/analysis , Plasmodium falciparum/growth & development , Reference Values , Risedronic Acid/analysis
18.
Molecules ; 23(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158478

ABSTRACT

Chemical examination of the octocoral-associated Bacillus species (sp.) DT001 led to the isolation of pumilacidins A (1) and C (2). We investigated the effect of these compounds on the viability of Plasmodium falciparum and the mechanism of pumilacidin-induced death. The use of inhibitors of protein kinase C (PKC) and phosphoinositide 3-kinase (PI3K) was able to prevent the effects of pumilacidins A and C. The results indicated also that pumilacidins inhibit parasite growth via mitochondrial dysfunction and decreased cytosolic Ca2+.


Subject(s)
Antimalarials/pharmacology , Bacillus/chemistry , Peptides/pharmacology , Plasmodium falciparum/growth & development , Animals , Anthozoa/microbiology , Antimalarials/chemistry , Calcium/metabolism , Mitochondria/drug effects , Molecular Structure , Peptides/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protein Kinase Inhibitors/pharmacology
19.
Cell Calcium ; 72: 81-90, 2018 06.
Article in English | MEDLINE | ID: mdl-29748136

ABSTRACT

Inositol 1,4,5 trisphosphate (IP3) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP3 elicits Ca2+ release from intracellular Ca2+ stores, even though no IP3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP3-dependent Ca2+ signal. The melatonin-induced cytosolic Ca2+ ([Ca2+]cyt) increase and malaria cell cycle can be blocked by the IP3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca2+]cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP3 receptor like IP3-sponge and an IP3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP3-induced Ca2+ release in intraerythrocytic stage of P. falciparum.


Subject(s)
Calcium Signaling/drug effects , Erythrocytes/parasitology , Inositol 1,4,5-Trisphosphate/metabolism , Melatonin/pharmacology , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Animals , Boron Compounds/pharmacology , Cell Proliferation/drug effects , Erythrocytes/drug effects , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Life Cycle Stages/drug effects , Mice , Plasmodium falciparum/drug effects
20.
Am J Trop Med Hyg ; 99(1): 73-83, 2018 07.
Article in English | MEDLINE | ID: mdl-29741155

ABSTRACT

We measured the prevalence of malaria in pregnancy and estimated its impact on birth weight and length and maternal hemoglobin in 1,180 women from Juruá Valley, the main malaria hotspot in Brazil. Antenatal malaria episodes, 74.6% of them due to Plasmodium vivax, were microscopically diagnosed in 8.0% of the women and were associated with an average reduction in birth weight z-scores of 0.35 (95% confidence interval [CI] = 0.14-0.57) and in birth length z-scores of 0.31 (95% CI = 0.08-0.54), compared with malaria-free pregnancies. Affected mothers had a mean decrease in hemoglobin concentration at delivery of 0.33 g/100 mL (95% CI = 0.05-0.62 g/100 mL); 51.6% were anemic. The timing and frequency of antenatal infections influenced pregnancy outcomes and first- or second-trimester infections were not associated with decreased birth weight and length and maternal hemoglobin at delivery. Although repeated antenatal vivax infections were associated with poorer birth outcomes, even a single vivax malaria episode was associated with a significant reduction in birth weight and length and maternal hemoglobin. Overall, 7.5% women had the parasite's DNA found in peripheral blood at delivery. Most (83.1%) of these 89 perinatal infections were due to P. vivax and only 7.9% of them progressed to symptomatic disease after delivery. Plasmodium vivax and Plasmodium falciparum DNA was found in 0.6% and 0.3% of 637 cord blood samples examined, respectively, but only one newborn developed clinical neonatal malaria. Our results further challenge the notion that vivax malaria is relatively benign during pregnancy and call for better strategies for its prevention.


Subject(s)
Anemia/epidemiology , Birth Weight , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/pathogenicity , Plasmodium vivax/pathogenicity , Pregnancy Complications, Infectious/epidemiology , Adolescent , Adult , Anemia/diagnosis , Anemia/parasitology , Body Height , Brazil/epidemiology , DNA, Protozoan/blood , Female , Hemoglobins/metabolism , Humans , Infant, Newborn , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Plasmodium falciparum/growth & development , Plasmodium vivax/growth & development , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/parasitology , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL